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As is well known, the category of compact groups is complete and cocomplete. Where-
as the structure of limits is well known, it is much harder to get some insight into the
structure of colimits. In this paper we described the internal structure of the coproduct
of two circle groups.

Introduction. The purpose of this paper is to characterize internally the
structure of the coproduct of two circle groups in the category whose
objects are all compact (Hausdorff) groups and whose morphisms are
the continuous homomorphisms, thus sclving a problem posed by K.H.
Hofmann.

Let K be the compact abelian group of complex numbers of modulus
1 and let C together with morphisms ¢, ¢: K ~ C be the coproduct of
K with itself in the category of compact groups. C is connected because
K is connected. According to the structure theorem for compact con-
nected groups (see e.g. [4, 6.59, p. 75]), the following hold:

(1) The commutator subgroup C of C is a closed connected subgroup
of C.

(2) If Z,(C) denotes the component of the identity in the centre ZC
of C, then the multiplication m :Zy(C) X C'— Cis a surjective morphism
with totally disconnected central kernel.

(3) There exist a family (C;);c; of simply connected compact connected
simple Lie groups and a surjective morphism p': I;c; C; » C' with totally
disconnected central kernel.

Let u: Zy(C) X I;c; C; - C be the composite morphism
m-(lz,cy X u'). _

In this paper we will show that ' is an isomorphism (isomorphism is
always meant in the categorial sense), that the Pontryagin character group
of the compact abelian group Z,(C) is isomorphic to Q2 (Q denotes the
additive group of rational numbers with the discrete.topology), and that
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128 D. Poguntke / The coproduct of two circles

for each simply connected compact connected simple Lie group G the
set of indices

{i € 11C; is isomorphic to G }

has the cardinality of the continuum. Moreover, it will be described how
the kernel of u is embedded in Z,(C) X I, ,C;.
We begin with two definitions.

Definition 1. Let G be a compact group, and let G;, i = 1, 2, be subgroups
of G. G is said to be generated by G, and G, if G is the smallest closed
subgroup of G which contains G, and G,.

Definition 2. Let G be a compact group, and let (f, g) be a pair of mor-
phisms from K into G. The pair (£, g) is called admissible if G is generated
by f(K) and g (K).

Remark 3. Let C together with the morphisms ¢, ¥ : K » C be — as al-
ways — the coproduct of K with itself in the category of compact groups.
Then (g, ) is an admissible pair.

In the following proposition we show that for each semisimple, com-
pact, connected Lie group G there exists an admissible pair of morphisms
from K into G. In particular, every such group is a quotient of C.

Proposition 4. Let G be a semisimple, compact, connected Lie group, and
let u and v be elements of the centre ZG of G. Then there exist subgroups
K, and K, of G with the following properties:
(1) K; is isomorphic to K fori= 1,2,
(ilue K, andveK,;
(iii) G is generated by K, and K,.

Proof. The standard theorems from Lie theory used in the proof are
found in every book on this subject, e.g. in [1],[8] or [9]. Let T be a
maximal torus in G, i.e., a closed subgroup of G which is maximal with
respect to the property of being isomorphic to K” for a suitable n. Let
LG (resp. LT) be the Lie algebra of G (resp. T), and let exp: LG - G be
the exponential map. We consider LT as a subalgebra of LG:

LT ={X € LG |exp(tX)e T forall t R}.

We proceed with the proof by stating two lemmas.
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Lemma 5. The set of all X € LT (resp. X € LG) for which there exists
t € R\ {0} with exp(tX) = u is a dense subset of LT (resp. LG).

