Symmetry and nonsymmetry for a class
of exponential Lie groups

By Detlev Poguntke at Bielefeld

Abstract. This paper is a contribution to the question for which simply connected
Lie groups G the group algebra L'(G) is symmetric (= hermitean). For groups G in a
certain subclass of the class of exponential Lie groups a necessary and sufficient condition
for the symmetry of L'(G) is given in terms of the Lie algebra of G. This subclass
contains all groups with Lie algebra g such that the (additive) Jordan decomposition is
possible in ad(g). The condition was introduced by Boidol in exploring the *-primitive
ideal space, and so the main result of the paper implies that for some exponential
Lie groups G the symmetry of L' (G) is equivalent to a certain property of the -primitive
ideal space. Moreover, an example of a seven-dimensional exponential Lie group G with
symmetric group algebra is given where the existing general methods are not
applicable to get the symmetry.

Recall that a Banach algebra A4 with isometric involution @ — a* is called symmetric
if every element of the form a*a, a € A, has a real nonnegative spectrum. Several authors
have investigated the question for which locally compact groups G the convolution
algebra ['(G) is symmetric. Even for simply connected Lie groups G a necessary and
sufficient condition (e.g. in terms of the Lie algebra of G) is not known. Let G=H x §
be the Levi decomposition of the simply connected Lie group G with semisimple H
and solvable S. Then the compactness of H is a necessary condition for the symmetry
of L'(G) (non-compact semisimple Lie groups do never have symmetric group algebras,
[7]). So, assume that H is compact. Then the symmetry of L' (S) is sufficient for the sym-
metry of I}(G), [13]. Therefore, before treating the general case one should first decide
for which simply connected solvable Lie groups S the algebra L'(S) is symmetric. But
at the moment, also this question seems to be too general. While for solvable Lie groups
with polynomially growing Haar measure the answer is known (they always have
symmetric group algebras, [14]) the problem is not solved for exponential Lie groups.
In this paper, 1 will give a partial solution, namely for the following class of groups.

Definition 1. An exponential real Lie algebra g belongs to the class [EA] provided
that there exists a semidirect decomposition g=¢ & n with a nilpotent ideal n and a
commutative subalgebra s which acts by semisimple (i.e. diagonalizable in the complexifi-
cation n, of n) derivations on n. Exponential means that the weights of s in n, are of
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128 Poguntke, Symmetry for Lie groups

the form (1+ if)a with real 7 and a real linear form x on s. The class of simply connected
Lie groups whose Lie algebra belongs to [EA] is also denoted by [EA].

Remarks. If g is in [EA4] then in the above decomposition one may choose n to
be the nilradical. — Suppose that the exponential Lie algebra g has the property that
the (additive) Jordan decomposition is possible in the space ad(g) of linear transforma-
tions on g. Then g belongs to [EA4]. For G € [EA], I will give a necessary and sufficient
condition for the symmetry of I'(G). This condition was created by Boidol in [2] to
study the class “[¥]", see § 1 and [3]. Besides simple algebraic considerations the proof
that this condition implies symmetry requires only Satz 1 in [15] (see also Satz 1 in [13]
or Corollary 1 to Theorem 2 in [17]) which contains a method to deduce symmetry from
the symmetry of group algebras of lower dimensional groups. But in § 5, I will give an
example of a symmetric seven-dimensional exponential Lie group where the method of
Satz 1 in [15] is not applicable to get symmetry. In fact, this group is the first example
of a symmetric exponential Lie group where the symmetry-proof is not based on Satz 1
in[15].

§ 1. For the convenience of the reader, I want to collect some known facts on
symmetry and to introduce Boidols condition.

(A) (see [11]) An involutive Banach algebra A is symmetric iff for every algebraically
irreducible representation p of A in a Banach space E there exist a (topologically irreducible)

x-representation m of A in the Hilbert space $ and a non-zero intertwining operator
from E in $.

This characterization has especially consequences for group algebras of groups with
central subgroups. Before stating the result, we first introduce the following notation.

