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The class [S] of locally compact groups G is considered, for which the algebra
LY(G) is symmetric (=Hermitian). It is shown that [S] is stable under semidirect
compact extensions, i.e., H € [S] and K compact implies K %, H €[S]. For
connected solvable Lie groups inductive conditions for symmetry are given.
A construction for nonsymmetric Banach algebras is given which shows that
there exists exactly one connected and simply connected solvable Lie group of
dimension <4 which is not in [S]. This example shows that G/Z € [S], Z the
center of (7, in general does not imply G € [S]. It is shown that nevertheless for
discrete groups and a (possibly) stronger form of symmetry this implication
holds, implying a new and shorter proof of the fact that [S] contains all discrete
nilpotent groups.

Recall that a Banach algebra &/ with isometric involution a — a* is called
symmetric, if the spectrum Sp a*a for every element 4 .9/ is always contained
in Rt = [0, oo[. The theorem of Ford and Shirali [2] tells us that this is equiva-
lent to & being Hermitian, i.e., that Sp b CR for each be o/ with b = b*.
For other characterizations of symmetry for involutive Banach algebras see
[16] or [10]. In this paper we are mainly concerned with group algebras LY(G)
for locally compact groups G with left invariant Haar measure. Thus we define:

[S] is the class of all locally compact groups G for which the convolution algebra
LYG) s symmetric.

It is convenient to introduce also some other classes: [A] Abelian, [C]
compact, [M] amenable, [Solv] solvable, [Nil] nilpotent, and [PG] polynomially
growing groups. The subclass of all connected groups in a class [X] will be
denoted by [X],. Detailed information about the relations among the various
classes [X] can be found in the survey article [14], a short summary about
known results on [S] is contained in [11].

The history of [S] is a line of destroyed hopes and wrong conjectures: After
early results there was some hope that [5] = [M], but 1969 Jenkins [5] showed
that [Solv] ¢ [S], hence a fortiori [M] € [S]. Then there was an old conjecture
that [PG] = [S]. This was shown to be false in [11]: Even [S], ¢ [PG]. On the
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120 LEPTIN AND POGUNTKE

other hand in [3] a locally finite discrete group is constructed, which is not
in [S], hence [PG] € [S]. As yet all known results indicated that [S], = [M],,
the inclusion [S], C [M],, e.g., being true. But among others we will prove
that the connected four-dimensional exponential group G, o(0) with algebra
a4.5(0) in the terminology of [1] has a nonsymmetric algebra. Thus {S], = [M], .
Actually this example is minimal: All other G € [Solv], with dim G =« 4 are
in [S]. We also show that this group is not contained in the class [W] of groups
with the Wiener property. This result fills the gap in [9, Corollary 2, p. 275}.
It also implies that closed normal subgroups of Wiener groups need not be
Wiener. The least example of this kind is the group of real upper triangular
3 x 3 matrices (a;;) with a;; > 0, a5, > 0, a5, = 1. As a contracting extension
of the Heisenberg group H, this group is in [W}, see [13]. The subgroup a;, = 1
is exactly Gj 4(0).

As in our previous papers we use also here extensively the machinery of
generalized L'-algebras and consequently assume that the reader is familiar
with the basic facts of this theory, see, e.g., [6].

1

Throughout this paper let o7 be a Banach algebra with an isometric involution
a — a*. Let G be a locally compact group acting strongly continuously on &/
as a group of isometric *-automorphisms. As in our previous papers we form
the generalized Ll-algebra & = LYG, &) of left Haar integrable of-valued
functions on G. If a — a* denotes the automorphism on =7 defined by x € G,
convolution and involution on % are given by

fee@ = [ oy ey dy,  fHx) = (FE))* A

The standard example of such an % comes from semidirect products: Let H
be another locally compact group such that G acts continuously and auto-
morphically on H. Then the semidirect product I' = G x , H is well defined
and one has LY(I") =~ LY{G,L(H)) in a canonical fashion.

TueoreM 1. If G is compact and of is symmetric, then & = LNG, /) i
symmetric.

Proof. Let % = C(G, &) be the involutive Banach algebra of all continuous
functions from G into &/ with pointwise operations and uniform norm. If G
acts on & by fi(x) = ( f(2x))?, then ¥ is a G-algebra and o/ can be identified
with the G-subalgebra of all constant functions. But then .Z can be considered as
a closed subalgebra of LY(G, %) and hence it suffices to prove symmetry for the
latter.

