SYMMETRY (OR SIMPLE MODULES) OF SOME BANACH ALGEBRAS

by Detlev Poguntke in Bielefeld

Recall that a Banach algebra A with isometric¢ involution a -+ a*
is called symmetric if every element of the form a*a, atc A, has a real
nonnegative spectrum. Several authors have investigated the question
for which locally compact groups G the convolution algebra L1(G) is
éymmetric. Even for simply connected Lie groups G a necessary and
sufficient criterion (e.g. in terms of the Lie algebra of G) 1is not
known. Let G = H&S be the Levi decomposition of the simply connected
Lie group G with semisimple H and solvable 8. Then the compactness
of H 1is a necessary condition for the symmetry of L1(G) (non~compact
semigimple Lie groups do never have symmetric group algebras, [1]). So,
assyme that H 1is compact. Then the symmetry of L1(S) is sufficient
for the symmetry of Ve, (6]. tlis) s symmetric if the Haar measu-
re of S has polynomial growth, [7], which is equivalent, by [2], to
the fact that all eigenvalues of all operators in the adjoint representa-
tion of S on the Lie algebra of § have absolute value 1. But there
exist also other solvable Lie groups with symmetric group algebras, see
e.g. [6]. On the other hand there is a lot of solvable Lie groups with

nonsymmetric group algebras, [9]. Thus, for solvable Lie groups the

question of symmetry seems to be very complicated.
In several cases, see [6] or [8], the question of symmetry can be

reduced to the study of algebras of the following type which are the main

theme in this article:

lLet G be a locally compact group and let A be an involutive

Banach algebra. Suppose that G acts strongly continuously on A,

(x,a)-+ax, by isometric #- isomorphisms. Then oOne can form the algebra

B = L1(G,A) of left Haar integrable A-valued functions on G, see e.g.

3], with multiplication

-1

-1
(fxg) (x) = jf(xy)y gly ) dy
G
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and involution f (%) = A(x)"1 f(x-1)*x

where A denotes the modular
function of G. Suppose further that U is a semisimple regular sym-
metric commutative Banach algebra on which G acts strongly continuocus-
ly by isometric *-isomorphism, alsc denoted by (x,u) >u®. Then G
acts also on the Gelfand space 6 of U. Fix any xe¢ 6. For t ¢ G de-
fine ¢t yxe 6 by {ty)(u) = x(ut) =t ;(t). Suppose that t-+ty is an
homeomorphism from G onto 6 (consequently, one can consider U as an
algebra of functions on G via the Gelfand transform) and that the

following two conditions hold:
(1) UO:= {ue Uju has compact support}! is dense in U.

(ii) For every neighborhood W of e in G there exists ue U, u#0,

and a continuous map f: G- U such that u is supported by W

and f(z) (x) = ul(xz) for all x,ze€G.

From these assumptions one can deduce, see [6], Theorem 4, that
L1(G,U) is simple and symmetric and contains a lot of hermitian rank
one projections (in fact, they span a dense two-sided ideal) which will
be crucial in the sequel. Moreover, U and A are connected by the
following assumptions: A has a U-module structure which is compatible

with all the other operations,

i.e. |u al

I A

lu] lal, wu(ab) = (ua)b = a(ub),

* * % b4 X _X
(va) =u a , (ua) =u" a

for all a,beA, ueU, xeG. In other words, when we form the Banach
*—algebra U e A with the obvious operations then G acts strongly
continuously by isometric *-isomorphisms on UeA and U is central
in UeA. Assume (and this is the last assumption) that UA is dense
in A. What we want to do is to deduce properties of B =IJ(G,A) from
properties of A and vice versa. It is known that symmetry of A im-
plies symmetry of B, [8]. In this paper I will give a different proof
by a more general approach.

But before doing so, we should give an example of the situation
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described above in order to show that such a situation occurs "in na-

ture”.