Definition 2. Let G be a Lie group with closed connected central subgroup Z, and
let ¥ be a unitary character of Z. Then we denote by L' (G), the algebra of all measurable
functions f: G — C with f(xz) = x(z) f(x) for (almost) all z€ Z, xe G, and | |f]< 2.
L'(G), is a quotient algebra of L!(G). Giz

With this notation we have

(B) (see [11] or [15]) L1(G) is symmerric iff L'(G), is symmetric for all unitary
characters y of Z.

A slight modification of the proof of Theorem 3 in [13] together with (B) gives

the following Theorem which is based on Satz 1 in [15], for a more adequate formulation
see Theorem 2in [17].

(C) Let G be a simply connected solvable Lie group, let Z be a closed connected
central subgroup and let y be a unitary character of Z. Let A be an abelian non-central
closed connected normal subgroup with A N Z = {e}, and let C be the centralizer of A.
Then L' (G), is symmetric if one of the following two conditions hold -

(i) c~1imA:1, L(G/4), is symmetric and I}(C )y is symmetric for every unitary
character j of AZ with 7| ;= y and 7|, %1.

(i) dimA =2, G acts via inner automorphisms on A=C as multiplication by ¢*@ 1+

t.vith real t :i= 0 and an homomorphism a: G — R, I} (G/A ), is symmetric and L' (C),(C=ker )
is symmetric for every unitary character j of AZ with |, = yand 7| 4 £1.
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In [3]. the class [¥] of involutive Banach algebras was introduced (in [2], these
algebras are called *-regular): Let .o/ be such an algebra, and let & — C*(&/) be the
C*-hull of &/. We denote by Priv, (), resp. Priv, (C*(/)), the space of kernels of
irreducible «-representations of . resp. C*(«), with the Jacobson topology. o is =-regular
if the induced map Priv, ((*(#/)) — Priv, (/) is an homeomorphism. In [2], the class
of exponential Lie groups G with *-regular group algebra is determined. Let / be a real
linear functional on the Lie algebra g of G, let m( f)=g(f)+[g, g] with

a(f)={Xegl/([X,g])=0}

and let m(f)” be the smallest ideal a in m(f) such that m(f)/a is nilpotent. Boidol
defines

Definition 3. f'is called inductive if m(f)* is contained in the kernel of f;

and shows: L'(G) is *-regular (G = exponential (solvable) Lie group) iff every
functional is inductive.

Remark. For our purposes the following (trivial) characterization of inductive
functionals is useful: Let n be the nilradical of the (exponential) solvable Lie algebra g,
let £(f)=g(f)+n, and let {(f)” be the smallest ideal a in f(f) such that I(f)/a %s
nilpotent. Then f is inductive iff £(f)* is contained in the kernel of f. The reason is
the obvious fact that t( f)* = m(/)*.

§ 2. Here we show that a group G in [EA] has a symmetric group algebra if
every functional on the Lie algebra g of G is inductive (i.e. L'(G) is *-regular). In the
proof we use (C) of § 1 and the following proposition.

Proposition 1. Let g be a solvable Lie algebra, let a be an abelian ideal in g, let ¢
be the centralizer of a in g, and let f be a real linear functional on g with f|, # 0. Then we have:

(i) Suppose that a is onedimensional and non-central. fis inductive iff f|, is inductive.

(i) Suppose that a is twodimensional, a=C, and g acts on a by multiplication W""h
2(X)(1+it), Xegq, for some real 1+0 and some non-zero real functional « on g. fis
inductive iff f|, is inductive.

Proof. Let n be the nilradical of g, n is also the nilradical of ¢. Let g be the restriction
of / to ¢c. We claim that ¢(g)=a+g(f). The inclusion a+g(f) < ¢(g) is obvious since g(/)
is contained in¢. For the other inclusion we select an ¥eg\c. Let X be an element
of ¢(g), i.e. f([X,])=0. Let A=f([X, Y). From f|,+0 it follows that /([a, Y:!)::P,
especially there exists an 4 e a with f([4, Y])=4. We get f([X—4, Y])=0. Since X
and A are in ¢(g) we have also f([X—4,¢])=0 and, consequently, X~ 4 e g(f) or
Xeg(f)+A<g(f)+a. Since a is contained in n we find

tg)=c@g)+n=g(f)+at+n=g())+n=K(/),
and hence E(g)*=1(f)®. fvanishes on ¥(/)™ iff g vanishes on f(g)".