Now let ., be the G-algebra which coincides with &7 as an involutive Banach
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algebra but with trivial action of G. For ue (G, «) let u,e C(G, o) be
defined by u,(x) = u(x)*. Then

(%) (%) = (u(x))* = u(zx)® = uax) = (@)(x)-

Thus u — u, is a G-isomorphism from € onto C(G, &) and consequently we
may assume from the beginning that & = &4, ie,, that G acts trivially on 7.
Now we apply the first “lemma’ in [15] to the algebra B = LYG,?). In
order to do this we observe that the center of the adjoint algebra ” of ¢ contains
C(G) in such a way that all the assumptions on € = & and C(G) = 2 made in
Theorem 1 of [9] are fulfilled. These assumptions imply that the algebra
I'(G) = LG, C(G)) (see [7]) is contained in 2°. By Corollary 3 of Theorem 1
in [9] or by Theorem 4 below we know that I',(G) is simple and contains
Hermitian projectors e of rank 1. Thus we can proceed exactly as in the proof
of Satz 1 in [15] and it remains to prove that the subalgebra e ¥y LYG, €) ¥r e
is symmetric. To this end we take for e the constant function e(x, y) = L.
Then for f € LY(G, €) we have

ete f(x) = [ by f() dy = [ F(9) dy e,

i.e., e ¥r f is a constant function on G. On the other hand for any constant
functiong: x —>ac % onc hase Jr g = §&, thus e vy LYG, %) consists exactly of
all constant functions from G into ©. Let h€ e ¥t L'(G, €) be constant. Then

hte efx) = [ By e(9) dy = [ e dy e 65,

the invariant elements of €. Again, if g €%, then also gy e =€ and con-
sequently

e <+ LG, €) ¥¢ e ~ €C. (1)

But u € 6C means #*(x) = u(zx) = u(x) for all v, 2z € G, hence €€ is the sub-
algebra of constant functions from G into &, which we had already identified
with 7. Tt follows immediately from the definitions that (1) is a full isomorphism
between e < L! ¥ e and 7. Thus e vt L1 e and consequently LYG, ¥)
and LY(G, /) are symmetric.

CoroLLARY 1. Let G =K x,H be the semidirect product of a compact
group K and a closed normal subgroup H. Then H & [S] implies G € [S].

CoROLLARY 2. Let G be a Lie group with component G, , such that G|G, is
finite. Then G € [S) if the radical R of Gy is in [S] and if Go[R is compact.

Proof. After [8, Theorem 3], we can assume that G = G, and moreover
that G is simply connected. But then G = K x, R with semisimple K.



122 LEPTIN AND POGUNTKE

The following example shows that the converse of Theorem 1 is false: Let
r > 1 be a real number, and let &/ be the x-subalgebra of all felY(Z) with

=Y 1) rinl < oo.

Clearly & is a commutative Banach x-algebra, which is not symmetric, because
it has non-Hermitian characters: The dual &7 of s/ consists of all characters

x> xlf) = ¥ f) 3

with z€ C, r? << | 2| <r. The Hermitian characters are exactly those with
[z] =1.

Now T ={zeC;|z| =1} acts continuously on & by f— f¢ fi(n) =
{*f(n), LeT. For keZ = T let b,e.97 be the function n — 8¢.n. Then,
in the terminology of [10], b; generates the subspace &}, of f € &7 with f¢ = (¥,
in particular .o, ~ C is symmetric and the (only) normalized positive functional
Jo(Aby) = A has, e.g., F, = x, as a positive extension on 7. But this was all
that was needed in [10, Satz 4], to prove the symmetry of LY(T, .o¢).

Of course the converse of Corollary 1 may still be true. The only known
connected solvable Lie group not in [S], i.e., G, 4(0), cannot be used for counter-
examples, because it has no compact automorphismgroups with more than
two elements.

Corollary 2 and our next theorem reduce the problem of symmetry for almost
connected groups to the case of connected solvable Lie groups. The proof of
the next theorem is the same as that for the corresponding theorem for the
Wiener property, see [4].

THEOREM 2. Let G = prolim G, be the projective limit of the groups G, .
Then G € [S] if and only if all G, € [S].

Proof. Let K, be the normal compact subgroup in G with G/K, = G, .
The normalized Haar measure m, of K, is a central idempotent in the measure
algebra M(G), thus I, = m, ¥¢ LY(G) is a closed x-invariant ideal in L}(G)
which is easily seen to be isomorphic with LYG,). An easy application of the
Stone-Weierstrass theorem shows that |}, 7, is a dense ideal in LYG). Now
Theorem 2 follows from [11, Satz 1].

