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EPIMORPHISMS OF COMPACT GROUPS ARE ONTO
DETLEV POGUNTKE

ABSTRACT. It is proved that the epimorphisms in the category of
compact groups are surjective. The proof is based on the representa-
tion theory of compact groups, especially on the well-known fact,
that for a closed proper subgroup H of a compact group G there
exists an irreducible representation of G which, when restricted to
H, contains the unit representation.

In any category a morphism e:X— Y is an epimorphism if fe =ge
(f, g any morphisms starting at V) implies f=g. In this connection
the problem arises of characterizing epimorphisms in specific cate-
gories. In many concrete categories the epimorphismis are surjective,
for instance in the category of groups, of finite groups, of modules
over a ring and of topological spaces, but there are also concrete cate-
gories with nonsurjective epimorphisms, e.g. the category of rings or
of Hausdorff topological spaces. In this note we will show that the
epimorphisms of compact groups are surjective.

I wish to express my thanks to Professor K. H. Hofmann for his
suggestion to characterize the epimorphisms in the category of com-

pact groups.

THEOREM. Let G and H be compact groups. A continuous homomorph-
ism fiH—G is an epimorphism in the category of compact groups and
continuous homomorphisms iff f is surjective.

Since the proof of the theorem is based on the representation theory
of compact groups, we recall the definition of a G-module in order to
introduce the terminology used in this paper.

DEFINITION. Let G be a compact group. A G-module is a pair (V, k)
consisting of a finite-dimensional complex Hilbert space V and a
continuous homomorphism k:G—U(V) where U(V) denotes the
group of unitary transformations of V. o

PROOF OF THE THEOREM. The “if?-part of the theorem is trivial.
Suppose now, that f is an epimorphism. Then the inclusion map from
the compact group f(H) into G is an epimorphism, too. It is, the.re-
fore, no loss of generality to assume that H C G and f is the inclusion
map. We must show H=G.
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LEMMA. If (V, k) is a G-module and W is an H-submodule of (V, k)
(i.e. a vector subspace of V such that h(HY(W)YC W), then W is a G-
submodule of (V, h).

ProOOF OF THE LEMMA. Let M be the orthogonal complement of W
in V. Then M is a H-submodule of (V, k). Denote by d the unitary (as
it is easily verified) transformation (1w, —14): WO M—-W& M and
by I4 the inner automorphism on U(V) induced by d. Simple com-
putations show (i) &-f=1Is-k-f. Since U(V) is compact and f is an
epimorphism in the category of compact groups we deduce from (i)
that (ii) £ =1I4-h. In order to show that Wis a G-submodule of (V, k)
take any g&G and any w& W and write h(g) (w) = @ +m with 9EW
and m & M. We must show that k(g) (w) EW, or, equivalently, m =0.
From (ii) and the fact that W is the fixed point set of the involution
d it follows that @+m=h(g)(w)=( k(g)-d~")(w)=(d-h(g))(w)
=d(®+m) =%—m; hence m =0. From the Lemma we will obtain an
indirect proof for H=G. Suppose, that H is a proper subgroup of G.
Then there exists a nontrivial irreducible G-module (V, k) such that
W:={xEV:h(g)(x) =x for each gEH} is a nonzero H-submodule
of (V, k) (see [1, p. 28, Chapter 3] and note that every G-module is
a direct sum of irreducible ones, or [2, Chapter VI, §VII, Proposition
5], for the Lie group case, the conditions of the latter proposition are
satisfied by Theorem 4 of §XII in the same chapter of [2]). Denote
by ¢ the constant homomorphism from G in U(V). From the Lemma
and the irreducibility of (V, k) it follows that V=W, and conse-
quently k-f=c-f. Since f is an epikorphism in the category of compact
groups and & and ¢ are in this category, we conclude %2 =¢, in contra-
diction to the nontriviality of (V, k). This contradiction completes
the proof of the theorem.
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