Proof. Since 7 is abelian and connected, exp induces a covering homo-
morphism e from the additive group LT onto T (see e.g. [9, pp. 94,95]);
kere is a free abelian group whose rank equals the dimension of LT. ZG
is contained in T because the conjugates of the maximal torus 7" cover
the group G (cf. [1, 4.21, p. 891]). In particular, there existsan 4 € LT
with exp(A4) = u. Therefore the set of all X € LT for which there exists
t € R\{0} with exp(¢X) = u is (R\{0}) * (4 + kere). The latter set is
dense in LT because the rank of kere coincides with the dimension of
LT. To prove the other part, let Y be an arbitrary element in LG. Let
H be the closure of the one-parameter subgroup {exptY £ €R} in G.
Since H is a compact connected abelian Lie group, it has to be a torus
in G. Hence H is contained in a maximal torus S of G. From the above
it follows that Y can be approximated by elements X € LS for which
there exist + € R\ {0} with exp(¢X) = u. This proves the lemma. [

For statement (and later use) of Lemma 6, we collect some elementary
facts about semisimple Lie algebras. Proofs can be found, e.g., in {7, §§
62,63]. Let ¥ = LG ® iLG be the complexification of LG. £is a complex
semisimple Lie algebra, and $ := LT ®iLT is a (Cartan) subalgebra of L.
Let ad: £ - End(g, ) be thé adjoint representation. If we define -(X, Y)
to be the trace of the linear map ad(X)- ad(Y), then (-,-) is a positive
definite scalar product on LT. There exists a finite set A in LT and lin-
early independent vectors X, « € 4, in £ with the following properties:

(1) a real multiple ra of an element « in A is contained in A if and
only if r equals £ 1;

(2) A generates LT as a real vector space;

e=paed,.,CX,;

(4 H+Z, 2, X,, where HE Y and z, € Cforalla € 4, is con-
tained in LG if and only if H€ LT and z_,, =z, for alla € A;

(5) [H, X, ] = ad(H) (X,) = i(e, H) X, for HE LT and « € A;

6)[X,, X_,]=iafora € A.

Lemma 6. Let X be in LT such that (e, X) # 0 forall « € A, and

(@, X)# @ X) foralla,f€ A witha # (. Let Y =H+ TocaZaXy bein
LG with He and 7_, =z,# 0 forall« € A Then LG is the smallest
real subalgebra of LG containing X and Y.
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The proof of Lemma 6 is omitted because it follows from the proof
of [5, Theorem 1].

We continue with the proof of the proposition. Let A* denote the
set

A*:={a — fla,fE A, a # §}.
Then
D:= U*{XELTI('y,X)=O}= U (XelLTl(y, X)=0}

YEA YEAUA*
is a finite union of affine hyperspaces (of codimension 1) and hence a

closed proper subset of LT. By Lemma 5, there exists A in the open
non-void set LT\ D and ¢ € R, ¢ # 0, with exp(¢4) = u. Since

E={H+Z,cpz,X,|HELT, z_,=2z,# Oforalla € A}.

is an open non-void subset of LG, there exists (by Lemma 5) B € £ and
t€R, 1 # 0, with exp(¢B) = v. By Lemma 6, the smallest subalgebra of
LG containing A and B is LG itself. Now we define

K, :={exp(sA)}s € R}, K, :={exp(sB)|s € R};

we have to show that K, and K, have the properties (i)—(iii) of the
proposition.

(ii). Trivial.

(iii). Let M be the smallest closed subgroup of G containing K; and K.
As a closed subgroup of G, M is an analytic subgroup. Let LM be the Lie
algebra of M (considered as a subalgebra of LG ).'Clearly, A and B are
contained in LM, hence LM = LG therefore M = G.

(). Let f denote the continuous homomorphism s -+ exp(s4) from R
onto K. Since ZG, as the centre of a compact, semisimple Lie group, is
finite, the order of u is finite, say #. If ¢ is 2 non-zero real number with
exp(t4) = u, then nt is contained in the kernel of f. Hence K| is either
isomorphic to K or the zero-subgroup of G. The second case is impos-

sible because G is generated by K; and K, and G is semisimple. Analo-
gously, K, is isomorphic to K. O

Definition 7. Let G, and G, be compact connected groups, and let
(f1.8;) (resp. (f2.83)) be a pair of morphisms from X into G, (resp. G,).
Then (£}, g¢) and ( f2. 83) are called equivalent if there exists an iso-
morphism #: G| - G, satisfying hfy=f, and hg, = g,.
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Remark 8. A pair of morphisms (f}, g;) from K into G| which is equi-
valent to an admissible pair (f;, g,) from K into G, is also admissible.