2

Our first two theorems reduce the question whether an almost connected
group G belongs to [S] or not more or less to the case of connected solvable
Lie groups. In this case the obvious method to apply is induction. A powerful
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tool in this context is Satz 1 in [15], which is the source of symmetry for nilpotent
groups in that paper, but which actually gives much more. We will use it
here to prove a criterion for symmetry which implies for instance that all
connected solvable groups of dimension <4 and not locally isomorphic with
G, o(0) are in [S].

Now let G be a connected and simply connected solvable Lie group and let
W be a minimal closed normal connected subgroup of positive dimension.
Then ! = dim W < 2. Let g be the Lie algebra of G and let w be the [-dimen-
sional ideal corresponding to W. Clearly W and w are commutative, hence
W ~ R!, and the centralizer h of w in g has codimension at most 2. Ifl=1
and W, resp. w is not central, then w = (¥) and g = (x) @ b with [x, y] =y.
It follows that G =R X ,H, R~ W <1 H and R x ,W = S, the connected
affine group of R.

If I — 2, then w has a basis {x, ¥} and there exist linear forms ¢ and 4 on g with

[a,x] = ga)x — P(a)y,  [& ] = ¢(a)x + ¢(a)y-
Clearly ¢ and ¢ are independent if and only if codim ) = 2.

TueoreM 3. Let G be a connected and simply connected solvable Lie group with
algebra g, let w be a minimal nonzero ideal in g with centralizer ) C g and let
W and H be the corresponding connected closed normal subgroups of G. Let , § € g™,
the real dual of g, be defined as above, if dim w = [ = 2. Assume that G/We[S].
Then G € [S], provided that one of the following conditions if fulfilled:

(1) W is central and G/W has a central subgroup U/W =~ R, so that the
centralizer K of U in G isin [S].

(2) I =1, Wis not central and H € [S].

(3) I =2,codimH =1, He[S]and ¢ + 0.

(4) ! =2, codim H = 2, and the subgroup corresponding to the kernel of
@ is in [S].

Remark. The cases which are not covered by Theorem 3 are where (1 G
has one-dimensional center Z and G/Z has trivial center, and (i) / =2,
codim H = 1 and G contains a one parameter subgroup acting via inner
automorphisms as a rotation group on W ~ R2. This is of course equivalent
with the existence of an element a€g with [a,x] =y, [a, y] = —x for a
suitable basis {x, y} of w. If G is an exponential group, then this case (i) can not
occur, but clearly (i) is possible, and indeed G, o(0) is the least possible example

of this kind.
Proof of Theorem 3. Assume (1). There is nothing to show if K =0.

Otherwise K must have codimension 1, because G acts trivially on Wand U/W.
Thus G = R x,K with R~R, Uis central in K, and R x, U= H,, the
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three-dimensional Heisenberg group. The rest of the proof in this case is
the same as for nilpotent Lie groups with one-dimensional center (see [15]).

In order to prove Theorem 3 for the remaining cases (2), (3), and (4) we
need Satz 1 from [15], but in a more general form. In our present case (2)
the subalgebras %, of LY(W)= LY(R), defined below, unfortunately don’t
have bounded approximate units, thus a version of Satz 1 is required which
avoids this assumption. For the benefit of the reader we will formulate this
version and indicate how to prove it.

“Satz 1. Let R be a locally compact Abelian group and let o7 be an involutive
Banach R-algebra. Assume that the center of the adjoint algebra <® of < contains
a closed involutive R-invariant subalgebra % such that the action of R on ¥ is
continuous, and that the dual % of U can be identified with R. Moreover let the
Gelfand transform map U injectively onto a subalgebra 2 of C,(R) and assume
that 2 satisfies conditions (1) through (4) in [9, p. 262]. Let </, be the closure
of Ut = AU in o and assume that 57, is symmetric, and A2 is dense in .
Then Fy = LY(R, <4,) is symmetric.

Proof. ‘The conditions on 2 imply that %2 is dense in %, thus we have
07/._%; = & and we may assume that o/ == of,. Let & = LYR, &) and & =
LR, %). Then 2 can be considered as part of #* and it is easy to see that
9% contains LY(R, %), hence coincides with . Let & be the system of all

Hermitian projectors of rank 1 in 2. Since @ is simple we have 2p% — 2
for every p e . Now an inspection of the proof of Satz 1 in [15] reveals that
approximate units are used only twice: First one has to have (pLoN gL =
pZq for p, g€ P (we omit the “v%”). But this follows from

(p29)qL9) 2 (6L D9 DLy = &L DL)q = pF2q = pZy.

