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DECOMPOSITION OF TENSOR PRODUCTS
OF IRREDUCIBLE UNITARY REPRESENTATIONS
DETLEV POGUNTKE

ABSTRACT. It is shown that the tensor product of an irreducible uni-
tary representation of a (discrete) group G and an n-dimensional (n < oq)
unitary representation of G decomposes into at most n? irreducible subrep=~
resentations; the multiplicity of each irreducible constituent is not greater
than n. As an application it is shown that the restriction of an irreducible
unitary representation to a subgroup of finite index is a finite sum of irredu-

cible subrepresentations.

At the meeting ‘‘Harmonische Analyse und Darstellungstheorie lokalkom-
pakter Gruppen’’ in Oberwolfach, R. Howe posed the following question: Let
G be a (discrete) group and let 7 and p be irreducible unitary representa-
tions of G with dimp=:7<e. Is p®7 a sum of at most 7* irreducible
subrepresentations? He proved that the answer is yes if 7 is finite dimen-
sional, too. In this paper it is shown that the answer is yes in the general

case. Indeed, we will show a little bit more, namely:

Theorem., Let @ and #' be irreducible unitary representations of the
group G in the Hilbert spaces § and §', respectively, and let p be a uni-
tary representation of G in a Hilbert space of dimension n <eo. Then the di-
mension of the space HomG(rr', p ®m) of intertwining operators is not greater

than n and is equal to n iff p ® © is unitarily equivalent to ot

Corollary 1. Let G, p, m, § be as in the Theorem. Then the dimens ion

of the algebra HomG(p @7, p ® m) is not greater than n? and is equal to n
iff p*® p @ m is unitarily equivalent to n’n (p* denotes the contragradient
representation). Especially, p @ m is the direct sum of at most n® irreduci-

ble subrepresentations.

2

Corollary 2. Let G, m, § be as in the Theorem and let N be a subgroup

of G of finite index. Then the restriction of m to N is a [inite sum of irredu-
cible subrepresentations. If N is a normal subgroup the dimension of the al-

gebra HomN(rr, 7) is not greater than the index [G: Nl
Corollary 2 was used in the proof of Proposition 2.1 in [1] for locally

compact groups of type L. .
The basic idea in the proof of the Theorem is the introduction of an inner
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product ((, ) in HomG(p ® 7, p ® 1) which is totally algebraic in nature. At
the end of the paper, we will give an example of an n-dimensional (for all in-
tegers n> 1) irreducible representation p such that p ® p* is a sum of n?
one-dimensional subrepresentations,

Let V be a finite dimensional Hilbert space and let © be an arbitrary
Hilbert space. The algebraic tensor product V & &~ becomes a Hilbert space
if we define (W ® k, v @ h) = (w, v)k, h). If €y, ..., e_ is an orthonormal

basis of V, every element in V ® © can be represented uniquely in the form

2:’21 e. ® h. and, by definition of the inner product, we get

2 e ® by 3 e ® k)= > (his k2o
i=1 t:I

=]
Now, we indicate how Corollary | (the answer to Howe's question) follows
from the Theorem.

Let ' be another Hilbert space and let V* denote the dual space of V.
Then the spaces of bounded operators Hom(V @ ©, ') and Hom(9, v er)
are canonical isomorphic. The isomorphism J : Hom(V @ &, ') —

Hom(, V*® %) is givenby (JT)h=27_ e*®@Tle @ h) if e*, ..., e* is
the dual basis of e, ..., e JT is independent of the basis e, ..., € ]

n
is not an isometry for the operator norms, but we have

Lemma 1. n=#{T| < |JT} < n# | TY| for all T € Hom(V ® §, §'). More
over, let G be a group, and let p, m and n' be unitary representations of G
inV, D and o', respectively. Then | transforms the space of intertwining
operators HomG(p ®m ') onto HomG(n, Q).

The simple proof of this lemma is omitted. For 7' = p®m we get
Hom p @ m, p ® m) HomG(fr, (p*® p) ® 7) (Theorem =+ Corollary 1).

Now, for a unitary representation p in a finite dimensional Hilbert space
V and an irreducible unitary representation 7 in a Hilbert ©, we introduce
an inner product {(, )) in HomG(P ® 7, p ® 7) which is crucial in the proof of
the Theorem (we will use that inner product for different p’s and 7’s and will
denote it by the same symbol {, M. We will compute «rr*, TT*) for T €
HomG(ﬂ', p ® m in two different ways. The inner product is defined as fol-
lows:

If S, T €HomG(p® 7, p ® ) then IS, T EHomG(rr, pre@p® 7) and
(]S)*]T € HomG(n', 7). Since 7 is irreducible, that operator is a scalar mul-
tiple of the identity, and we define

«r, s» idg = (J)*(J7).