Moreover, we will need the following obvious lemma.

Lemma 1. Let g be a solvable Lie algebra, and let a be an ideal in g. L?t f be a real
linear functional on g with f(a)=0, and denote by ' the induced functional on gfa.
Then f is inductive iff f" is inductive.
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(Only) for the formulation and the proof of Theorem 1 we introduce

Definition 4. Let g be in [EA], let 3 be a central ideal in g, and let ¢ be a real linear
functional on 3. Then the triple (g. 3. ¢) is called admissible if every real linear functional
fon g with f], = c is inductive.

Theorem 1. Let (g, 3, ¢) be an admissible triple. Let G be the simply connected Lie
group with Lie algebra g, let Z be the central subgroup corresponding to 3, and denote
by y the unitary character on Z corresponding to c. Then L' (G), is symmetric.

Corollary. Let G be a group in [EA] with the property that every real functional
on the Lie algebra of G is inductive. Then L' (G) is symmetric.

Proof. The Corollary is an immediate consequence of the Theorem. We prove the
Theorem by induction on dimg/3. For dimg/3=0 there is nothing to show. Suppose
dimg/3>0. W.Lo.g. we may assume that the kernel of ¢ is zero: if not, we substitute
the admissible triple (g, 3, ¢) by the admissible triple (g/ker(c), 3/ker(c), ¢'); the algebra
L' (G), corresponding to the triple (g, 3, ¢) is isomorphic to the algebra which corresponds
to the new triple. — We distinguish two cases.

Case 1. There exists a non-zero minimal ideal a with a N 3=(0). Three subcases
1.1,1.2,1. 3 are possible.

1. 1. ais central. We apply (A) of §1. Let E be an algebraically irreducible L'(G) -
module. Then E is also a G-module, and the central subgroup AZ corresponding to
a+3 operates by a unitary character # on E with nlz=7. This means that we may
consider E as an L'(G);-module. But, by induction, I! (G )7 is symmetric because L' (G)z
corresponds to the admissible triple (g, a+ 3, &) where ¢ denotes the differential of .
Therefore, one can find an irreducible *-representation of I! (G); (of L'(G),) in a
Hilbert space $ and an intertwining operator from £ into H. '

1. 2. a is onedimensional and non-central. Of course, we apply (C), (i) of § 1. The
triple (g/a, a+ 3/a, ¢) (¢ is considered as a linear functional on a+ 3/a= 3) is admissible
by Lemma 1. By induction, 1! (G/4), is symmetric. Let ¢ be the centralizer of a in a.
From Proposition 1, it follows that (¢, a + 3. ¢) is admissible for every ¢ with &, = ¢ and

¢le # 0. By induction, the corresponding Banach algebra is symmetric and the assumptions
of (C), (1) are fulfilled.

‘ 1. 3. ais twodimensional and non-central. Since a is minimal and g is an exponential
Lie algebra, G acts on a as described in (C), (ii). As in the case 1. 2 above, one can show
the symmetry of L' (G), using Lemma 1, Proposition 1, and (C), (ii).

Case 2. dim3=1 and 3 is contained in cvery non-zero ideal of g. Here, we really
use the assumption that q is in [EA]. Letg=s x nbea decomposition as in Definition 1.
Select a functional f on g with /|, =c+0 and with the property that kerf/ @ 3 is an
s-invariant decomposition of g. Then g9(/) contains s, and we find f(f Y=g (see the
Remark after Definition 3). If 1(/)*=g*=0 then g is nilpotent and 1! (G)Z is éymmetric

py [14] of .[15]. I £(f)* %0 then 3 is contained in 1(f)* and fis not inductive which
Is a contradiction to the assumptions. .
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§3. In this paragraph, we prepare the proof of the opposite direction of the
Corollary to Theorem 1. What we will really show in §4 is the following: If there
exist non-inductive functionals then the group algebra is nonsymmetric. Here we give
a more general (representation theoretic) criterion for nonsymmetry.