Suppose that H is a Lie group with a normal subgroup K =:R2 on

(x 9)

2 = {0}x R is central in H. Let N be the centralizer of K. Then

which H acts (by inner automorphisms) via

b4 ]RI. Then

H is isomorphic to R «N and L1(H) is isomorphic to L1GR,L1(N)) whe-
re the action of IR is induced by the inner automorphisms. Choose a
non-trivial character n : Z2-+T and form the algebra L1(H)n of all mea-
surable functions f:H-C with £(xz) = n(z) £(x) for (almost) all

ze %2, xe H and I |f|] < ». Similarly, form A : = L1(N)n and
v:=r(0) o L) Then the triple G =R, A, U satisfies the

assumptions described above and L1GR,A) is isomorphic to L1(H)n'

To attack the symmetry of B = L1(G,A) (in the general situation)
we use the following characterization of symmetric algebras which is
proved in Naimarks book "Normed rings" (in a different formulation), see
also [5]:

An involutive Banach algebra C is symmetric iff for every alge-
braically irreducible representation p of C in a Banach space E {in
the sequel, we will use the term "simple C-module" instead of "algebrai-
cally jrreducible...") there exist a (topologically irreducible)

x-representation W of C in the Hilbert space ¥ and a non-zero inter-

wining operator E in A, i.e. Hom (E,H#) #0.

Thus, to decide whether a given involutive Banach algebra C 1is

symmetric or not one may proceed in the following manner:

1© m“pescribe" all topologically irreducible x-representations of C.
2o "pescribe" all simple C-modules.

3° Decide whether there exist interwining operators.

of course, 1© and 2° are of independent interest, and for group
algebras (or "related"” algebras) a lot is known concerning 1°, but the-

re seems to be more or less no information available on point 2° (except
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for group algebras of groups with "large" compact subgroups as semisim-
ple Lie groups or semidirect products of compact groups with normal
abelian subgroups, so-called motion-groups) .

Another consequence of this characterization of symmetric algebras
is the following: Let H be a Lie group as in the example. Then Lg(H)
is symmetric iff L1(H/Z) and L1(H)n are symmetric for all non-trivial
characters n: Z-+T. Therefore, one has to study the algebra LQ(H)
which are of the type discussed in this article.

From now on, we assume that G, U, A have the properties described
above. For B = L1(G,A), we want to carry out the program 1° - 3°, 1n
fact, we can solve 1° more or less completely (Theorem 1) and 2° to
such an extent (Theorem 2) that we can show that symmetry of A implies
symmetry of B (Corollary to Theorem 2).

Fix ye¢ 6 once and for ever and define (for tg G, we U)

wit) := y(wh) .

Then we have the formula w-(t) = w(st). Choose an ue U, 0#u=u* such

that u has a compact support. Form

v:=J' w oW udyeu .
G

1

v has the property that v(x) = A(x)~ u(x)! 5(2)2 dz for all xce¢G.

~ -~ G
Assume that I u(z)2 dz = f v(z)2 dz
G G

(if we start with an arbitrary u then a certain constant multiple sa-

tisfies this equation).

Define p : G » U by p(x) = viu. p has the following properties:

(1) p 1is a continuous function with compact support, especially
pe L1 (GIU) -

1 u* v for all xe G.

(2) p(x) = A(x)"
(3) p=p*
(4) paxp=p

(5 pxL'(G,U)sp =T p#o0.
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let I be the closure of XernyA in A, I is an *-ideal in A.

Let A' : A/I be the quotient algebra and denote by

Q : A~ A

the qguotient morphism.

From the assumptions it follows that B = L1(G,A) is an
I..1 {G,U)-bimodule and I..1 (G,U) aB * L1 (G,U) 1is dense in B. Especially,
we can form p*B*p which is a closed subalgebra of B. The first
step is to establish a dense *-morphism T : p*B¥p ~ A'.

Let f be an element of p#*B (>bpx*B*p), i.e. f = p*f., Then

we have

-1
-1
£(x) = (prf)(x} = jp(xy)y £(y" ) dy =

G

-1
[ (Al ~T WY W)Y £y dy =

G
-1

- - -1
A(x) 1[ sy "V o VWY £y dy =

G
A(x)_‘I J w v fly) dy = Ax) "t u¥e

with o = J v f(y) dy-
G

Now, let fep *=B»Pp: let ¢ be as above and define

T p*B*p->A'

by
- - t
if : = ||u||22 I o(v(t) &) dt.
G

proposition T is a dense *-morphism.

