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ALGEBRAICALLY IRREDUCIBLE
REPRESENTATIONS OF L'-ALGEBRAS OF
EXPONENTIAL LIE GROUPS

DETLEV POGUNTKE

Introduction, Let G be a locally compact group. The classical task of the
{epreseptation theory of G is the determination of the strongly continuous
3rreducnble unitary representations of G. These representations give, for example,
in the unimodular type I case the ingredients in the Planchere] theorem. But for
other purposes as the computation of spectra of L'-functions considered as
convolution operators on L(G) the knowledge of the irreducible unitary
fepresentations does not suffice. This is like in the case of an involutive
commutz?tive Banach algebra & where in order to compute the spectrum of an
elf:ment In & one has to use the full Gelfand transformation, i.e., one has to deal
with all multiplicative linear functionals and not only with the hermitian ones. It
turns out that for the determination of spectra of functions in L'(G) the proper
glass of representations to consider are the algebraically irreducible representa-
tions or, as I prefer to say, the simple L'(G)-modules. Of course, in the case of
Commutative L'~group algebras there is no difference between simple modules

and irredycible unitary representations: every multiplicative linear functional is

hermitian, By; for noncommutative groups, even for solvable Lie groups, there

arle big differences. There exist (a lot of) solvable Lie groups G and simple
L (G)-modules E such that the annihilator of E in L'(G) is not the kernel of a
unitary representation. The main result of this paper is a parametrization of the
set of 18omorphism classes of simple L '(G)-modules for exponential Lie groups
G. Whlle simple modules play some role in the general theory of Banach algebras
(for m.stance in the proof of Johnson’s theorem on the uniqueness of the norm on
2 semisimple Banach algebra) the L'-group algebras of exponential Lie groups
ar¢, up to my knowledge, the first example of a sufficiently wide class of
PONcommutative Banach algebras where all the simple modules can be
determined explicitly. Of course, the simple modules were already known for
L-group algebras of nilpotent Lie groups, but this case is less interesting in the
Sense that there is always a bijective correspondence between the simple modules
and the irreducible unitary representations which means that one does not find
fiew phenomena and 2 proper extension of the unitary representation theory. As
4 consequence of the parametrization theorem one obtains a characterization of

the €xponential Lie groups with symmetric L'-group algebras. |
This article is divided into six sections. In the first paragraph we summarize

Received September 28, 1983,
1077
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some general facts on simple modules, in particular we introduce the Fell
topology on the set of isomorphism classes of simple modules. Next, for weighted
twisted convolution algebras on vector groups the set of isomorphism classes of
simple modules is determined. In the third paragraph it is shown that orbits of
nilpotent Lie groups in the unitary dual of nilpotent Lie groups are “almost” sets
of synthesis which can be deduced from Ludwig’s results on points, [20]. Using
this fact and the imprimitivity theorem of [25] one obtains in §4 that
L'(N)/Ann pwy(E) is a semisimple algebra if G is an exponential Lie group, if
N is its nilradical, and if E is a simple L'(G)-module. This result is the main tool
to give in §5 the desired parametrization. In this parametrization enters a certain
weight function on a vector group which is estimated in §6. Also in §6 the
consequences of the parametrization theorem to questions of symmetry and
«-regularity of L'-group algebras are discussed.

§1. General properties of simple modules and the primitive ideal space. As one
may expect from the title T do not claim originality for the results of this section.
In fact, except for theorem 2 all ideas and results described below can be found
in Naimark’s book, [21], and in two articles of Fell’s, [9] and [10].

Let &/ be a complex algebra, let a € &/ and let z be a nonzero complex
number in the left spectrum of o, ie, (a—z)={xa—zx; xE A} is 2
proper left ideal. Then u:=(1/z)a is a right modular unit for the left ideal
o (a - z),1e, xu = xmod &/ (a - z) for all x € &/. By Zorn’s lemma, &/ (a - z)
is contained in a maximal left ideal A with right modular unit . Then
E:= o/ /A is asimple o/ -module. In fact, it is a left &-module, but T will always
omit the word “left”: all modules in this paper are left modules. Moreover, the
image & of u in E 1s different from zero, and one computes easily that af = z€.
Hence to every nonzero element z in the left spectrum of g € &/ there exist a
simple .o -module E and a nonzero ¢ € E with af = z£. In this way, from the
knowledge of the simple .«/-modules one may compute the left spectra.

Let’s suppose for a moment that &/ is an involutive Banach algebra. Then
clearly the knowledge of all the left spectra gives the knowledge of all the
(two-sided) spectra. It is particularly easy to compute the spectra if for every
simple .«/-module E it is possible to find an (irreducible) involutive representa-
tion 7 of & in an Hilbert space ## and an .« -linear embedding of E in 2. In
this case, one only has to consider the (point) spectra of the operators (a),
a € &/, in . In particular, it follows that for all ¢ € o the spectra of a*a in 4
are contained in the positive real axis, i.e., & is a so-called symmetric Banach
algebra. On the other hand, it is known, [21], that in the case of a symmetric
Banach algebra ./ for every simple &/ -module E there exist 2 and 7 as above.