Theorem 2. Let G be a locally compact group. Suppose that there exist a closed
subgroup H, an (irreducible) unitary representation p of H, and a quasi-invariant measure
pt on the homogeneous space X =G/H with the following properties:

1° du(gx)=7(g) du(x) (g € G, x € X) for a non-trivial character y: G — R, . Denote
by G, the kernel of y.

2° If n= ind p denotes the induced representation then the restriction ¢ of n to G,
H1G
is irreducible.

3% a(LY(G,)) contains non-zero operators of finite rank.
Then L' (G) is not symmetric.

Proof. We construct some not necessarily unitary representations of G. Let | be
the representation space of p, and let « be a complex number with 0 < Rea < 1. Then we
denote by E, the space of all continuous functions ¢: G — K with ¢ (gh) = y (h)* p(h)Lo(g)
(g€ G, he H) and with the property that there exists a compact set L= L¢ such that
the support of ¢ is contained in LH. We defineanorm| |, on E, by

lpl=[{lo@I" 1) du@T
X

with i=Reoz and g=gHe X. Let E, be the completion of E, in this norm. G acts
p

on E, via (x¢)(g)=¢(x"'g) by isometries, and we get a (strongly continuous)
representation 7, of G in the Banach space E,. For a=3%, we just obtain the induced

representation ind p, i.e. m=mn,; we denote £, also by $. The restriction of 7, to Gy
H1G 2 )

is denoted by a,. Define
Uyp: E— Ey by (Up0) (@)=2(8)" 0 ().

U, is an (in general, unbounded) operator which admits a closure, the closure is also

o

denoted by U, 4; U,y is bounded if Rea=Rep. Moreover, Uy is a G,-intertwining
operator. In the following, the operators U,:= U, ;: E, — $ are important. From the fact
2

that U, is a closed G,-intertwining operator, we get
(%) If fe [1(G,) and # is in the domain D(U,) of U, then o,(f)n is in D(U,) and

Vo, (FIn=0(f)Usn.

Since ¢ is an irreducible representation it follows from 3° that therg exists a
g=q* € L1(G,) such that a(qg) is a projector of rank one, let a(g)H=C¢ with |El=1.
Since U,(E,) is dense in $ we get

C¢ 20(61) UE) = Uaaa(q)Ea by (¥).
Especially, there exists a &, € 6,(q)E,< D(U,) with
Uig,=¢.
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By the way, ¢, is uniquely determined by this equation. Moreover, we have
0,(@)E,=C¢,=0,(q)(E,) and a,()&=¢,

Let o < I' (G) be the closure of the involutive subalgebra ¢ * L'(G) * ¢ of L'(G).
If fis in & then m,(f) maps the onedimensional subspace C&,=F, into itself,
()&, =1,())E,. Obviously, 7, is a multiplicative linear functional on.«/.

Let ge C(G), i.e. g is a continuous function on G with compact support, and
let f:=q *g *¢q. Then «a — 7,(f) is an holomorphic function in 0 < Reaxx <1 because of

l_fl
the following reason: Define f, by f,(x)=/(x) y(x)* . Then a—f,=g*g,*xq is a
holomorphic function from C into L'(G); the equality n(f,)U,= U,m,(f) holds (on
suitable domains) for 0 < Rex <1 and, consequently, we get 7,(f)=1,(f,).
2

We claim that o« — 1,(q * g * g) is not constant for some g=g* € C.(G). Suppose
to the contrary that it is constant for all these functions. Then it follows that

ra(q*g*q):f%(q*g*q)

for all ge L'(G) and all «, 0<Rex<1, especially for Rex=1. In this case E, is a
Hilbert space, and we have

LG rgx)={mlq* g+ ) ,, &) ={(m(g) &, &> =(nlg) &,

uTig
NS

The_ last equality implies that all the irreducible unitary representations m, are unitarily
equivalent to . Since U, is the unique intertwining operator between the irreducible
representations ¢, and o, it has to intertwine also 7, and 7. But it is easy to see that
this is not the case because y is not trivial.