Remark 9. In the case G| = G, the relation defined above is an equi-
valence relation on the set of (admissible) pairs of morphisms from X in-
to Gl .

Proposition 10. Let G be a compact, connected, semisimple Lie group.
Then the set of equivalence classes of admissible pairs of morphisms
from K into G has the cardinality of the continuum.

Proof. Clearly, this set has at most the cardinality of the continuum be-
cause the set of all continuous homomorphisms from K into G has the
cardinality of the continuum.

Let Aut(G) be the group of all isomorphisms from G onto itself, let
Inn(G) be the subgroup of all inner automorphisms, let /: G » Inn(G)
be the canonical homomorphism, and let Ad: G - Aut(LG) be the ad-
joint representation. It is a well-known fact that one can introduce a
unique topology on Aut(G) such that Aut(G) is a compact Lie group,
Inn(G) is the component of the identity, and Inn(G) carries the quo-
tient topology with respect to /.

We use the notation introduced in the proof of Proposition 4. Let
u = v be the unit element in G, let A be in LT with (a, A) # (B, A) for
o,fE A a#p,andletB=H+Z ., z,X,; withHE€LT and

0#:z,=z_,€ Cforalla € A. Assume that
K,={exp(tA) |t €R}, K, ={exp(tB) |t €R}

are isomorphic to K, and let f; and f; be injective morphisms from K in-
to G with f;(K) = K; for i = 1,2. As we have seen, (f}, f>) is an admis-
sible pair.

Now we consider pairs of the form (f}, pf3), p € Aut(G). If p = 1(g)
is an inner automorphism, then the Lie algebra of p f>(K) equals
R - Ad(g) (B). From the proof of Proposition 4 it is clear that (f},/(g)f)
is an admissible pair if Ad(g) (B) is contained in

(H+ZycpCa X, VHELTand 0 # ¢, =c_, foralla € A}.

Hence there exists an open connected nieghborhood U of the identity
in G such that (f}, I(g) f,) is an admissible pair forallge U.

Two automorphisms p and 7 in Aut(G) are called equivalent if the
pairs (f,, pf,) and (f}, 7f,) are equivalent in the sense of Definition 7.
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Let F denote the quotient space with respect to this equivalence relation,
and let v: Aut(G) » F denote the associated natural map. Let C;, i=1, 2,
be the closed (and hence compact) subgroups {p € Aut(G) | pf; = f;} of
Aut(G). A simple computation shows that p and 7 are equivalent if and
only if Cyp C, = Cy7C,. Hence F is a Hausdorff space, and v is an open
map. Consequently, v(/({)) is a connected, locally compact Hausdorft
space. Therefore it remains to show that p(/(U)) has at least two points.
Assume, to the contrary, that v(/(U/)) consists of a single point or,
equivalently, that C, /(U) C, = C, C,. Especially, C; C, is an open and
clesed neighborhood of the identity in Aut(G). Let D; = C; N Inn(G)
fori=1,2.D,D, is an open and closed subset of Inn(G), because D; is
of finite index in C;. Since G and hence Inn(G) are connected, we obtain
Inn(G)=D,D, or G=1"Y(D)I"YD,) = Z(K,) - Z(K,) where Z(K;) de-
notes the centralizer of K; in G. The subgroups K are contained in max-
imal tori of G. Since maximal tori are conjugate (see {1, 4.23, p. 92]),
there exist a maximal torus T in G and g € G such that K| € T and
K, S g 'Tg. Write g asg = xy with x € Z(K;) and y € Z(K,). It is easy
to see that K| and K, are contained in x~! T'x. Since G is generated by
K, and K,, it follows that G = x~1Tx, a contradiction to the assump-
tion that G is semisimple. O

The next two lemmas are needed in the sequel.