Lemma 2. (i) Y is linear in the first and conjugate-linear in the second
variable,

(ii) €S, SH= |1 1(9]?, especially, €S, SH =0 iff § = 0.
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(i) ((idy g, idy, g gh = dim V.
(iv) (S, T) = (T, S).

(v) Let €11 +-+ 4 €, be an orthonormal basis of V, and let S, Te

Hom (p@n p@rr) be gzven by
S(e ® 5) = Ze @5, Lh) and e, ®h) = Ze ®T,.(h

for h €S and 1< i<n Then the equation {T, S//id&;: 2. b=l 5 21 holds,

Proof. (i) and (ii) are clear, (111) and (iv) follow from (v). Let el, ceesy
* be the dual basis of €4y .., € . Bydefinition, we have (JS}5) =
Zn e @e, @S5, (A A s1mple computatlon shows that

i,h=1
* * =z *
(J$) , e, ®e,®h, )= _)k: ISkihki
i, =

ik=

Deflinition. Let p and 7 be as before. Let # be another irreducible
umtary representation of G in ' and let T € Hom{7', p ® 7). The operator
™ HomG(p ®m, ') corresponds to an operator in HomG(ﬂ, *® ' )by
Lemma 1). This operator is denoted by T, Explicitly: if €1y orey € 1S an

. . . * .
orthonormal basis of V with dual basis e’;, .+, €, and T is represented as

i M=

1
and therefore,

JO*UD = ¥ ST,
k=1

f

n n " *
=2 e, ®T.H, then T%-= Z; eI T} h.
1=

i=}

Lemma3. Let 04 T EHomG(rr', p®m). Then T'T EHomG(rf', 7'),

(T9Y*T12 ¢ HomG(rr, m, TT e HomG(p ®m p®u) and THTH* €

.HOMG(P* ®n', p*®n'). Let the positive real numbers o and [ be defined

by T*T = aidg,, and (T9*1% =1 idg, respectively (n' and n are irreduci-

ble). Then one has

(1T, TT™ N = af = (T4(T°)", T(T)).

Moreover, let §: $'— V ® § be another intertwining operator such that the
*

ranges of S and T are orthogonal. Then one has {sS™, TT*) = 0 ={(S4S9,

T(Te )"

Proof. The first statements are clear. Let e, ..., e bean orthonor-

mal basis of V and let T be given by Th =2?_ e; ®T.h'. Then

”n
T*T = ZT:‘Ti=aid6,, (T*)*T19 = _ZTT = Bidg

and

"
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* = ™
TT (ei ® b = kz_:l €, ® Tk ih'
By Lemma 2(v), we get
* * L * 1\ * c * * .
«TT*, TT"Yidg = 'gl(rkri) T,T; = 2:1 T.T}T,T; = aBidg.
i, k= =
Since (T%)? = T the same argument shows that aff = (T%(T* Y, 7T,

Let S be as in the lemma. From T(5') 1 S(5') we get T*S = 0 and, there-
fore,

n
i=1
Since (T%)*$% ¢ HomG(‘ﬂ', m) there exists y € C such that

(2) yidg = (T9)*s%= 3" T s,

By Lemma 2(v):

n n
(ss*, TT™) idg = ; 1('rkr*i‘)"‘sks’;f = ; T,T;S,ST=0 (by (1)
ik= i k=
Now, T*(T%)* (and, analogously, S%(5§%)*) is given by THT*)(e} ®h') =
2:=1 e: ® T’;Tih'. Lemma 2(v) implies:
* o vk S ke Ko
(TLT)*S3S, = 2 TiTS5iS5:=0

1 ’ i k=1

(s2(s2), THT*YNidg =

S

70

(by (2) and (1)).

Now we are able to give the

Proof of the Theorem. Let T,, ..., T be r linearly independent ele-
ments in Homc(n", p ® 7). Without loss of generality we may assume that
T£(3§') 1 Tj(ﬁ') for i# j (by orthogonalization with respect to the inner
product (S, T) idge = T*S). We have to show that r < n. Let a., B P; and ©;
(1<i<7) be defined by TiT, = a,idg,, (T#)*T? = B idg, P, = a;'T;T; and

" o i i i i 3 i 6 i i )

Q.= 61. T:-’(Ti) - Then the P’s and Qs are projections in HomG(P Qm, p&T
and HomG(p* ®n', p*@ '), respectively. By Lemma 3, one has

€P,, PY=B7', €0, 00=aB7,

and
«Qi, QJ-»=0“—=«PI-, Pj» for i # j.