We have shown théllt there- exists a g=g* € C.(G) such that a — T,(gxg*q)isa
non-constant holomorphic function in 0 < Rea <1, This function assumes also non-real
values, we find a B, 0<Ref <1, such that T5(q * g * q) ¢ R. Therefore, t, is a non-

hermitean multiplicative functional on /. Hence &/ and, consequently, L'(G) is not
symmetric.

§ 4. Here, we want to establish the assumptions of Theorem 2 in the case that
Ge [EA] and that there exist non-inductive functionals on the Lie algebra of G. We
start with the following purely algebraic Lemma.

Lemma2. Let g be a Lie algebra in LEA], let n be the nilradical of g, and let
3n be the center of n. Suppose that there exist non-inductive real functionals on g and
that all rf’al functionals on all proper quotients of g which belong to [EA] are inductive.
Then 3 is an irreducible g-module, and the centralizer of 3n is not nilpotent.
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Proof. 3nis a semisimple g-module, let

=@ V;
ieA
be the decomposition of 3n into root spaces, i.e. A is a set of complex-valued linear
functionals on g, and an X € g acts on V, by multiplication with A(X) (if 4 1s not real
one can introduce on ¥; the structure of a complex vector space). From the minimality
of g (together with Lemma 1) it follows:

(i) Each V; is irreducible.
(ii) If fis a non-inductive functional on g then f(¥;)+0 for all 2 € A.

Let ¢(= () kerd) be the centralizer of 3n in g. By (i), (i) and repeated use of
AeA

Proposition 1 we get

(iii) If f is a non-inductive functional on g then f] is not inductive. Especially,
¢ is not nilpotent. Let ¢* be the smallest ideal in ¢ such that ¢/c* is nilpotent. ¢* is a
non-zero ideal in g, hence 31 N ¢*+0, and we find a A€ A with V;c3nn ¢®.

Let g=s % n be a decomposition as in Definition 1, and choose an s-invariant
(vector space) complement w to 3n in g,g=w @ 3n. Select a real functional f on g
with f(V)#0, f(w)=0, and f(})=0 for ue A, p# i Denote by g the restriction of
f to d:=keri. We have f(g)=0 (cf. Remark to Definition 3) and ¥(g)” =0">¢*> V.
Hence g is not inductive. But then also f is not inductive (if A=0 this is obvious;
if 1+0 we use Proposition 1). From (i) it follows that A={i}, and the proof of
Lemma 2 is finished.

Theorem 3. Let G be a group in [EA] with Lie algebra g. If there exist non-inductive
real functionals on § then I (G) is not symmetric.

Proof. Let n be the nilradical of g, let 3n be the center of n, and let g=35 X n
be a decomposition as in Definition 1. By Lemma 2, we may assume that 3n is an irre-
ducible g-module. Moreover, let g=w @ 3n be an s-invariant decomposition of g. The
proof of Lemma 2 shows that if f is a functional with f(w)=0 and f(3n)#0 then f'is
not inductive. We fix such an £, Let ¢ be the centralizer of 3n, and let g=/1.. & is also
not inductive, in fact we have ¢(g) +n=rc.

It was shown in [2] (for arbitrary non-inductive functionals on exponential Lie
algebras) that there exist a Vergne polarization p for g and a subalgebra b, pchce, such
that Y — Trace,, ad(Y)=Tracey, ad(Y) is a non-zero functional on b. Since this
functional vanishes on n b there exists an extension & of this functional to g
vanishing on n. Let y: G — R, be the corresponding real character, i.e. y(exp Y)=e’.
Moreover, let ZN, P, H, C and N denote the subgroups corresponding to 3n, p, b, cand n,
respectively, let g,=kerd and Go=kery. Let the unitary character n on P be defined
by n(expY)=¢€"¥", and let p=ilr)1§1;; be the induced representation. On X =G/H there

exists a quasi-invariant measure g as in Theorem 2. We claim that p and H satisfy

also the other assumptions of Theorem 2, i.e. the restriction g of n=i2(Ti f =i)1;1:ion to Gy

is irreducible, and ¢ (L' (G,)) contains non-zero operators of finite rank. First we note

Journal fir Mathematik. Band 315 18



134 Poguntke. Symmetry for Lie groups

that = is irreducible because p is a Vergne polarization for f. too, which follows from
the fact that g(f) is contained in ¢. Now, we distinguish the following three possibilities
for the g-module 3n.