Lemma 11 (see [6, p. 36]). Let G and H be compact connected groups,
and let f:G » H be a surjective morphism. If Zy(G) (resp. Zy(H)) denotes
the component of the identity in the centre of G (resp. H) then

Zy(H) = f(Zy(G)).

Proof. Clearly, f(Z,(G)) is contained in Zy(H). By the structure theo-
rem for compact connected groups, cited in the introduction,

G =G'Zy(G) and H = H' Zy(H). Moreover, H' N Zy(H) is totally discon-
nected. Since f is surjective, we have f(G') = H' and

H=f(G) = f(G") f(Zy(G)) = H' f(Z((G)).

The embedding from Zy(H) into H induces a monomorphism from
Zy(H)[f(Zy(G)) into HIf(Zy(GY=H'[|H n f(Z,(G)). The image of this
monomorphism is contained in ' N Zo(H)/H N f(Zy(G)), which is to-
tally disconnected because it is a quotient of a totally disconnected com-

pact group (see e.g. [3, 1.19, p. 18]). This shows that ZoH)/f(Zy(G))
is the trivial group and the lemma is proved. O
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Lemma 12. Let G and H be compact connected groups, and let G - H
be a surjective morphism. Moreover, let H, and H, be closed connected
subgroups of H, and let G; be the component of the identity in f‘l(H,-)
fori=1,2. G is generated by G and G, provided H is generated by H,
and H,.

Proof. Let G* denote the smallest closed subgroup of G containing G,
and G,. A surjective morphism M - N between compact groups maps
the component of the identity of M onto the component of the identity
of N. Hence f(G;) = H; for i = 1, 2. Therefore f(G*) = H or G = G*ker/.
Fori=1,2 and x € kerf we have xf‘l(H,-)x‘1 Qf‘l(H,-) and:therefore
xG;x~ '€ G; and x G*x~! C G*. Hence G* is a normal subgroup of G.
Since ker f is contained in f ~}{(H 1), the component of the identity in
ker f is contained in G; € G*, and, as a consequence, the group

ker f/G* N kerf is totally disconnected. On the other hand, the connected

space G/G* = G*kerf/G* is homeomorphic to ker f/ker f N G*. This
shows that G = G* as desired. O

Recall (see the introduction) that {p, ¥: K » C) denotes the coproduct

of K with itself in the category of compact groups, m: Zy(G) X C' > C

is the multiplication, (C;)iey is a family of simply connected compact
connected simple Lie groups, u': [T, ;C; - C is a surjective morphism
with totally disconnected central kernel, and u=m - (1 Zo(€) Xu'. More-
over, let ZC; denote the (finite) centre of C;, let v;: C; » C;/ZC; denote
the quotient morphism (the C;/ZC; are simple adjoint Lie groups), let

v be the product II;< ,v;, and let

v: Zyyx Il ¢, - T ¢;/2c¢;
iel iel
be defined by v'(z, x) = v(x) for z € Zy(C) and x € I;c ;C;. Since the

kernel of u is totally disconnected and hence central, there exists a
unique morphism A such that the diagram

Zo(C) X I C;

:"( T prgmsteer o
T
TR
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commutes. Moreover, let

%i: H Cf g Ci’ m: jle—[] C,/ZC, -> C,/ZC,

iel
denote the projections, and let
Qi 1= A, Y = mAY.

We fix these notations for the rest of the paper.

Proposition 13. For all i € 1, (g;, ¥;) is an admissible pair of morphisms
from K into C;/ZC;. Moreover, for any compact connected simple ad-
joint Lie group H and any admissible pair (@, 1) of morphisms from K
into H there exists a unique i € I such that (¢;, ;) and (0, 7) are equi-
valent.

Corollary 14. Let (G;);c; be a family of compact connected simple ad-
joint Lie groups, and let (f;,8;), j € J, be admissible pairs of morphisms
from K into G;. Let G be the product of the G, let p;: G ~ G; denote
the projections, and let f, g: K » G be the unique morphisms satisfying
pjf=fandp;g= gj for all j. Then

(a) (f, g) is an admissible pair
if and only if

(b) the (f;, g;) are pairwise nonequivalent.