The following theorem will be an important tool in the construction and
classification of simple modules.

. TQI/{EOREM L. Let o/ be a complex algebra, and let F be a two-sided ideal
in o,
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(@) If E is a simple o -module with § E # 0, then E is a simple f -module. If F
is a simple ¢ -module then there is a unique </ -module structure on F extending
the £ -module structure. Hence there is a canonical bijection between the set of
isomorphism classes of simple § -modules and the set of isomorphism classes of
simple 2/ -modules E with § E + 0.

(if) Let p € o/ be an idempotent. If E is a simple < -module with pE 0 then
PE is a simple po/ p-module. If F is a simple pof p-module there exists a unique (up
fo isomorphism) <f -module E such that pE is isomorphic to F. Hence there is a
canonical bijection between the set of isomorphism classes of simple pa/ p-modules
and the set of isomorphism classes of simple o/ -modules E with pE # 0.

(iti) Let p € o be an idempotent. Then there is a canonical bijection between the
set of isomorphism classes of simple p  F p-modules and the set of isomorphism
classes of simple F -modules E with (p # )E #0.

Sketch of the proof.

_ ) Let E be a simple «/-module with £ E 0. Then Ey:= (§€ E; £ £=0)
18 a proper «/-submodule, hence E,=0. Therefore # £ is a nonzero
& -submodule for every nonzero £ € E, hence Z¢=E. If Fis a simple
/ -module, an -module structure is given by a(ff):=(af)t for a € o,
fef teE.

(i) Let E be a simple &/ -module with pE # 0. It is obvious that pE is a simple
p4p-module. If E’ is another simple .«/-module then it is easy to see that an
P»Q/ p-linear isomorphism between pE and pE’ extends to an .&/-linear
15omorphism between E and E’.—If F is a simple p</p-module we form the
induced .« -module Fii=d Q,u,F pFiis isomorphic to F and every nonzero
vector in pF; is cyclic for F,. Hence F, has at least one simple quotient module £
anq PE is isomorphic to F.

(ii1) is a consequence of (i) and (ii).

Now we assume that .« is a Banach algebra. On a simple /-module E one
May introduce a complete norm such that E becomes a Banach ./-module:
ChOOSe fE E, 6.7&0, and put ”n” = 1nf{”a”, ae .ﬁ/, a§= 'I]} for M e E. Of
course, this norm depends on ¢, but different &'s give equivalent norms. ‘If 54
happens to be the L'-algebra of a locally compact group G then there exists a
strongly continuous representation G X E - E by isometric operators such that

the L'(G)-module structure on £ is given by
= x)(xn)dx
fr= [ fo)

forf € L!(G) and n € E. If G is a closed subgroup of anothgr _locally compact
8roup H such that H /G has an H-invariant measure » (this 18 the only case

. 2
needed in the sequel) one may form the induced module ind{ E = L;(H.E)

: &
consisting of all measurable functions g : H—> £ with g(hx) = X (p(h), x€G
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and h € H, such that
2= miitd ii is finite.
H‘PH L/GH‘P( )“ V( )

The group H acts strongly continuously in L2(H, E) by (hg)(k):= ¢(h~ ') for
h,k € H, and that gives rise to an L'(H)-module structure on indf} E.

Now let &/ again be an arbitrary Banach algebra. We want to introduce a
topology on the set /' (#) of isomorphism classes of simple ./ -modules and on
the set Priv(«') of primitive ideals in .%/. An ideal in .« is called primitive if it is
the annihilator of a simple ./-module. By definition, there is a surjective map
(& )-> Priv(#/). In general, this map is not a bijection; but in the case that for
every simple «/-module E there exists an a € & such that eE is one-
dimensional, the map is bijective.

Definition (Fell). For every Banach space X the space of bounded linear
functionals is denoted by X’. For a simple &/-module E let ®(E) be the linear
span (in /") of the functionals a > g(af), £ € E, p € E’. Of course, ®(E)
depends only on the isomorphism class [E] of E. Let .# be a subset of /().
[E] € /(&) is contained in the closure of .# if ®(E) is contained in the weak
s-closure of |J < o P(M).

This defines a topology which we will call the Fell topology. Since the weak
s-closure of ®(E) is nothing else but Ann_(E)* one may rephrase: [E] € .4 ~
if and only if Ann_,(E)* is contained in the weak =*-closure of
Uwe « Ann(M)*. This gives a topology on Priv(# ): P € Priv(+ ) is contained
in the closure of 7 CPriv(«#) if P is contained in the weak *-closure of
Uoes @*. The open sets in /(') are precisely the preimages of the open sets
in Priv(#) under /(&) Priv(#), i.e. the topology does not distinguish
&/ -modules with the same annihilator.