Case 1. dimgn=1, and 3n is central in g. In this case, we have c=g, f=g, and
g(f)+n=g. The last equality implies that even the restriction 1 of n to NcG, is
irreducible (compare [2], in fact this is more or less obvious from the construction
of the irreducible representations of exponential Lie groups). Since t(L'(N)) contains
operators of finite rank, see €. g. [18], the same is true for o (L' (Gy)).

Case 2. dimgn=1, and 3n is not central in g. Let W be any element in g;\¢ (6% 0
on ¢), let =R W+ n, and let D be the corresponding subgroup of G. From ¢(g) = g(f) +3n
(see the proof of Proposition 1) it follows that ¢=¢(g) + n=g(f)+n and hence

g=c¢+d=g(f)+D.

This equality shows that the restriction t of n to D is irreducible, and, in fact, 7 corres-
ponds to the functional f|, in the description of the irreducible unitary representations
of the exponential Lie group D. We claim that 7(L' (D)) contains operators of finite rank.

First, we show that 7(L'(D)) contains compact operators. D is isomorphic to
R x N with R=exp(RW) and hence L'(D) is isomorphic to the Leptin algebra
L' (R, ' (N)) (see [9] or [10], where these algebras are called generalized I'-algebras).
We identify J=L'(ZN) with L'(R) such that r=exp(tW)e R acts on heJ via
I (x) =¢'h(e'x). Denote by A the Fourier transform of / € J, and let

Jo={he J; h(0)=0},
J.=1heJ; h(x)=0 forall x 0},
andJ_={heJ; h(x)=0 forall x=0).

Jo,J, and J_ are R-invariant ideals in J. Since f(3n)+0, the representation 1 does
not vanish on the ideal

LR, (o LN} )=[L' (R, ¢/, % '(N)})+ L' (R, {(J_ + L'(N)} )]

T vanishes on precisely one of the latter two ideals; on which one this depends on 7],y
(and on the identification of L!(ZN) with I! (R)). Suppose that t does not vanish on
L'(R,{J, «* '(N)}7). Let A={J. « L'(N)}~, let B=IR, A), and let U=Jy/J_.
U is an R-algebra, 4 is an U-module, and the triple R, 4, U satisfies the assumptions
of [17]. Let pe I'(R, U) be an hermitean projector of rank one. Since the image of
every irreducible *-representation of 4 consists of compact operators it follows from [17]

that ©(p * B x p) is contained in the compact operators. But then the same is true for
7(B) because B+ p x B x p x Bis dense in B.

Now, I want to establish the existence of finite rank operators in the image of .
To this end, T will use ideas which I learnt when studying [12]. By [5], f], + n* is contained
in D(f},) because the stabilizer of Sfly in D is contained in N. Using this fact it follows
from [2]: If y is another irreducible s-representation of L'(D) with kerr<kery then
kert, kery, where y, (resp. 7,) denotes the extension of y (resp. 1) to the C*-hull of
L'(D). From this fact we get very easily the following: Let B— C*(B) be the C*-hull
of B, and let 7' be the restriction of t to B. If 7 1s another irreducible *-representation
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of B with kert'ckery then kert,ckery, where 7,(z,) denotes the extension of
y(t') 1o C*(B).

But C*(B)/kert, which is isomorphic to the algebra of compact operators has
precisely one irreducible representation. Therefore, also B’ = B/kert’ has precisely one
irreducible *-representation. Moreover, B (sce [17], 4 is symmetric by [15]) and,
consequently, B’ are symmetric algebras. Then it follows from Raikovs Theorem, see
e.g. [20], that

vp(x)=1{t'(x)| forall x=x*eB'

where vy denotes the spectral radius. This fact implies by Proposition 2. 5 in [6] that
the spectrum Spy(x) of x=x*€ B’ coincides with the spectrum of the operator 7'(x).
By the way, this equality of spectra can also be proved more or less directly by using
(A) of §1 instead of Raikovs and Hulanickis Theorem. Now, choose an h=h*€ B’
such that >0 is the largest eigenvalue of the compact operator 7'(h), and let I be a
small positively oriented circle in the complex plane around 4 such that there is no
eigenvalue of 7'(h) on I or in the interior of I' except 4. For ze C\ Spy(h) let R(z)
be the inverse of h—zin B @ C1, and let

1
= ——— [R(z)dz.
h; 2ni£ (z)dz
Then h,e B, and t'(h;) is the projection on the i-eigenspace of t'(h). Especially,
7'(h;) is a non-zero finite rank operator, q.e.d.