proof. A straightforward computation shows that T is multiplicative
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and involutive. To prove the density we observe the following two facts:

olwa) = w(e) Q(a) for all weU, actA,

If gepsB, g(x) = &(x)7 v¥o,

then T(gep) = |!a]| 2 I o(vit)ot at.
2
G

Without loss of generality we may assume that v(e) # 0. To approxi-

mate a given Qf(a) € A', for every neighborhood W of e we choose
wE U such that w is supported by W, v w 1is nonnegative and the

integral over ]|u[!-2 v w is one. Define g€ pxB by g(x) =
2

A(x)_1 u® wa. Then

t at) dt =

T(g p) itﬁlt'zj Q(v(t) w
2

G

S
eI [ S wn e at.
G

This integral is arbitrarily close to Q(a) =

= [1;11;2 [ v(t) wit) Q(a) dt if W is small enough.
G

For a Banach «-algebra C, we denote by Rep(C) the equivalence
classes of non degenerated s-~representations in Hilbert spaces. The
morphism T induces a map T : Rep{A') - Rep(p*xBxp) . By restriction
we get amap S : Rep(B) » Rep (p*Bxp); if 1w ¢ Rep(B) is a represen-
tation in g then 5S{(w)} 1is a representation in n(p) H; w(p) is not
zero because Bxp*B 1is dense in B. Moreover, we can construct a map
ind : Rep(A') + Rep(B) in the following way: Let p be a represen-
tation of A' in K. Let the representation '5 of A in H = L2(G,K)
be defined by (P(a)&) (x) = p(Q(a®))E(x)). For teG and EeH let

t . t
£" e B be the function {7 (x) = E(tx). Then we define the representation
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* = ind(p) in # by

-1 -1

() E = j Sie(e® et at.

Theorem 1 The diagram

ind
Rep(B) <+———— Rep(A')

N

Rep(p*Bxp)

is commutative, and all three maps are bijections.

Remark Since all three maps are compatible with direct sumg, irredu-

cible representations correspond to irreducible representations.

Proof. For simplicity we assume that U 1is contained in A because
the theorem is easily deduced from the corresponding theorem for

s A" 1 v Y
A=BRoU Ba=LI(GA, A" =A'" oL 1 and p*Bxp = p*Bsp © C p.

T = Soind:

Let p be a *-representation of A' in K, let H = L2(G,K), B and

7 = ind p be as above.

Then for feB, EcH and seG we have

-1

( ()8 () = [drp ((E(s) T ) (E(r™ Y.
G

A(x)_1Aux o, we find

It

For fep*B, f(x)

(m(£)g) (s) = a(s)”! f dr u(s) p(Q(eS))E(T) =
G
- g - .
= |fu|l|[ " v(s) Ip(Q(m ))£(r) dr.
2

G

Especially, for ¢ = v, i.e. £ = p, we get
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(m(pye) (s) = |[ul|™? vi(s) I\;(r)g(r) ar.
2
G

Therefore, V : K+ H defined by

(vn) (x) = §|;||-1 ;(x)n is an isometry from X onto m(p) H.
2

A trivial computation shows that p(Tf) = V_1 n(f)V for £ e pxBxp.

Hence, poT and S(w) are unitarily equivalent.
From the density of T it follows that T is injective. There-

fore, it suffices to show that S and ind are onto.

S is onto: Let p be a sx-representation of p*B*p. Since S is
compatible with direct sums we may assume that p is cyclic, let & be a
cyclic vector of norm 1 and let f(x):= <p(x)E,£> be the associated
positive form. Define F : B»QC by F(x) = f(pxx*p}. As the computa-
tions in the proof of the Lemma in (8] show (approximate identities
are not needed at this point), F is a positive form. Here we need
that § q+#B*r 1is dense in B (P = projections of rank one in
L1(G,U?;r$£ich follows from the fact that the linear span of P 1is dense
in L1(G,U). Moreover, F can be extended as a positive form to
BeC1, F:Bol1+C is defined by P (x + ) = F(x) + X =
F(X) + X = F(x) + A\f(p) = F(x + Ap) . F is positive because
FOx+0* (x+1) F (p(x+0)* (x+A)p) = F ([x+0pl* [(x+)p]) > 0.
From the GNS-construction it follows very easily that the representation

™ associated to F has the property that S(m) is unitarily equivalent

to p.