Proof. First we show (a) = (b) of the corollary. Assume that (b) is false.
Then there exist i, j € J, i # j, and an isomorphism /:G; - G; with
hf; = f; and hg; = g;. Obviously,

{t, hoeNIxeGyx Il 6,
kel

k+i,j

is a proper closed subgroup of G containing f(K ) and g (K ), a contradic-
tion to (a).

Since (Ap, AY) and the (g;, ;) are admissible pairs, the implication
(a) = (b) implies that the (@i, ¥;), i € I, are pairwise non-equivalent. It
remains to show that there exists an index i such that (o, 7) and (@;, ¥;)
are equivalent. By definition of the coproduct there exists a unique sur-
jective morphism p :C - H with pp = 0 and py = r. Moreover, there
exists a unique surjective morphism p* such that the diagram
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C
\
A H
/
[1c/ze,

iel

commutes (kerA is central and the centre of A is trivial). Let C¥,i € [,
denote the connected normal subgroup

{x € M;c; C;/ZC; | mi(x) =1 for all k € I\{i}}

of I, ;C;/ZC;. Then p*(C}¥) is a connected normal subgroup of the sim-
ple Lie group A. Moreover, p*(C¥) centralizes p*(C§) fori, kK € 1, i # k.
This shows that there is a unique index i € / such that p*(C¥) = H and
p*(C#)={1} for k € I\{i}. Since C¥ is a simple adjoint group, p* in-
duces an isomorphism from C}¥ onto H, say /i. It is clear that ip; = 0
and hy; = 7. Thus (y;, ¥;) and (o, 7) are equivalent and the proposition
is proved.

The implication (b) = (a) of the corollary follows from the proposi-
tion. O

In the sequel, the (discrete) Pontryagin character group of a compact
abelian group A is denoted by A”.

Proposition 15. Zy(C)" is isomorphic to Q2. C/C' is isomorphic to K.

Proof. For n > 2 the group SU{(n!) is a simply connected compact con-
nected simple Lie group. The centre ZSU(n!) of SU(n!) is a cyclic group
of order n!; let a,, be a fixed generator of ZSU(n!), and let ¢, be the unit
element in SU(n!). According to Proposition 4 there is an admissible
pair (fn, £,) of injective morphisms from K into SU(n!) X SU((n!) with
@,, e,) € /,,(K) and (e, a,) € g,(K). Let

G,:=SUMmN? X ... Xx SU2N? X K2,
and let f,, g,:K -~ G, be defined by
Fn 0 = (Fu (), oo ™R FoY 73, %, 1)

8.00) = (B,(x), ., E R L ()3, 1,X)
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(f,,ég,,) is an admissible pair, for: Let H be the smallest closed subgroup
of G, containing f,(K) and g,(K). Moreover, let

n
p:G, - Il sux!?
k=2

be the projection, and let

a: 11 suen? - I1 sucnyzsucn?

be the quotient morphism. By Corollary 14, (gpf,, qpg,) is an admissible
pair. By Lemma 12, IT}_, SU(k!)? is generated by [¢~ ' (qpf (K)o = Pf,(K)
and pg,(K). Consequently, p(H) = II} , SU(k!)?. Since the latter group
is semisimple (hence perfect), we obtain p(H') = TT§-, SU(k!)2. Now it is
easy to see that / = G,, as desired.