Properties of the Fell topology:

(1) The Fell topology on Priv(.') is stronger than the Jacobson topology.

(2) The correspondences of theorem 1 are homeomorphisms: Let # be 2
closed two-sided ideal in & and p an idempotent in . Then /(¢ ) and
/(p</p) are homeomorphic to open parts of (&), /(p £ p) is homeomor-
phic to an open part of #(_#). Moreover, #(«/ ¢ ) is homeomorphic to a
closed subset of /().

(3) In the case of commutative algebras the Fell topology coincides with the
Gelfand topology. Hence the space Priv(#/) may be considered as a
generalization of the Gelfand dual. Recall that a commutative Banach algebra is
completely regular if the Gelfand topology coincides with the Jacobson topology-
In an obvious manner, one may extend this notion to the noncommutative case.

(4) In the following, a special type of algebras will be of interest. Let G be a
locally compact abelian group, and let w be a continuous weight on G. Then on¢
may form the weighted (or Beurling) L'-algebra & = L'(G,w). /(&) is in
bijective correspondence to the set of continuous characters x:G—>C* with
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[x(¥)| < w(x). This correspondence is an homeomorphism if the set of
continuous characters is equipped with the compact open topology.

The following theorem does not fit well in the frame of this section. It is taken
in this article because we will need it in §4. The proper place would have been
the article [25], because it follows easily from the results obtained there. But
when writing the latter paper [ did not know that this result will be useful for
applications.

THEOREM 2. Let & be an involutive Banach R-aigebra, i.e., o/ is an involutive
Banach algebra and R acts strongly continuously by isometric *-isomorphisms on
. Let E be q simple L\(R, o/ }-module, and suppose that there exist p,q in the
adjoint algebra o/ ( for the definition and properties of the adjoint algebra, see
[13]) with pg =p = qp, with pE+0 and with ¢°a/q =0 for x €Z, x #0. Then
there exist q simple <o/ -module F and an L'(R, </ )-linear embedding from E into
the induced module L*(R, F). Moreover, Ann_,(E) = (),er Ann,,(F)".

Proof. From Satz 2 in [25] it follows that there exists a simple L'(Z,‘ﬁf’~ )
module F, such that E can be embedded into the induced module F,.
Conjuz%ating p and g by an element » €R (if necessary) we may assume th.at
PF,# 0. By the theorem on induction in stages it suffices to show that there exist
a simple .« -module F and an L'(Z,.# )-linear embedding from F in the induced
module L%Z F). The assumption ¢*#g=0 for x€Z, x+#0, implies that
g L\Z, o ) » q is contained in ¢/, ie., in the functions supported by O For
very £ € pF, we have g€ = £ From the latter two facts and the irr.edumblhty of
Fy one deduces very easily that &/pF, is a cyclic & -module, in fact every
nonzero £ € pF, is a cyclic vector. The cyclic .o/-module «/pF, has a simple
quotient F. Denote by T: o/ pF, - F the quotient map. Then we define

S:F'_)LZ(Z’F)

by
(S¢)(z) =8,,T¢  for £€pFy,

and
S(fey=fs¢ for fELYZ) and EEpFI.

Of course, we have to show that § is well defined. Let § € pF, and f € L'Z, /)
With f¢ = 0. We have to show that fS§ = 0. Put g = f* ¢, L€, g(x) =f(x)q_. lgroBm
g€ = £ it follows that g¢ =0, Since gS¢ = S§ it suffices to show that g3 iﬂS - 2y
the definition of the induced representation we have g§ £=3 ez 8() (_x% 5
Where 7% is defined by n7(y) = n(x + ). Hence (g88)() = Zrez &%) (

e o ez
(ol 1 to ‘show that g(y)’T£=0 for all y €
Y= X)=g(y)™’T¢ and we have to s § T¢ because T&=gT%

For “VTE = “ITE= f(y) 797’

y#0, MTE= (f(ng) " TE=f¥) -4 . =
And qu(ﬁ) implies fq)quF =0. From gf=0 it follows _‘}‘a,‘x(gg)
ez g(x)~*(x£), hence 0=2Xezqﬂg(x)”‘(x5)=erzq”f(") 9 '
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Since ¢g#/¢g =0 for x#0 we obtain 0= q/f(0)gf=q«/g(0)§. Hence
g(0)¢ = 0 because g(0)¢ # 0 would imply that #/g(0)¢ = F, and then gF, =0, a
contradiction to pF, # 0. From g(0)¢ = 0 and the &/ -linearity of T it follows that
gOTE=0.

So, we know that E can be embedded into LXR, F). The equation on the
annihilators is obvious.