’ ind is onto: This fact can be deduced from a suitable version of
the imprimitivity theorem, see e.g. [4]. But it can also be shown in
the following simple way:

Let C_(G,A') be the Banach +-algebra of all continuous functions

G-+ A' vanishing at infinity with the uniform norm and the pointwise

operations. Let F : A~+C_(G,A') be defined by (Fa)(t) = Q(at), F
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is a dense #*-morphism. F 1is G-equivariant if we let G act on

C,{(G, A'") by left translations. Moreover, let C*(A') be the C -hull
of A'. By composition, we find a G-equivariant dense »-morphism

; : A>C_(G, C*(A")) =: X. Ssince every irreducible *-representation of
A (which is a character on U) factorizes through ?", 1'\\' is just the
c*-hull of A.

Every *-representation of B factorizes through B+B = L1 {G, A).
Therefore, we may assume that A = C_{(G,D) for some unital C*-algebra
D, U=C_(G) and G acts by left translations on A. In this case,
A' is canonically isomorphic to D, and T : p*B#p~+A' is an isome-
try onto A'. Now, let ™ be a *-representation of B, form the repre-
gsentation S(m) of pxBxp and define the representation p of A' by

p = S(m) oT—1. It is easy to see that ind(p) is unitarily equivalent

to the given 7.

Theorem 2: Let G, U, A and B = L1(G, A) be as always. Let

p, A' and T : p*Bxp>A' be as constructed above. If we associate

to the simple B-module E the p#B*p - module pE we get a bijection

from the set of isomorphism classes of simple B-modules onto the set of

isomorphism classes of simple p * B » p -~ modules. Moreover, for every

simple p*Bxp - module M there exists a simple BA'-module M' such

that HomT(M, M') £0, i.e. there is a non-zero linear map R : M+ M' with

R(fm) = T(f) R{m) for fep*B*P, meM.
Corollary 1: Symmetry of A implies symmetry of B. To give at

least one application, we formulate and prove (see also [6]).

Corollary 2: Let K be a compact group and let D be_a symme-

tric Banach#*-algebra on which K acts strongly continuously by isome-

' 1 . .
tric sx-isomorphisms. Then L = L (K, D) is symmetric.

Proof: As in the proof of Theorem 1 we may assume that U is contain-

ed in A.

If E is a simple B-module then pE # 0 because Bxp*B is dense in B,

and it is easy to see that pE is a simple p*Bs*xp - module.
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In order to show that E » pE is a bijection we construct the inverse

map. Let M be a simple p#B#*p - module. Then we form the induced

] VL . . K]
B-module M' = B @ p*B *p M and define M:=M1/({E£le Bf=0}. M

is not zero because the map B @ M* M, b £ +pbp £, factorizes through

Mt . le (and hence pﬁ) is isomorphic to the given M. Moreover,

M* (and hence M) is cyclic: for every £, 0#f£c¢M, p @ £ is a gene-
rator of M!, Therefore, we can realize MY as a gquotient of B and
we can introduce a Banach space structure on M} and on M . So, ﬁ

is
(1) a cyclic Banach B-module, generated by every non-zero element
in pﬁ with (2) pﬁ M.

2

From (UA)” = A it follows that B? is dense in B. But then M has

the property that
(3) E£eM, BE = 0 implies £ = 0.

From (1), (2) and (3) it follows very easily that M is a simple
B-module.

The maps E» pE and M: » M are inverse to each other.
Now, let M be a simple p*B*p - module, M = pE for a {unique) simple
B-module E. We want to construct a simple A'-module M' as in the
theorem. The B-module structure on E is given by an A-module stru-

cture on E , (a, ¢)+»ae, and a compatible G-action on E, (t,i)'*ﬁtr

compatible means that (ae)t = atat. For feB and ec E we have the
formula
t L
fe = J (£{t)e) - At = f f(t) € dt.

G G
The functions fc¢Bxp are of the form fix) = wxu with some yeA.

If we define A" = {ypeA| J [v*uldx < =} we get a surjective A-linear
G

map VY : A% » B*p (A" and B *p are considered as left A-modules); by

the way, 3° is a two-sided, G-invariant, dense ideal in A.

For a fixed non-zerc £ in M we get by multiplication a B-linear map
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from B * p onto E. Composition with ¥ gives a surjective A-

linear map.