Since f,, is injective,fn”‘(an, e,) is an element of order n! in K and
therefore a generator of the group Tor,(K) of roots of unity of order nl.
Hence

F(Tor, (K)) = (¥, €,) | ¥ € ZSU(n1)}
and analogously

gn(Tory, (K)) = {(e,, ») | ¥y € ZSU(n!)}.
Define

D, = f(Tor, (K))&,(Tor,, (K)).
D, is a finite central subgroup of 5,,. Let

Gn:=G,/D, '

End let Pnién ~ G, be the quotient morphism. For n > 3, let
Pn: G, > G,_, be defined by

Pn(Xys oy X9, 6, ¥)= (0, _y, ...y Xp, X", 3™)

for x, y E K and x; € SU(j?. Because p,(D,)=D, _, (asiseasy to see),
there exists a unique surjective morphism p, such that the diagram
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~

7 ~
,‘l Gn—l

¢

n

Pn

G

f

commutes. One verfies easily that ﬁ,,(fn(K)) =fn_1(K) and analogously
Po(8,(K)) =g,_,(K). This implies

pn—}fn_l(K) = pn_lﬁnfn(K) =pn pnfn(K)s
Pn-18n-1(K)=p, p, &, (K).

Therefore p,, induces a surjective morphism from p, g, (K) (resp. p, f,(K))
onto p,_18,_1(K) (resp. p,_1f,_1(K)). A simple computation shows
that these morphisms are injective. ghoose injective morphisms f, and

g, from K into G, with f,(K) = p, f5(K) and g,(K) = p, g, (K), and then
for n > 3 choose injective morphisms f,,, g, from K into G, satisfying

iKY =0, (K),  8,(K) = p,8,(K),

p3"-pnfn=f2’ P3-Pn8n~=82-

Forn > 3, the f,, and g, are uniquely defined by these properties. More-
over, p, f =f,_1 and p, g, =g,_1 hold forn> 3. (f,, g,) is adm.issible
because (f,,, g,) is admissible. Therefore, for each n > 2, there exists a
unique surjective morphism ¢,,: C > G, with g0 =f, and ¢, ¥ =g,.
The equations

Pra))e=pnfy = fao1=dn1¥
and
(ann )‘I’ =8n-1"4qn-1 \[’

imply p, q,, = q,_q for n> 3. By Lemma 11, the p, and ¢,, induce sur-
jective morphisms p,,: Zy(G,,) > Zo(G,_;) and g, : Zo(C) = Zy(G ). For
n=3,p,4q, ={q,_, holds. Moreover,

ZO(Gn}':' pn(ZO(én)) = pn({(en’ €ns - €25 eZ’x,Y)l x,y € K}).
Therefore j,: K? » Z,(G,) defined by

In(x, ¥) = p,(e,, ey, - €2.€2, X V)
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is a surjective morphism from K? onto Zy(G). A simple computation
shows that j,, is an isomorphism. Let w, - K2 > K? be defined by
w, (x, ¥) = (x", y"). The diagrams

J
. Z(G ) —" K?
|

' Pn Wn
én—\ ¢ in-1 {

Zy(G,_ ) ———K?

commute for n > 3. Apply the Pontryagm duality functor. The charac-
ter-group of K% is Z2. The dual map w, :Z2 -+ 72 of w,, is given by

w (x ¥) = (nx, ny). Since j, qn is an ep1morphnsm the dual map i, of
in 14, is a monomorphism. We obtain commutative diagrams

ZZ
in
Zy(C)" wh
In-1 22
forn> 3. Let
A:= U i (Z%).

n=2

A is a subgroup of Z,(C)" since iy_ 1(22) is contained in z,,(Zz) for
nz 3. Let §:4 > Q? be defined in the following way: if a € 4 and
=1,(x, y) for some n > 2, then &) = (x/n!, y/n!). It is easy to see that

5 is well—defined, and that 6 is an isomorphism. It remains to show
A =Zy(C)". This will follow from:

Lemma 16. Let B be a compact connected abelian group, and let T be
a tosally disconnected closed subgroup of B such that B/T is isomorphic
to K". Then B” is isomorphic to a subgroup of Q".

Proof. Dualizing the exact sequence

0-T->B-B/T>0

3
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we get the exact sequence of discrete abelian groups
0-2"-B"->T"-0.