Secondly one needs 2% —= %, which has been shown above to be true. Now
the rest of the proofs from [15] applies unchanged.

Now assume that (2) holds. Then again codim H =1 and G = R x, H
with R >~ R, hence LYG) o~ LR, &) = ¥ with &/ = LY(H). Moreover the
center of 2/? contains 2 = LYW) which can be identified with LY(R). Let f
be the Fourier transform of fe 2. Then the ideals

Zo={feZ;f(0) =0}, Z.={feZ;f(x)=0for Fx >0},

considered already in [9, p. 272], are R-invariant and % ++ Z_ is dense
in &, . Moreover the closures o7, of & ..o/ are R-invariant ideals in &7 and so
is & , the closure of &7, + & . Now the dual of = Z. can be identified
with R, see [9] or [11], and also the other conditions in “Satz 1°’ are fulfilled,
consequently the ideals %, = LY(R, o4) in % and also the closure %, =
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LY(R, &) of their sum are symmetric. Because % is the kernel corresponding
to the canonical epimorphism LYG) — LY{G/W) we see that £/, ~ LY G/W),
hence #/|.%, and consequently also .# is symmetric, see (5) in {9, p. 261].

Finally assume (3) or (4). Let K be the closed normal subgroup in G corre-
sponding to the kernel of ¢ in g; in case (3) we have K = H. In both cases
codimK =1, G = R x K with R~ R, and LYG) >~ ¥ = LY(R, &/) with
o :=L(K). Let &, denote the functions fe L{W) with [, f(x)dx = 0.
Then the kernel 2, of the canonical epimorphism LYK) — LY K/W) is the
closure of .&7 % f, and the kernel of LYG) — LN G/W) is &, := LR, ).
As in case (2), it suffices to prove the symmetry of %, . To this end, let %
denote the algebra of radial functions in & . K acts trivially on % and therefore
4 is in the center of &7*. Moreover, it is easy to see that #Z is dense in &
(actually, % contains bounded approximate units of 2°g). We conclude that
Ul = AU is dense in &, .

Also the other assumptions of “Satz 17 are fulfilled: Similarily to case (2),
resp. to [9] or [11], the dual of % can be identified with R such that the action
of R becomes left translation. It follows that %, and consequently & = LY(G)

is symmetric.

3

In our previous papers algebras of the form LY(G, 2) with 2 a G-invariant
Banach subalgebra of C(G) played an important role. Under certain fairly
general conditions they turned out to be simple and symmetric [9, Corollary 4,
p. 265; 11, Satz 3]. Among these conditions the most restrictive one is the
fact that 2 was required to be two-sided translation invariant with both trans-
lations z — ¢* and z — ¢, being continuous from G into 2. Here we will
weaken the right-sided invariance, and we will simplify the proof of [9]. It is
not known if one can omit all the hypotheses on right invariance.

THeOREM 4. Let 2 be a x-subalgebra of the algebra C.(G) of all continuous
complex-valued functions on G vanishing at infinity. For fe CoG) and 2z G
let {*€ C(G) and f, € C.(G) be defined by f*(x) = f(zx) and f,(x) = f(x3).
Assume that 2 satisfies the following conditions:

(1) 2 is a Banach algebra under a norm | |with | g* | = |q| =2 1¢qls =

SUPzeG 1 q(x)[
(2) 2 is left invariant, i.e., g€ Jand zec Gimply e 2and | ¢°| = | q|.

(3) The mapping z — g is continuous from G into 2 for every g€ 2.

(4) The compactly supported functions in 2 form a dense subalgebra 2, .

(5) For every neighborhood U of e in G there exists a function ue 2 with
the following properties:
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(a) u = 0 and the support supp u is contained in U,
(b) u,e 2forallzeG,
(c) the mapping z — u, is continuous from G into 9.

Then the algebra LY(G, 2) is simple and symmetric.

Remark. From Theorem 4 (5a,b,c) it follows easily that the subset of all
v e 2 for which 2 — v, 1s continuous from G into .2 is a two-sided translation
and conjugation invariant subalgebra 2, of 2 and that for every nonempty
open set V' C G there exists v € 2; with suppv C V, ¢ 2> O and [; v(x) dx = 1.
Moreover it follows that .2 is a regular function algebra.

Proof. We consider the regular representation p of ¥ = LY(G, 2) in L¥G).
Recall that one can identify the elements f e % with complex-valued functions
on G X G: For xe G it is f(x)e 2C C,(G), thus we may write f(x)(y) =
f(x,»), in particular f(x)*(y) = f(x, zy). Then p can be written (see, e.g., [7])

N = [ fC, 3 €6 dy, £ LXG)

In our papers [9, 11] we had defined special elements u « ¢ in % for functions
# and v in 2, . Our previous definition of u o v is not quite appropriate in the
present context, therefore we define now for arbitrary u, v € 2,

(u o v)(x) = A(x)17? u*0.