Let Pr and O be defined by the equations idygg=P + 2;1 P. and idysgg' =
Q+2._, Q,. From Lemma 2, one can easily conclude that

«ldV%’ Pi»= «‘PI ’ Pi » = «Pt ’ ldV®5»

and
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((idv*gs' y Q,» = «Qi’ Q,» = «Qi’ idv*gs'»

(because the P;'s and Qs are projections). This shows that «P’., P)=0=

«Qf-, O) for 1 <7< Lemma 2 and the above relations imply

(P, P)+ 3 B0 =0, )+ ¥ o671,
i=1

i=1
I e e B0 e
2 rs x we get r <7 as desired.
. If the dimension of HomG(fr', PR is equal to n», choose » linearly
l.ndependent elememts T, ..., T in that space with Ti(@') 1 TA$") for
i# j and form P:. and P as above. It is easy to see that (P, P) ]= 0 and,
therefore, P =0 or idge= Z:_:I P.= 2:?=1 al.‘ITi ’[f This shows that V @ §
is the (orthogonal) sum of the Tl.( @')’s but the restriction of the representa-
tion p @ 7 to Ti(Sﬁ') is unitarily equivalent to #'. The “if-part’’ is trivial,
The Theorem is proved, we have already pointed out how Corollary 1 follows

from the Theorem.

Remark. The fact that p ® 7 is the direct sum of at most 72 irreducible
subrepresentations can be proved quicker if one uses Lemma 1 and a similar
trick as in the proof of the Theorem. More precisely, let PI, ceny Pr be or-
thogonal projections in HomG(p ®w, p ®nm). As in the proof of the Theorem
one gecs n2 37 (P,, P,). Bue (2, P, = L2 I and (P 2
n~ ”P,H = #~" (Lemma 1) and, therefore, n > rn~! or r< n?. Of course,

EVAWSSS T
o e,

the Theorem gives a more precise description.
Proof of Corollary 2. Since ngEG gNg"l is a normal subgroup of finite
index, it suffices to prove the second statement. The group G, resp. H : =
G/N, acts linearly on the space Hom,(7, 7) by g- /= 7(g)fr(g)™ Let p be
any irreducible unitary representation of H in the finite dimensional Hilbert
space E; we consider p as a representation of G, too. The space of inter-
twining operators HomH(Ps Hom N(ﬂ, m) = HomG(p, Hom N(ﬂ, 7))} is isomorphic
to Hom (p ® m, 7). By the Theorem, the dimension of that space is not great-
er than dim E. Since H is finite, every element in Hom(m, 7) is contained
in a finite dimensional H-invariant subspace of Homy(7, 7). Therefore, the
dimension of Hom (7, m) is not greater than Ep(dim p)%, p being an equiva-
lence class of irreducible unitary representations of H. But, by a well-known
theorem in the representation theory of finite groups, the value of this sum

is exactly the order of H.

Example. For all integers n> 1 we will give an example of an 7-dimen-
sional irreducible representation p and another irreducible representation 7
such that p ® # decomposes into exactly n? subrepresentations. To moti-
vate our example let p and 7 be such representations, p @ 7 = :':1 e
Then the algebra HomG(p ®@m p ®n is at least n? dimensional; from Corol-

- . . M 2 ' ‘-
IarY 1 we know that its dimension is exactly n°. Therefore, the 7; S are unf

£
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tarily nonequxvalent Moreover, again by Corollary 1, p*@p @ 7 is umtaniy
equxvalent to n2m; but on the other hand p*® p ® 7 is equal to p*@(@ T l
—@!_1(;) ®":‘)‘ Hence 7 is unitarily equivalent to p* ® 7, for all 1.

Let G be the Heisenberg group over Z/nZ,

z

1
G= 0
0

oS == W

y V:x,y,zel/nl].
1

L
The commutator subgroup G is equal to the center

1 0 =z
ZG={lo 1 0 \|:2z€Z/nZ).
0 0 1

Let X be a character of

I 0O
N:= 0 1 yl:y,zeZ/nk
0 0 1

z

which is faithful on ZG and let p be the induced representation indyg X
in the n-dimensional space V. p is irreducible by the Frobenius reciprocity
theorem: the restriction of p to N decomposes into n different characters
since x is faithful on ZG. Choose 7 = p* For g € ZG we have

Ae) =x@id,, 7lg=p*e =x(gide

and therefore,

(p @m(g) = xlgid, ®x(gidys = idygys:

Hence the homomorphism p ® 7 factors through G/ZG which is abelian, and

p ® m decomposes into one-dimensional subrepresentations; p ® 7 is the sum

of all 2?2 nonequivalent (see above) one-dimensional repre sentations of G-
Acknowledgement. Originally, I proved the Theorem for 7 =7 ‘. The gen-

eralization was suggested by the referee. Moreover, the example is due to the
referee; 1 gave an example only for n= 2,
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