Since Q is a flat Z-module, the sequence
0~ Z"©,Q~ B"©;Q+ T"®;Q~0

is also exact. T"®,Q is zero because 7" is the character group of a totally
disconnected, compact group and hence a torsion group. Hence 8”87 Q

is isomorphic to 2" ;,Q = Q". Since B” is torsion free, there exists a
monomorphism from B” into B*¢;Q = Q", and the lemma is proved. (I

Let d: C > C/C’ denote the quotient morphism. Obviously,
(dp dy: K -~ C/C") is the coproduct of K with itself in the category of
compact abelian groups. Therefore C/C' is isomorphic to K? (and the
second part of the proposition is proved). By Lemma 11, d induces a
surjective morphism from Zy(C) onto C/C’, say d*. Since the kernel of
d* is totally disconnected (by the structure theorem for compact con-
nected groups), Z,(C)" is isomorphic to a subgroup of Q? (Lemma 16).
As we have already seen, Zy(C')" contains a subgroup (namely 4)
which is isomorphic to Q2. The above facts imply A = Zy(C)y*.O

For further analysis we need the following lemma.

Lemma 17. Assume that

(a) H and A are compact connected groups,

(b) A is abelian and A" is isomorphic to Q2,

(¢) L and M are closed abelian subgroups of A X H generating A X H,

(d) M* and L™ are isomorphic to subgroups of Q.

If p| (resp. p,) denotes the projection A X H— A (resp. A X H~> H),
then the following assertions are valid:
(i) py(M) N py(L)={0}, A =p, (M) P, (L).

(ii) L™ and M" are isomorphic to Q.

(iii) p, induces isomorphisms from M onto p,(M) and from L onto
pi(L).

(iv) Let o (resp. B) denote the inverse of the isomorphism from M
onto py(M) (resp. from L onto p(L)) induced by p,. Let iy (resp. iy )
denote the embedding from M (resp. L) into A X H, and let
U:=pyiyoa and v:=p,i; B. Then

. ‘:‘ww&%
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M ={(x, u(x)) | x € py(M)},
L={(x,v(x))|x €p,(L)}.

The simple proof of this lemma is omitted. We apply the lemma by
choosing 4 = Z,(C), H =M ,C;, M = (=Y @(K))]y, and L = [p= 1 (Y(K))]p.
By Lemma 12, 4 X H is generated by M and L. Moreover, M and L are
abelian since the commutator subgroups M’ and L’ are connected and
contained in the totally disconnected group keru. From the exact se-

O->Mnkeru-> M- e(K)-> 0

we get by Lemma 16 that M* is isomorphic to a subgroup of Q; the
analogous statement holds for £*. Hence in this case all assumptions of
Lemma 17 are satisfied.

In the sequel we use the assertions (i)—(iv) and the notations intro-
duced in Lemma 17.

Proposition 18. (i) kerp = (keru N M)(kerun L)
={Gy, ux) - v(y)1x € p(kerp n M),y € pi(kerun L)}.
D) p':The ;G > C' is an isomorphism.

Proof. (i) F:= (kerun M)(kerp N L) is a closed central subgroup of
Zo(CYX M, C;. Let P:= (Zo(C) X M;c; C))/F, and let
r:=Zo(C)X e, C; > P denote the quotient morphism. There exists a
unique surjective morphism s: P— C with s = t. We claim that s is an
isomorphism. Since e(K) = p(M) = s(r(M)), s induces a surjective mor-
phism from r(M) onto ¢(K). Since keru N M is contained in F, this
morphism is also injective. Hence there exist morphisms ¢', §': K > P
satisfying o' (K) = r(M), Y(K)=r(L), 5¢' = ¢ and sy’ = . The universal
property of the coproduct guarantees the existence of a morphism
s': C > P with s'v=¢' dnd s'Y =y’ s is surjective because P is generated
by r(M) = ¢'(K) and y'(K). The equations (ss"}p = 59’ = g and (ss')Y = ¢
imply ss' = 1.. Hence the surjectivity of s’ implies that s is an isomor-
phism. This proves the first assertion.