Case3. dimjn=2 3n=C, and an Yegqg acts on 3n by multiplication with
(14 is) p(Y) for some real s 0 and some non-zero real functional j on g.

We proceed in more or less the same way as in case2. Let Wegy\¢, say
p(W)y=1, let R=cxp(RW), let b=RW+n, and let D=exp(d)=R % N. Again, the
restriction t of m to D is irreducible, and we claim that t(L‘ (D)) contains operators of
finite rank.

L'(D) is isomorphic to the Leptin algebra L' (R, L'(N)). We identify J =L'(ZN)
with I1(C) such that r=exp(tW)e R acts on he J via h'(z)=e"h(e'* *'z). Denote by h
the Fourier transform of 4 € J, and let

U=1{hel; h(0)=0, and h@)=h(v) if [u|=|v}}.

U is R-invariant, and the Gelfand space of U can be identified with R such that R
acts by translation on this Gelfand space (compare also [13]). Let A=[U « I'(N)]",
and let B=IL'(R, A). B is an ideal in I'(D)=L'(R, L'(N)), namely the kernel of the
quotient morphism L!(D)— L}(D/ZN). Since f(3n)+0, © does not vanish on B, and
hence the restriction ¢’ of 7 to B is an irreducible representation of B.

Moreover, the triple R, 4, U satisfies the assumptions of [17]. As in case 2, we see
that '(B) consists of compact operators, that B'= B/ker t’ has only one irreducible *-repre-
sensation, and that B’ is a symmetric algebra. From these data it follows, as in case 2,
that t'(B) contains non-zero finite rank operators.

18*
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§ 5. In the preceding sections, I have shown that for a group G in [EA] symmetry
and *-regularity of L'(G) are equivalent. It is very natural to ask whether one can
extend this result (at least) to all exponential Lie groups. By Theorem 2 (and Boidols
results) the implication: L!(G) symmetric = L' (G) +-regular, is proved if one can show
that the image of every irreducible x-representation of the group algebra of an
exponential Lie group contains non-zero operators of finite rank. But I don't know
whether this is true or not. — 1 believe that the opposite mmplication : G exponential,
L'(G) =-regular = I}(G) symmetric is much harder. I want to “prove” this believe by
an example. While one could prove: G € [EA], I} (G) s-regular = I (G') symmetric, only
by using Satz 1 in [15] (and derived results), in this paragraph 1 will give an example
of a seven-dimensional exponential Lie group G with symmetric and *-regular group
algebra where the symmetry cannot be deduced from Satz 1 in [15]. So, the example
shows that it requires new methods if one wants to prove: G exponential, L'(G) -
regular = L'(G) symmetric. In the example, we get the symmetry by using the fact that
the group contains the Heisenberg group as a normal subgroup; in this case we can
apply Satz 1 in [16].

The example is the following: Let the real seven-dimensional Lie algebra g with
basis 4, 4,, X1, X,, ¥y, Y,, Z be defined by

[Xl» Yl:':Z’ [XZ’ Yz]zz, [AZ’ Y2]= Y25 [A23X2]= _XZ’
[4;, 1]1=1,, [4,, X;]1=-X,, and [4,, 4,]1=Z.

Let G be the corresponding simply connected Lie group. Using Boidols
criterion one can show very easily that ! (G) is *-regular: if, for instance, fis a func-
tional on g with f(Z) 0 then (/) =RZ and, consequently, m(f)* =0,

Now we want to show that I}(G) is symmetric. By (B) of § 1, the symmetry of

L}(G) is equivalent to the fact that I! (G), is symmetric for every unitary character y of
the center C=exp(RZ) of G.