Especially, the kernel ( of ¢ is a left ideal in A.

For ws:AOU we have the formula

£ = Ip(t)t gt dt:fvu et at- o(vm).
G

G
Because ® is G-equivariant, { is a G-invariant left ideal in A.
Q is contained in the annihilator AnnA(E) of £ in A because

¢ ¢ Kernd implies

0 = qut gt dt, hence
G
-1 -1 -1 -1
0 = vaut b oae = I st £ at = vE.
G G

Moreover, the integral representation of E shows that if we take we U
with wv = v (clearly, such w's exist since Vv is compactly supported)

then w is a right unit for the left ideal Ann,(£). Therefore,

AnnA(g) {and hence ) is contained in a maximal modular left ideal A of

A. From Schur's Lemma, it follows that U acts by a character on the

simple A-module A/A, i.e. there exists s e G such that the kernel of

sx (recall sx(w) = X(ws) for weU) is contained in A. A® is also

s .
a maximal modular left ideal in A. M' := A/A is a simple A-module and

. . . s ;
in fact an A'-module because Kern X 1s contained in A°. Since Q is



G-invariant, Q@ is contained in A%
To finish the proof of the theorem we have to construct a non-zero
T-linear map M-+M'. Denote by Q' : A+-M' = A/A® the quotient map

(Q' factorizes through Q : A+A’') and define X : A + M' by

Ka) = | vit) 0'(a%) at = [ orivta® at.
G G

The restriction of K to A" factorizes through the quotient map
A +A”/Q and gives a linear map A" /Q + M'. Since © induces an iso-
morphism from A" /Q onto E, we get a linear map R : E+M' . We claim
that the restriction of R to M = pE is a dense T-linear map from M
into M' .

Let f,gep*xBxpcps*B, f(x) :A(X)—1 u¥o, g(x) =A(X)_1 u®y, and
let ¢ = gge M. We have to show that R(fe) = Tf Re .

-1 -1 B
From { = j vu® ¥ dx, it follows that
G

€ = gf = J gyt ¢ dt = J‘Iuwtv ut £ dt dx = o([ up vt ay)
GG

Q

and, by definition, that Re = ﬁ(‘[uvtwt dt) = Jv(x)Q ( juxv 1p dt)dx =
G G

=jJ; (x);(x)A(x)n1Q'(VY¢y) dx dy = J ;(y)Q'(wy) dy, because

GG G
-~ - -1

J v{x)u(x)A(x)

G

This is just the image of Tg under the quotient map A' > M' .

Since T 1is dense, R is dense, too.

Now, we compute R{fe)

.

-1 -1 ~ -1 -1
fe = ! f(y)y e dy = J Aly) 1U(Dy ey dy = J up?e Y dy =
G G G

-1 -1
_ JJJ upYu¥y BYvEYuX e¥ 0 ge ax dy = o II 8 (y) " Tue¥u¥ y2u? ay dz),
GGG GG
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hence R(fe)

I v(t)Q'(JJA(y)_1uthtuYt¢Ztv2t dy dz)dt =
GG

©

~2 4y dz) at

[l
It

j v(t)Q'( J A(y)-1A(t)utfyuywzva(t)
G GG

!Jja(y)—1b(t)—1;(t)a(t);(z);(y)0'(oywz) dt dy dz
GGG

[[p e v@e i ® = ]| [[vev@e @¥ey dz .
GG GG

From the definition of Tf and the formula for Re it follows that
R(fe) = Tf Re .

The theorem is proved. For the proof of corollary 1 we use (of course)
the characterization of symmetry by simple modules. Let E be a simple
B-module, let M = pE. We may assume that E = ﬁ = Mi/{YE:Mi|BY = 0}.
From the theorem it follows that there exists a non-zero T-linear map
from M into a simple A'-module M' . By assumption we find a non-
degenerated (irreducible)-representation p of A' in the Hilbert
gspace K and a non-zero A'-interwinning operator M' + XK. By composition
we get a non-zero T-linear map R : M » K. Let m = ind(p) be the indu-
ced representation of B in H = L2(G,K). We claim that we can embed E

into H.

Define ¥ : M>g by (M) (t) = v(t)RE and V : B e M+H by V(ge k) =

m(g) (KE) .