By Lemma 17,

keruNnM = {(x, uix))ixe p1(M N keru)}
kerun L = {(x, v(x)Ixe p1(L N kerp)}

b

and hence the second equation holds.
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(i1) Since p (M) N p,;(L) ={0} and, in particular,
pi(M N keru) N p (L Nnkeru) = {0},
this description of keru shows that.the kernel of u' is trivial. O

Proposition 19. There exist unique surjective morphisms o:p (M) - K
and 7:p; (M)~ K such that the diagram

p1(M) z > K
u C
A
[Tc,—>* I[1c;/zc,
el i€l
ﬁ"il ™
v; |
! g CI/ZCI

and the analogous diagram with t,v and Y commute. Moreover,
kera = p;(kerp N M),
kert =p,(kerun L).

Proof. The uniqueness is obvious. Since ¢ is injective and
Miyra(p,(M)) = u(M) = ¢(K), there exists a surjective morphism o such

Me——p,M)
iMl .uiMal \K
ZoOx I ¢—5— ¢ 7
iel

commutes. It is easy to see that o has the property asserted in the prop-

that

osition. Moreover,
kero = ker(uiya) = (iMa)'“l(keru) = oYM Nnkerp)

= py(M O kerp)

by the definition of a. O

conity "l 3 .
_ Meeese— f

st

R
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Summarizing our results, we see that the coproduct of K with itself
in the category of compact groups can be described as follows: Let

$i
{K = Giliel}
Vi

be a family of admissible pairs (g;. §;) of morphisms from K into com-
pact connected simple adjoint Lie groups G; such that for each admis-
sible pair (4, 8) of morphisms from K into some compact connected
simple adjoint Lie group there exists precisely one i € [ such that

(;, ;) is equivalent to (v, 8) in the sense of Definition 7. Then for
every compact connected simple adjoint Lie group H the set of indices

i € I such that H is isomorphic to G, has the cardinality of the conti-
nuum. Moreover, I has the cardinality of the continuum (since there are
only countably many non-isomorphic compact connected simple adjoint
Lie groups). _

Forie I, letv;:G; > G; denote the universal covering. Moreover, let
0:Q" ~ K be an arbitrary surjective morphism (with totally disconnected
kernel §). For each i € I there exist unique morphisms u; and v; (use
Pontryagin duality) such that the diagrams

”i] ]w v,-l [w,-
QA_...—O__) K Q"___g__,_) K

commute. Let

u=Hu,-:Q"—> [T¢

iel ier '

U= nvi:QA—) l—l é“

el iel
G=Q"xQ x 1§,
icl
D={(x,y, ux)v(y)xyeSICaG.

Then D is a closed totally disconnected central subgroup of G. Let
p:G - G/D denote the quotient morphism. Moreover, let
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€,7:Q” - G/D be defined by
€(x) = u(x, 0, u(x)), n(x) = u(0, x, v(x)).

There exist unique morphisms ¢,y : K = G/D with wo =€ and Yo =1.
Then G/D together with the morphisms g, ¥ is the coproduct of K with
itself in the category of compact groups. Moreover, the map

(x,¥) = u(x)v(y) from $? into II,E,G is injective and u induces an
isomorphism from Q"2 onto Z,(G/D).

Recently, K.H. Hofmann has shown that every compact connected
group H splits over its commutator subgroup H'. In the following, we
shall briefly describe this splitting in our special situation that & = C is
the coproduct of K with itself. The homomorphism (x, Y) > ux)v(y)
from $2 into HIE,G takes values in the centre of H,e,G and hence in
[, T; if T; denotes a maximal torus in G Since the character group of
e, T; is free there exists a morphism : Q"2 > e ;G; with
Kx, y)=u(x)v(y)forx,y € S. Letp,:G~ Q"2 denote the first projec-
tion, and let s(x, y) = (x, y, t(x, ¥)). Then there exist unique morphisms
§ and d such that the diagram

Q"2 Q2 Q2

\/

aXo u oXo

C=G/D

1/ e

K2 K2

commutes. C is the semidirect product of s(K?)= K? and _
kerd = C' = I, ;G;. The space C is homeomorphic to K? X e, G;.
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