§2. Simple modules over weighted twisted convolution algebras on vector groups.
Let W be a finite-dimensional real vector space, let w: W—R be a continuous
weight, ie. w(x)>1 and w(x+y) < w(x)w(y) for all x,y € W, and let
m: W X W-T be a continuous cocycle on W. Then one may form the weighted
twisted convolution algebra L'(W,m,w) consisting of all measurable functions

g: W-C such that || g|| := [ ] g(x)|w(x)dx is finite where the multiplication is
given by

(g+M(x)= [ drm(x+p.=)g(x + p)h(=y)

In this section we will determine the space .#' (L' (W, m,w)).

For the following discussion, see also [26].

The 2-cocycles on vector spaces are known, one may assume that m is of the
form m(x, y) = ™" with an antisymmetric bilinear real form p on W. Let Z
be the kernel of the form u. We choose a vector space complement X to Z in W
and a direct decomposition X = X, @ X, such that p(X;,X,) = 0. The restriction
of u gives a nondegenerate pairing p: X, X X,—>R. Moreover we choose a
positive definite inner product { , > on X,. g and { , ) give an isomorphism
T:X,- X, defined by {Tx,,x,> = u(x,,x,). And one gets an inner product on
X,. also denoted by { . . by {x, p> = {Tx, Ty> = p(x, Ty). Then we define the
function p from X = X, + X, into C by p(x, + x,) = e~ /¥xx0=1/2%2) n the
case of a nondegenerate p, 1.e., Z =0, one has the following theorem.

TuroreM 3. Ler X = X, + X,.m, p and p as above, and let &/ := L\(X,m,w).
Then p is contained in o a suitable positive multiple of p is an idempotent in .
pr/ xp=Cp. and & «p*./ is a dense ideal. In particular, &/ is a simple
Banach aigebra. and ./ has (up 10 isomorphism) precisely one simple module.

Proof. Tt was already shown in [26] that p € &/, that p* &/ +p = Cp and that
p 18 a multiple of an idempotent. By convolution with point measures one S€es
that .o/ * p* &/ contains py for every unitary character x € X. But {pcxe X
is total in.o/: Let ¢ be in the dual o/ with ¢(px) =0 for all x € X. Then ¢ can
be identified with a measurable function on X such that |jgw ™'l < o0, and we
have

f\’,\'(.\‘)p(,\')q(.\')d.\‘= 0 forall x € X

Thus, pg 1 an L'-function on X whose Fourier transform is zero. Hence pg 15
reroalmost everywhere, and as p has no zeros, ¢ has to be zero almost
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everywhere. One concludes that o » p* 4 is dense in &. The latter statements
in the theorem are easy consequences of the former.

Now, let £ be a simple L'( W, m,w)-module. There exists a strongly continuous
projective representation p of W in E with pX)p(y) = m(x, )o(x + y) for
LYEW, and o(f):=fE = [, f(x)p(x)dx for f € L'(W,m,w) and § € E. As
Z is the kernel of p (and m) every p(z), z € Z, commutes with every p( f). From
Schur’s lemma it follows that p(z) has to be a scalar multiple of the identity,
z) = n(2)idy with a continuous character n = n from Z in C*. Moreover, 7 is
bounded by w, ie., |n( z)l < w(z) for all z € Z; denote the set of these
continuous characters by Zw-

THEOREM 4. The space ' (L'(W,m,w)) of isomorphism classes of simple
Modules s homeomorphic to Z, vie E—>wz. Moreover, for every simple
Li(w, m,w)-module E there exists an h€ LY (W,m,w) such that hE is
one-dimensiong|.

Proof. Let F = LYW,m,w). The algebra & = L'(X,m,w) operates (by
convolution) from the left and from the right on #, and we may form the
algebra @ ;= # ®4/ which contains ¢ as an ideal. For every simple
# module £ we have (p* £ )E#0, p as above, because &/ is a simple Banach
algebra. From theorem 1 (iii) it follows that #’( /) is homeomorphic to
7 (ps P). An easy computation shows that p+ f *p is isometrically
Somorphic to L'(Z, w,) where the weight w, is given by Wo(f).: fx.dx p(x)
W(x+2), and the isomorphism L'(Z,wp)->p* f *p, 9§ is given by
¢(x + 2)=p(x)p(z) for x € X, z € Z. Hence A (f) is homeomorphic Fo
f(_LI(ZaWo)) and by §1 (4) homeomorphic to ZAWO. But the weight w, is
Quivalent to the weight Wz, because

¥o(2) =fxdx P(X)w(x + z) <de p(x)w(x)w(z) = W(Z)fxdx p(x)w(x).
4, s w(x + 2) > w(z)w(—x)"', one has
wi(z) > w(z) [ dx p(pe(=9)"

Therefore, 7, Z, and .#( £) is homeomorphic to Z,.. 1f one goes @hrough
the varioys idoentifications, one sees that the final homeomorp}usm 18 gl\":)’:j l}’
e ~—Moreover, ( p* F)Eis one-dimensional for every simple J -module

E and hE"“‘(P*f)E for a suitable hEp* F *p.