For trivial y, [! (G), is just the group algebra of G/C which is symmetric because
the commutator subgroup of G/C is abelian (see (D) in [16])

So, let us suppose that y is non-trivial. Let M be the normal subgroup of G whose
Lie algebra is generated by X,, ¥, and Z. The adjoint algebra L'(G)! (see [9] or [10])
contains L' (M), (which is defined analogously). In L'(M),, there is a lot of hermitean
projections of rank one (in fact, they span a dense ideal), sec e.g. [13]. Let p be one
of these projections. By the Lemma in [15], L'(G), is symmetric iff p + I! (G), *p is
symmetric. In [16], Satz 1, the latter algebra is computed: Let the real five-dimensional
Lie algebrat with basis A4,,4,, X, Y, Z be defined by [X,Y]1=2Z, [4,, X]=-1X,
[4,. Y]=Y, [4,, 4,]=Z, and let K be the corresponding simply connected Lie group.
Then p+ L'(G),*p is isomorphic to the Beurling subalgebra L' (K, w,), of I}(K),
where the weight i, is given by

w,(exp B) = cosh%jg (B) (Bed)

for some non-zero real functional J>on tvanishingon 4,, X, Yand Z.



Poguntke, Symmetry for Lie groups 137

We apply Satz 1 in [16] again. Let N be the normal subgroup of K whose Lie
algebra is generated by X. Y and Z. ['(N), is contained in L'(K)® and in L'(K, w,);.
L['(K,w,), is symmetric iff g+ L'(K,w,),*q is symmetric for one of the hermitean
rank one projections ¢ in L'(N),. From Satz 1 in [16] we get the following: Let b be
the three dimensional Heisenberg algebra generated by 4, 4, and Z, and let H be the
Heisenberg group. Then g x L'(K,w,),* ¢ is isomorphic to the Beurling subalgebra
L} (H, w), of L' (H), where the weight w is given by

w(exp B)= cosh% fi(B) cosh% £(B) (Beb)

for some non-zero real functionals f; and f, on h with
£(Z)=/(Z)=fi(A) =1>(4;)=0.

Now, it remains to show (after certain normalizations) the following Proposition.

Proposition 2. Let H be the three dimensional Heisenberg group, i.e.
H={[xv 2] x,y,zeR}

with multiplication [x,y,z]1[x, ), 2']1= [x+x,y+y,z+2 =x'y], let y be a non-
trivial unitary character on the center C of H, and let the weight w : H—R be defined by

1 1
w(x, y, z) = cosh?x cosh?y. Then the Beurling algebra L' (H, w), is symmetric.

Proof. Define @ : H— Hby

x—y x+y . 1y 2
P(x, s :)=[~——, ,z+4xy +507 - XD
Vo
@ is a group automorphism leaving the center C pointwise fixed. Moreover, @ leaves
the Haar measure of H invariant. Therefore, ¢ induces a *-isomorphism V' from L' (H),

onto itself,

Vix, . 2)=flo(x, 5, 2)
It is enough to show that the image of I!(H, w), under this map V is a ;yrr}metric
algebra. One easily computes that this image is just L' (H, W), where the weight W is given by
Lx-y 1x+y 1 = /=
W(x, y, z)=cosh? —= cosh? —— = — {cosh|/2x +cosh]/ 2y}
(x, 7. 2) % 72 7
Now, define the weights 5,, 0, : H—= R by

[ S

a,(x, y, 7)=(cosh [/fx)% and 0,05, ¥, 2)= (cosh[ﬁ y)%,

andleto =0, +0;.
O;le shows very easily that there exist positive constants C, D with
Co(x,y,2)SW(x,,2) S Da(x,y,z) forall [x,, z}e H.

From this we get L'(H, w),=L(H,01), ['(H, 5,),- But the algebras L‘(H, 7;), are
symmetric by [8], p-30, because L'(H, ), 1s isomorphic to the Leptin algebra

1 .
LY(R, A(R), (cosh]/2—)?) where R acts on A(R) by translations. Obviously, the nter-

section of two symmetric algebras is again symmetric.
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