From the fact that R : M » K is T-linear one easily deduces the formula

x(f) (Bo) = R(f£)

for fepxBxp and EeM.

: i
Therefore, the map V : B & M » H factorizes through M” = B & p*b*pM

and gives a B-linear map % : M > #. Since 1 is a non-degenerated

representation the subspace {yeM'|By = 0 is contained in the kernel

of ¥ , and finally we find a non-zero B-linear map from M = E into H.
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Proof of Corollary 2. Let C = C(K,D) be the Banach *-algebra of all

continuous functions from K into D with the pointwise operations
and the uniform norm. We let K act on C by left translations, i.e.

£%(x) = £(tx) for t, xeK and feC. The map o : D~C defined by

a(d) (x) = a*

is a K-equivariant injective *-isomorphism from D onto a closed sub-
algebra of C and induces a x-isomorphism from L = L1(K,D) onto a
closed subalgebra of L1(K, C). Since closed *-subalgebra of symmetric
Banach algebras are symmetric it suffices to show that L1(K, C) is
symmetric. But the triple G =K, A = C, U= C(K, €) satisfies the
usual assumptions of this paper and, consequently, the symmetry of C
implies the symmetry of L1(K, C).

The selection of p was rather arbitrary. So, one could think
that it might be useful to study different p's. That this is not the
case is shown by the following remark which we state without proof.

Remark Let ge¢ L1(G, U) be another hermitean rank one projector.
Then g has a similar structure as p even though the representing
functions in U need not to have compactly supported Gelfand transforms.
Nevertheless, in a similar way one can construct a *-morphism Tq from
g*B+qg into A'. But there exists a unique (partial isometry)
ke L1(G, U) with k**k =p and k *k* =z g which gives rise to a

*-isomorphism from p#+*B*p onto g*Bxg such that the diagram

Px*xBxp
\RA'
/

g+*B=xg Tq commutes.

We conclude this article with some open questions.
(1) Does the symmetry of B imply the symmetry of A ?

The answer is yes if A is commutative (since T : p*B*p > A' 1is
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dense and p*B*p 1is symmetric every multiplicative functional on A'
is hermitean) or if G 1is discrete because in this case the map
T : p*xBxp =+ A' is onto. 1In general, T is not onto, there is an

example in [9]. I don't know the answer even for compact abelian G.

(2) Let C be a symmetric Banach #*-algebra. The characterization of
symmetry used in this paper tells us that for every simple C-module E
there exists an irreducible x-representation in H# and a non-zero C-
linear map E = . 3ut is E + K unique in the sense that if there

are two embeddings E Hj (3 = 1,2) that there exists an interwinning

operator H1 + Hz such that

NP2
I

2

commutes ?

The answer is yes if C 1is the group algebra of a connected nilpotent

Lie group. Suppose that A has this uniqueness property. Is it true

that B = L1(G, A) has this uniqueness property ?

=

(3) Let [NeS] be the class of all Banach x-algebras C with the

property that every topologically completely irreducible Banach C-module

is Naimark-equivalent to an irreducible x-representation of C. Of

course, every algebra in this class is symmetric. Moreover, the group

algebras of connected two step nilpotent Lie groups and of motion groups,

see [10], are in [Nes]. Is it true that B is in [NeS] provided that

A is in [Nes]?
(4) It is known that in a certain sense it is impossible to classify
the irreducible *-representations of a non-type I group but possibly

it is simpler to classify the simple modules over a symmetric group
algebra.

To test this one should treat the following example:

let C(T 2) be the C*-algebra of all continuous functions on the torus,
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let TR act on ({ T2) by

£%(z, w) = £leltsz, 1%ty

for some irrational o, and form the algebra I = L1GR, C( T2))7 this

algebra is closely related to the group algebra of the Mautner group.

If we let act . on E = C( T2) by

o -1 -1
£ = I £yt Y ae

® -1 -1
where the product of f(t)t £ C{ Tz) and gt e C{ TZ) is the usual

; . . 2
pointwise product in C{ “), we get a simple L-module. From this
L-module we can construct further simple L-modules if we apply first

the automorphisms U, : L>L (zeR) defined by

(U, 6) (t) = e ®%s(y) .

Are all simple L-modules obtained in this way ?
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