§3. On the synthesis problem of orbits of nilpotent pie groups. Let ¥ !_);es
sonected nilpotent Lie group. If one wants to classify the closed two-S;:. ,
eals .7 iy the L'-group algebra L(N) of N one may proceed as fol'!ow(i. 'lbr:e
one considers the hull h(.F) of £, ie., the set of all kernels of rrreducirO ‘
'IVolutive representations 7 of L(N) with & C ker. h(f ) correspon sf 0
tlosed subset of the unitary dual N of N, and evidently, itis an Invaniant o
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ideal. By a theorem of Leptin, [16], A(.# ) is not void if # is a proper ideal. By
definition, .# is contained in the kernel k(h(#)) of h(#), and from the
symmetry of the involutive algebra L'(N) it follows that k(h(.# ))/# is always
a radical Banach algebra. Unfortunately, #(.# ) is not a complete variant of .# .
Even in the case of abelian groups N there exist closed ideals F such that ¢ is
strictly contained in k(h( £ )). Closed subsets X of N such that there is precisely
one closed ideal ¢ with A(_# )= %, namely # = k(X), are called Wiener sets
or sets of synthesis. It was shown by Ludwig, [18], that for every closed subset X
of N there exists a unique smallest closed two-sided ideal j(X) with h(j(X)) = &.
In particular, any closed two-sided ideal .# in L'(N) lies between j(A(.# )) and
k(h(#)). In order to classify the ideals in L'(N), secondly one has to determine
the ideals in the radical Banach algebras k(X)/j(X) for closed subsets X of N. Of
course, one can hardly imagine a solution of the latter problem in full generality.
For many purposes it is sufficient to know that k(%)/;j(%) is finitely nilpotent,
i.e., there exists n € N with k(%)" C j(%). [t was shown by Ludwig, [20], that this
is true if X consists of a single point 7. What he actually proved is the following:
Denote by /'(N) and Z (N ) the space of Schwartz functions on N and the space
of test functions on N, respectively. Let kerdn be the kernel of the associated
infinitesimal representation of the universal enveloping algebra Un of n. Then
(kerdr)* /(N) is dense in kera. Consequently, also (kerdr) * & (N) is dense in
kerm. Since (kerdr)* Z(N) is contained in & (N) it follows that kerm N Z(N)
is dense in kers. Dixmier’s symbolic calculus yields that ™ € j({=)}) for all
f*=f€kern N P (N) where m=d +4 and d = d denotes the degree of the
growth of the Haar measure of N, i.e., for every compact set 4 in N there exists a
positive constant C such that the measure of A% is less or equal to Ck“ for all
k €N. A little algebra shows that the same is true for all f € Z(N) N kerm: Put
f=f, + if, with hermitian elements f,, f, and form the polynomial Q(z) = (f, +
zf)", 2 € C. Q is zero modulo j({)) for real z, hence for all z € C, in particular
for z = i. Since kerm N 2 (N) is dense in ker« one obtains that f™ € j({n}) for
all f € kern. The Nagata—Higman theorem, see [12), Appendix C, implies that
fixoosf, €j({m)forallf,,...,f, €kern where n=2" — 1. Using Ludwig’s
results we are going to prove in this section a generalization of his theorem,
namely to the case where X is an orbit of another nilpotent Lie group acting on
N. This generalization will be useful in the determination of the annihilators of
topologically irreducible modules, in particular for simple modules.

THEOREM 5. Let M and N be connected nilpotent Lie groups. Suppose that M
acts continuously by automorphisms on N such that the associated semidirect
product M X N is nilpotent, too. Let X be an M-orbit in the unitary dual N. Then
G(NYO k(%) is dense in k(X), and {k(X)/j(%))" =0 where n=2"**—1and d
denotes the degree of the growth of the Haar measure of N.

Remark. The fact that M X N is nilpotent implies that M and M X N act on
the Lie algebra n and its dual n* by unipotent automorphisms. Since ¥
corresponds in the Kirillov picture to an M X N-orbit in n* and since orbits
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under unipptent actions are closed, it follows from Brown’s theorem, [6], that % is
closed in N.

Proof of the Theorem. We write (m,x)-> x™, m € M, x € N, for the action of
M on N, and form the auxiliary group H. As a set, H is the cartesian product
M X N X N, and the multiplication is given by

(m',b',c")(m,b,c) = (m'm,b"™b,b~ 'c""bc).