Then clearly uove? and (uoo)(x,y) = 4(x)"V2u(xy) v(y). Moreover,
with #'(x) = 4(x)"1/2 u(x) we have

(p(u » v)E)(x) = u'(x) L Ey Doy Ay dy = (1) u(x)
with the inner product (£ |9) = [£(y) 8(y)dy in LYG). Thus p(uov) is a
rank 1 operator and p(z o u) is a rank 1 Hermitian projector, if | 4" |3 = L.
Let & be the two-sided ideal of all fe & for which p( f) has finite rank. The
first three theorems in [11] show that symmetry for % will follow, if we can
prove that € is dense in Z.

This will follow from (4) if we can show that every function p’ & ¢: (x,¥) —
p'(x) q() for any g € 2, and any compactly supported continuous function pis
contained in the closure of & in Z.

Let g € 2,and p’ € C,(G) be given and assume that p’ has compact support 7.
Then p: x — A(x)'/2 p'(x) is also continuous and supported by T, hence for
e > 0 there exists a symmetric compact neighborhood U of e in G with
|p— % le < & |p— P, | < € for ze U. Now choose u € 2 with Theorem 4

(5a,b,c), # = 0 and [u(x)dx = 1.
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The integral
fi= fG fG P 10)[w, o (u,9)] dt dz

exists because we have to integrate only over a compact set (note that the
Z-norms u,' and |u,| are bounded on compact sets). Since u, o (u,q)€ &
for all t, z € G, the integral f is contained in the closure &. Let us compute

f(x, ¥):
@) = [ [ platt) A2 ulayz) w(n) g(3) di d

= A(x) V2 L fG plz—txt) u(z) u(t) dt dz - ¢(y).

Let p be defined by p(x) = [¢ [¢ p(3~'xt) u(2) u(t) dt dz. Then p is a continuous
function supported by UT'U. Moreover f = X ¢, and [u dx = 1 implies

px) = [ [ px) (o) utt) at d,

and therefore
70 = p@) = | [ [ [peer) = p(0)] ule) u(e) dx dt |
< f f | petxt) — p(x) | u(z) w(t) dz dt < 2.
G Y6
Thus if 4(x)~*/2 is bounded by ¢ on UTU we obtain for the norm | |; in &

I f—? @q1=14"2p —p)Rqli=1¢q| [urv d(x)V2 | p(x) — p(x)] dx <
2|qlce| UTU |.

Choosing U small enough we may assume that | UTU | < 2| T| for the
Haar measures of the compact sets UTU and 7. Thus

if—p @ql; <dc|gl |T| e

It follows that & = . Now the results of [11] imply that & is symmetric.
Finally, if ¢ is a closed proper two-sided ideal in #, then & ¢ ¢, and because
& is simple it follows that & {} # = 0, thus £ # = 0 and ¥ # = 0. This
imphes # = 0.

4

As a consequence of our last theorem we see that any algebra of the form
of =I\(H,2) with 2CC(H ) as before is the completion of a “matrix
algebra,” spanned by matrix urits ey = #;0u;, u;€ 2,. Given another
locally compact group G which acts on I/ and hence on ., it is natural to
use these e;; when studying & = LYG, o). Because 7 is part of #£?, the
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algebra £ is in a way a matrix algebra over the algebra ef,.%e}, = %, and the
structure of these &£ (which of course are all isomorphic) determines to a great
extent the structure of .%.

We consider two locally compact groups G and H and assume that G acts
continuously and automorphically on H, i.e., that there exists a2 continuous
mapping G X H—H, (g x)—x7ell, with (xy) = x99, (2f)* - xoh
x* = x. Let 4 be the modular function of this action: If dx is the left Haar
measure on H, then dx? = 4(g) dx. Now let 2 be a subalgebra of C, (F/) with
all the properties listed in Theorem 4. For ue C,(H) and g€ G let u - g be
the function uog(x) = u(x¢"'). We assume that g — q ~ g defines an auto-
morphism of 2 for every g G, in particular that { gog| = |¢', and that
g — ¢ o g is continuous for every g€ 2.

Under this assumption o7 = LY(H, 2) is a G-algebra with

folx) = A&y f(x)og,  fesdt, geG.
More explicitely, this means f27'(x, y) = 4(g) f (x?, ¥9).