Obviously, H is a connected nilpotent Lie group, too. We define a strongly
continuous representation p of H on the Banach space L'(N) by

{p(m,b, )f }(x) - fle™ =l "b).

plm,b,c) is a linear isometry on L'(N). Hence p can be integrated to a
representation of L'(H) on L'(N), also denoted by p. The ideals k(%) and
S =[k(®) N Z(N)]” in L'(N) are invariant under p, hence one obtains
fépresentations p, and p, of H (and L'(H)) in L'(N)/k(X) and L'(N)/.7,
respectively. Obviously, ker, i ;r)p, is contained ker;, ,,p,. We want to show
that they are equal. From the theorem of Leptin mentioned above it follows
easily that p, is a topologically irreducible representation of H because a proper
closed p, -invariant subspace of L'(N)/k(%) defines an p-invariant subspace Y
between k(%) and L(N). p-invariance means that Y is an M-invariant two-sided
closed idea] in LY(N). Since 4(Y) is an M-invariant non-void set it has to
coincide with %, hence Y = k(%). As p, 1s topologically irreducible, ker, 1 ,,p, i
a prime ideal in L'(H) and hence, by a theorem of Ludwig, [20], the kernel of an
trreducible involutive representation y of L'(H). By the way, it is not necessary
'0 use this theorem. One can construct such an y directly in the following
Manner: Let r be an irreducible unitary representation of N such that the
equivalence class [t)of rin N belongs to X, and let M, be the stabilizer of [r]. Let
9§ denote the representation space of 7. We choose a strongly continuous
Projective representation U of M. in § with v(x™) = U(m) 'r(x)U(m) for
XEN, me M,. Then we define the (ordinary) unitary representation ¢ of the
Subgroup H, = M, X N X N of H in the space #°.7($,%) of Hilbert-Schmidt
Operators on § by

o(m,b,c)(T) = U(myr(b)r(c)Tr(b)~'U(m)~".

Obviously, o is irreducible (even the restriction of o to {e} X NX N is
irreducible), and the induced representation y = indZ'a is irreducible. Some
“Omputations which are omitted show that ker oY =Ketpy i Kerp gy, s
Contained ipn ker; 4,0, but intersected with the space & (H) of test functions
they coincide: IffegH)N ker iy Px then p(f)(g) € k() for all g € Y (N).
But p( fy( g) is a test function, hence p(f)(g) € =[k(®) N Z(N)]” for all
EE€Z(N). By continuity, p(f)(g) € F for g € L'(N), hence f € ker;y 40,
Therefore, kerL'(H)PJQ ket ypsl” =lkergmpl” = [ker(qyy]™- By Lud-
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wigs’s theorem, [ker Y] is equal to kerpi )y = ker; 7, p. Hence ker; i y0r
= ker 4,0, Which implies that J = k(%), as desired. The arguments explained
above (Dixmier’s symbolic calculus and the Nagata-Higman theorem) give that
k(%)" C j(%) where n=24%4— 1.

To apply this theorem to the annihilators of simple modules we start with a
simple lemma.

LeMMA. Let G be a locally compact group, let B be a closed normal subgroup of
G, and let & be a G-invariant closed two-sided ideal in L'(B). Let m be a
uniformly bounded strongly continuous topologically irreducible representation of G

in the Banach space E. If there exists a natural number n with w(.# ")E = 0 then
a(S)E = 0.

Proof. Suppose that #(# )E # 0, and let m be the smallest natural number m
with #(#")E =0. Then m > 1, and from the G-invariance of # and the
irreducibility of E it follows that [#( ™ ")E]™ = E. Therefore, 7(¥ )E 1s
contained in the closure of (& ) (F ™ 'XE) = w(F ™) E) which is zero.

For the statement of the last theorem of this section let’s first give a definition
which will be used in the following section. As we pointed out above the
L'-group algebra of a connected nilpotent Lie group B contains “nice ideals”,
namely the kernels of closed subsets of B, and besides those a number of worse

ideals lying between the kernel of a closed set X in B and j(¥). We introduce a
name for the “nice ideals”.

Definition. Let B be a connected nilpotent Lie group. An ideal .# in L'(B) is

called pithy if £ is the kernel of a (closed) subset of B or, equivalently, if
F = k(h(5)).

Combining theorem 5 and the lemma one obtains the following theorem which
will be applied several times in the next section.

THEOREM 6. Let G be a locally compact group, and let B and N be closed
normal subgroups of G with B C N. Assume that B and N are connected nilpotent
Lie groups. Let E be a simple L'(G)-module. Suppose that the hull of Ann ) gy(E)

in B is an N-orbit. Then Anng.(E) is pithy, i.e, Annp g (E)=
k(h(Anny g, (E))).

f’roof. Let & = Ann,) 5,(E), and let X be the hull of # in B. Since & is
G-mvanant, X i1s G-invariant, too, and hence k(X) is G-invariant. From theorem

3 it follows that there is a natural number n with k(¥)" C .#. By the lemma, k(%)
anmhilates E, hence k(X) = 4.

To conclude this section I would like to mention two open problems. Let N be
a conne.cted nilpotent Lie group, and let X be a closed subset of N. Then ¥ may
be considered as a subset of the primitive ideal space PrivUn of the universal

enveloping algebra Un. And one may form the “infinitesimal” kernel p = k(%)
of X in Un.
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Problem 1. Find sufficient conditions for ¥ such that p* A (N) is dense in
k(Z).

Of course, X can’t be arbitrary. For instance one has to have that the
intersection of the closure of ¥ in Privln (in the Jacobson topology) and the
hermitian part of Priv Un is just . I have in mind the case where & is the orbit of
2 “nice” group. A solution of the problem in this case would give another
method to obtain information on group representations in Banach spaces from
the associated infinitesimal representation. Note that for abelian groups N a lot is
known on the synthesis problems for orbits of Lie groups in N, see [13].—For the
determination of all primitive ideals in L'-groups algebras of arbitrary solvable
connected Lie groups it would be very helpful to solve the special case where X is
an orbit of a torus (acting by automorphisms on N). So, let me state this
particular case ag

Problem 2. Let X be an orbit of a torus. Is p* .~ (n) dense in k(%)? Is
k(®)/jx) nilpotent?

3. The annihilators in L'(N) of simple L'(G)-modules. After the first three
Préparatory sections we now come to the proper theme of this article. Let G be
an exponential Lie group, i.e., the exponential map exp from the Lie algebra g of
Ginto G is a diffeomorphism. An exponential Lie group is always solvable and,
Obviously, simply connected. The Lie algebra g has the property that ad X has no
f0nzero purely imaginary eigenvalue for all X €g. And this property
characterizes the Lie algebras of exponential groups. Let N be the nilradical of G.
In this section we will study the L'(N )-annihilators of simple L'(G)-modules. In
Particular, we will show that these annihilators are pithy. We will follow the usual
conventions: a small German letter denotes the Lie algebra of a Lie group
denoted by the corresponding large Latin letter; if H is a group acting on a set,
and if x is a point in this set then H_ denotes the stabilizer of x.

THEOREM 7. Let G be an exponential Lie group with nilradical N, and let E be
a simple L'(G)-module. Then the annihilator Ann vn(E )A of E in L'(N) is pithy.
More precisely, there exists a unique G-orbit in N, say Gr, such th.at
k(Gr) = Anng, \ (E). And there exists a simple L'(G,)-module F ;wth
AnnL'(N)( F) = ker7 such that E can be embedded into the induced module ind; F.

Proof. Let B be maximal in the set of nilpotent closed connected nqrmal
s“bgmups of G which have the property that the hull of Annj g, (£ ) is an
“0rbit. By theorem 6, Ann, 5,(E) is pithy. If B=N then Ann,y m{E) s tge
kernel of an irreducible unitary representation of N, say 7. Moreover, G,
Coincides with G, and the theorem is proved in the case B = N. So, we may
Suppose that B is a proper subgroup of N. Then we choose a minimal closed

“Onnected normal subgroup C of G with B G C C N. The dimension of C/B is
One or two, Let X be the hull of Anni(E) in C, and let 9 be the hull of
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Ann, i gy (E) in B. By the Kirillov picture we may consider X resp. J) as a (closed)
C-invariant subset of ¢* resp. as a B-invariant subset of b*. Let g be any element
of 9. Then, by assumption, 2) Ng. Let 9 1= fE; fi, €D} Of course we
have §) = Nf + b* forall f € ) where b* denotes the orthogonal space to b in ¢*.
Moreover, it is easy to see that k(g)) Gf 9) is considered as a subset of ¢ ) is equal
to the closure of L'(C )+ k(@) * L'(C). Hence, k(i}ﬂ) is contained in Ann, ) (E)
and X is contained in 9).

Now, we have to distinguish several cases. Let's first assume that the
dimension of C/ B is one. Recall that g € b* is an element of J).

(L.1) Ny is strictly contained in N, for one (or for all) f € ¢* with fiy = g.

Then N,f=f+b", hence %) = Nf, and the G-invariant subset X of §) has to
coincide with 9). Hence % is an N-orbit, in contradiction to the maximality of B.

So, we may assume that N, = N, for all extensions f of g to c. Next, suppose
that even

(1.0.0) G;=G, forall fec* with f,=g.

Since G = NG, = NGy, every G- orbit in §) is an N-orbit. We claim that ¥ is equal
to an N-orbxt (Wthh will contradict the maximality of B). Suppose that ¥
contains two different N-orbits Nf, and Nf,. Since the orbit space §/G=9/Nis
homeomorphic to bl and hence Hausdorff there exist closed N-invaraint subsets
A, and A, of § with 4, U4, =9 and NfiNn4,=0= Nf, N A4,. k(@)
= k(A,) N k(4,) annihilates E, hence L'(G)* k(A,)* k(A,)* L'(G) annihilates
E. But the closures .#, resp. &, of LYG)xk(4,) resp. k(A,)* L'(G) are
two-sided ideals in L'(G) because the k(A;) are invariant under conjugation by
elements of G, and #,.#, annihilates E. Smce Anng g (E) is a primitive ideal
and especially a prime ideal, we conclude that #, or .#, is contained in
Ann, ¢ (E). It follows that k(4,) or k(4,) is contained in Anng (E) and
then that X is contained in A4, or in A4,, which is impossible by construction.