TuroreM 5. If the modular function A is not trivial, then the algebra & =
LXG, o) with o7 = LY(H, 2) as above is not symmetric.

Proof. Let $ = L*H) and let p be the faithful representation of & =
LYH, 2) in $, as defined in Section 3. We fix a real element # in 2, with
u(e) >0, |u' |; =1 and set p = wou Then p(p) is 2 Hermitian projector
of rank 1 in $ and p is a minimal Hermitian idempotent in 7. As p is faithful
and p( p) has rank 1 it follows that po/p = Cp. Moreover, we can consider
o7 as a subset, hence p as an element of %%, Thus Theorem 5 will be proved when
we can show that the subalgebra %, = p*%p* of # is not symmetric if 4 == 1.

Note that p* & 2 is defined by ( p*f)(g) — p/(2), (f0*)g) = £(¢) , see [6].
Let " be the C*-algebra of all compact operators of §. We use the representa-

tion p to identify .&7 with a subset of #". Next we define the unitary representa-
tion 7 of G in § by

(m(8)E)(x) = 4(g)'72 &(x*).
Then for any g€ G, ac o/, and £€ §:

(r()* am()E)) = A(8) ar(g)é)")
= Ay [ ey, (8N dy
— [ a5 )

h L A(g) " al(xyy™, (3717 ™) dy = (a"€)(x),
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thus w(g)* an(g) = a, that is, = implements the action of G on &. Now
we consider X as a trivial G-algebra and form the generalized algebra LY(G, X').
We observe that for any compact operator k€ X the mapping g —> m(g)k is
measurable form G into the C*-algebra X', hence o: f — f% with

fi(g) = (&) f(g)

defines a norm decreasing injective linear mapping from & into LYG, X').
A straightforward computation shows that o is actually an injective *-homo-
morphism. We will compute the image of %, = p*Zp* in LY(G, X).

By definition for fe # we have ( p*/p*)(g) = p9f(8) p, thus fe &, if and
only if f(g) = p?f(g) p for (almost) all g € G. Moreover

fi(g) = m(g) f(g) = m(g) p*f(&)p = pm(g) f(8)p = #(&)P

with ¢(g) € C because pXp = Cp. If | |, denotes the C*-norm we have

| p(8)l = | F(D)x = Lf(&)lx < [f(&)l:

Thus o maps %, into LYG, Cp) = LYG). We can consider 2, as a subspace
of § = L¥H), which clearly is invariant under =, in particular we have
(m(g)u)(x) = A(g)?u(x*) for g G and xe H. Let us write w(g)u = gu.
Setting

w(g) = (g7w) o ue o,
we get

pofp = Cuw(g), | w(g)s = 1.

This is a consequence of the following remarks: If u,ve 2, with |4 |, =
| o' |, = 1, then either by direct computation in LY(H, 2) or by geometric
arguments one sees that (v o v)(v o u)(u o u) = v o u, specifically p? = (g7'u) o
(g~'u) implies prw(g) p = w(g) € p*sZP. The rest follows because p?</p has
dimension 1.

Our result implies that any fe %, can be written as f(g) = ¢(g) w(g) with
a complex-valued measurable function ¢: g — ¢(g). Moreover, as 7(g) w(g) = P,
it follows that

fi(g) = #(g)p-

Thus writing w(g) = | w(g)! (norm in & I) we obtain the following result:
The image of %, under the homomorphism o is exactly the Beurling subalgebra
LG, w dx) of LING) = LYG, Cp) of LNG, X") with respect to the weight

function w(g) = g luoul.
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That w is a weight function follows from the fact that ¢ is multiplicative.

Furthermore, w(g) > | w(g)lx = 1, thus LY(G, w) i8 a subalgebra of LY(G).
For w(g) we have the following estimate

8) = lgwoul = [ (g uyu |y dy(xy1rt dv
> [ e L. du(xy1 de
H
with 4,; the Haar module of H. Now
(g7 "w)u |, = sup g™ u)xy) w(y)| 2 | A(g) 17 u(e) u(x1y,
ve
consequently, with 2 = u(e) [y 4,,(x)12 | u(x~1)| dx > 0:

w(g) = d(g)12Q.

This implies that
)= [ &) ag)rn g c.

for every fe LY G, w dx) and that f — 8(f) defines a non-Hermitian character
of LG, w dx) if 4 is not trivial. Hence this algebra and consequently also
%, and Z cannot be symmetric in this case.

for Banach -algebras. In (9, Definition 2], we called # a Wiener algebra,
if every proper closed two-sided ideal .# C % ig annihilated by some nontrivial
unitary representation (= *-representation in a Hilbert space) of #. The class
[W] consists of all locally compact groups G for which LY{(G) is Wiener. In
[9, Corollary 2, p. 275], it was shown that the group G, (0) is the only connected
solvable Lie group with dimension <4 which possibly does not belong to [W].
We are now able to prove that G, o(0) indeed is ot in [W] and also that it is

the only of these groups not in [S]. First we show (same situation and notation
as in Theorem 5):

THEOREM 6. If the modular function 4 i not trivial, then & = LN(G, o)
is not a Wiener algebra.

Proof. 'The subalgebra 2, of & is certa
the non-Hermitian character § cannot be annihi
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in the adjoint algebra #°. If BpAB is dense in B, then the closed subalgebra &, —=
AP is Wiener.

Proof of the Lemma. let #,be a closed two-sided idealin &, . If #, # %, ,
then the two-sided closed ideal ¢, generated by _#,, in # is proper, because
Fo -+ BFy+ I B+ B F,H is dense in £ and consequently p_£p is contained
in #, . Thus #, = 4, implies the existence of a unitary representation = of ¥
with 7{( #) = 0, hence =(#,) = 0. But =(#,) # 0, because otherwise
a((#Bp#)?) — 0 and w(Hp#) — 0, which contradicts the assumptions that
Bp# is dense in # and = # 0.

To apply the Lemma to % and %, of Theorem 6 we only have to show
that #p* ¥ is dense in .Z. This follows from the fact that o/p.o/ is dense in ./
by Theorem 4 and that #.o7*, the span of all fa* with fe Z, a € &/, contains
LYG, /%) and thus is dense in . Hence ¥p*¥ = (L(ApA VL) =
(LA L) = P = 2.

As already mentioned Theorems 5 and 6 apply in particular to the group
G, +(0). This group can be written as G = R x ; H; with H, the three-dimen-
sional Heisenberg group: H, = R® as a manifold, with product (x;,;, 2)
(%3, ¥y, %) = (%, + X, 1 -+ V2, X195 -+ 21 + 2). For & R the action on H,
is given by (x, y, 2)t = (e7'x, 'y, 2), thus Z = {(0, 0, 2); € R} is the center
of G. We may write L}{(G) = LY(R, L\(H,)). The mapping f — £ with

f(x, 5) = U flx, v, 2) e?v+) dy dz
is a homomorphism of L(H,) onto I'(R) = L}(R, A(R)), with
(ft)(x, 5) = ff f(etx, ety, 3) e vi2) dy dz — e'f (e'x, e's).

It follows easily that % = LYR, I'(R)) is a quotient of L(G). It follows that
Theorems 5 and 6 apply with G = H =R, 2 = AR), & = I'(R), and
4(t) = e~t. Hence & and consequently LY{(G) is neither symmetric, nor Wiener:
G1,6(0) ¢ [S], Gy,o(0) ¢ [W]. _

From the results of [11] it follows that all connected solvable groups G with
dim G' < 4, which are semidirect products of Abelian groups are in [S]. The
remaining groups are of the form R x , H, . In the classification in [1, pp. 180,
181] these are the cases G, o(a), Gy 10 and Gy 11(«). Here only G, 4(0) and G, 1,(0)
have one-dimensional center, the others contain the center of H,; as one-
dimensional noncentral subgroups, thus they are in [S], by Theorem 3(2).
The “diamondgroup” G, 1,(0) is in [S] by [9, Theorem 5] or by the general
result [PG], C[S], proved recently by Ludwig [12]. So eventually we have
found:

CoRrOLLARY. Among the solvable connected groups of dimension at most 4 the
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group G, o(0) ts the only one which is not in [S]. 1t is also the only among these
groups which is not in [W].

This result is remarkable in so far as it shows that central compact subgroups
are everything else but “harmless’: There exist groups G with central subgroups
T>=T=1{2eC;|z| =1} for which G/T is in [8], resp. {W], but G is not.
This is equivalent with the existence of G €[8], resp. Ge[W], for which
there exist a factor system ? with values in T, i.e., a 2-cocycle in T, such that
the algebra LY(G, C; ?) = LYG; p) is not symmetric, resp. Wiener. In our
last section we will show that with respect to symmetry this cannot occur
for discrete groups.

As an interesting by-product of our results we find that a closed normal

subgroup of a group in [S] need not be in [S]: Let G be the solvable group
of all real matrices

1 ¢+ s =

0 e 0O
PN (XL

0 0 0 1

The normal subgroup H of all g's with x =0 is isomorphic with G, 4(0),
hence not in [S]. Let Z be the subgroup of all g’s with s = ¢ — x = y=0
and let W be the subgroup s = ¢ — ¥ = 0. Then Z is the center of G and

W|Z is the center of G/Z. The centralizer of W is the nilpotent subgroup
s = 0, hence Theorem 3(1) implies G ¢ [S].

» of a symmetric algebra o7 and the C*-algebra ¢ = K($)
-om| bert space §. But we do not know whether the
projective tensor product & & % of a Symmetric algebra .« and the C *-algebra

# = B($) of all bounded operators of an infinite-dimensional Hilbert space 9
is symmetric. Thus we define:

An involutive Banach algebra of is calleq rigidly symmetric, if the projective
tensor product of & B with 4 C*-algebra B s always symmetric. Let [RS] be
the class of locally compact groups G for which LYG) is rigidly symmetric.

Clearly [A] ) [CIC[RS]C [S]. Since for an

o~ Y Banach space E we have
L(G) B E =LyG, E), it is clear that Ge[R

S} iff LY(G, A) (trivial action,
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trivial factor system) is symmetric for every C*-algebra A. Moreover, it is
easy to see that [15, Satz 1] and our present Theorem 1, with obvious modifica-
tions, also apply to the class [RS]. Especially, [RS] contains every group G,
for which the symmetry of L(G) can be derived only from these two theorems
and the fact that [A] and [C] are in [RS]. This is the case, e.g., for all connected
nilpotent Lie groups. Our aim is to prove

THEOREM 7. Let Z be a central open subgroup of the locally compact group G.
Then G'Z < [RS] implies G e [RS)].

Proof. Let B be a C*-algebra. We have to show that & :— LYG, #) =
LNG) ® A4 is symmetric. After [11] this is equivalent to the fact that every
bounded algebraically irreducible representation of % in a Banach space is
preunitary. Thus let = be such a representation in the Banach space E. Then
there exists a bounded (resp. bounded continuous) representation p of LY(G)
(resp. of G) and a bounded representation ¢ of # in E with 7(f ® &) = p(f) a(b)
for all £ (b eL)(G) & A (resp. with =(f) = [ p(x) of f(x)) dx for all fe P

As 7 is irreducible, the restriction of p to Z is a character x € 2. Because
G/Z is discrete we can write LY(G) = I(G/Z, LY(Z); P)~ING|Z, A(Z); P)
with some factor system P, resp. P — {P, }. Here the P, are continuous func-
tions on Z with values in T. As piz = X, we can factor p over I{G/Z, C; P(x))
= I(G/Z; p) with p, (x) = P, (x). Thus r factors over I\G/Z; p) & B —
I'(H, #; p) with H = G!Z acting trivially on 4. There exists a strongly con-
tinuous unitary projective representation = of H for the cocycle p in some
Hilbert space §, i.e., m(x) n(y) = p ,7(xv). Let o be the algebra of bounded
operators in § and ¥ = ./ @ % a C*-tensor product of o/ and #. For
fel(H, #; p) define f* € I'(H, %) (trivial action and trivial factor system) by

JH(x) = m(x) ® f(%).

Then | £#(x)| = [n(x) | /(=) = | (=)}, and consequently T:f—f* is a
linear isometry from I\(H, #; p) into I\(H, ). Now

(f 8" (x) = m(x) @Y. f (%) &(y™) Bpy =
= 3. (n(x) ;w.y—l) ®f(xy) g(y1)
= i m(xy) m(y~1) @ f(xy) 8(y7)
= i (m(xy) @ ) m(y~?) g(y~)
= }y:f *(xy) g* (™) = (f* * g*)(%)
Similarly ( f*)* = ( f*)*. Ityfollows that 7 is an isometric isomorphism of

580/33/2-2
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*-algebras, hence I'(H, p; &) is isomorphic with a closed subalgebra of I'(H, €).
By hypothesis, the latter algebra is symmetric. Consequently also I\(H, p; #)
is symmetric. Thus (7, E) is preunitary and G € [RS].

As a corollary we obtain (a possibly stronger) version of Hulanickis result:

CoroLLARY 3. Al finite extensions of discrete nilpotent groups are in [RS].

It is not hard to see that the three-dimensional quotient H — G, (0)/Z is
in [RS], while G, 4(0) is not even in [S]. This shows that the assumption that
G|Z is discrete in Theorem 7 cannot be much weakened. The point is that the
functions f# are in general not measurable, if H is nondiscrete.
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