Therefore X has to be an N-orbit which contradicts the maximality of B. It
remains to consider the case

(1.0.1) There exists f € ¢* with f, =g, Gfg G, and N, = N

We distinguish between

(A) G, acts trivially on ¢/b (or on b*), and
(B) G acts on b* in a nontrivial way.

ad (A) From the assumption that Gf C G, and that G, acts trivially one de-

duces very easily that G,f= f+b*. From G =G,N it follows that Gf = NG,f
= N(f+ bt)= Nf+b* = 9. Since % is an G-lnvanant subset of 9 it coincides
with 9. Moreover, k(§D) k(X) annihilates E, hence AnnL.(C)(E ) = k(¥). Put
M:= G N = NG Of course, M depends only on %, and G is isomorphic to a
semldlrect product R M. Using theorem 2 we will show that there exist a



IRREDUCIBLE REPRESENTATIONS OF L '-ALGEBRAS 1089

simple L'(M)-module D and an L'(G)-linear embedding from E into the
m]duced m)odule L*R,D). To this end, let % := L'(C)/k(¥), and let o :=
L. (M)/ (IL (M)*k(X))™. % is contained in &%, and E may be considered as a
simple L (H,&_/ )-module. Since the unitary dual % of % is a transitive G-space,
by lemma .2 in [26] (also all the other assumptions are satisfied) there exist
P’g'e % with pg=p = gp #0 such that the “Fourier transform” of ¢ has an
fa(:r 2lrlary _small compact support. Especially, we may assume that g** % *q =0
e xx* ‘—Q{}Z, m) € ZX M with z # 0, where g* is defined by conjugation. Then
, 'thgl *g=0for x = (z,.m) €2 X M with z #0. Since pE # 0 (as % acts
aithfully on E), all assumptions of theorem 2 are now established and we
;:D:luiei that there exist a simple «-module D (which may be considered
suchn ! (M)-module) and an L'(G)-linear embedding E— L*R, D) = indj D
N that Anng,,(E) = (), cqAnn,,,,(D)* and, consequently, Ann,y,(E)
d—i IQ;?R AnnL.( vy(D)". Since M is ‘an exponential Lie group of smaller
i 1on than G we knpw (b_y induction) that Ann,, y,(D) = k(Mr) for some
e andl that there exist a simple L'(M,)-module F with Ann i y,(F)=kerr
"¢ an L'(M)-linear embedding D—>indy F. It follows that Ann,y,(E)
tIlaD&ER,{; (Mr)* = k(Gr). The uniqueness of the orbit Gr follows from the fact
have dofrf its in N are locally closed (see [1]) which implies that different orbits
St ifferent closxfres. Considering Ann;,(E) one sees easily that the
avilizer G, is contained in M, hence M, = G,. From the theorem on induction

i . . .
Il stages we obtain that E can be embedded into ind§ F.

Rxad (B) 'In this case, xA = a(x)A for x € G, AE b+ with a character a: G-
) r'lonmvxal on G,. Let f be any extension of g to ¢ with Gfg G,. N, is nor-
glal n G, and G, /N, is abelian. Since G, contains N, = N,, also G; is normal in
and G,/ G, i i i ’
2 ¢/ Gy 1s abelian. For x € G, we write

xf=f+g(x) with @(x)€Eb.

;Then _(p(xy ) = @(yx) and p(xy) = p(x) + a(x)g(y) for all x, y € G,. These two
fations imply” that g(x)(1 = a(y) = (N1 = a(x) for all x y € G,. It
0 ows that Gf = kera n Gg and that

¢(x)=(1—a(x))p forsomenon-zero p& bt.

,Iff /s another extension of g to ¢, f'= f+ p with p € b, then Gy = G if and only
K=p, ie., except for the extension fy:=f+p all other extensions f have the
Property that Gf'E G,. Moreover, if we put foi=fotp X, :=Gf. and
k@) = k(% € closure of %, and X_, respectively. rom the |
k(X,)N k(Z_) annihilates E and that k(%. ) are G-invariant ideals one

dedpces that k(X,) or k(X_) annihilates E. W.lo.g. we assume that kX, )
. Since B is maximal,  is not

Annihilates £, Then % is contained in X, =%, U 5
=%, PuM=GN

*Ontained in &, hence £ N %, + @ and, consequently, .
duct RX M. Again we will use

—

kera. G i isomorphic to a semidirect pro
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theorem 2 in order to show that there exist a simple L'(M)-module D and an
L'(G)-linear embedding from E into the induced module LR, D) = ind§, (D).
To this end, let % := k(S)/k(X), and let & := L'M)/(L'"(M)*k(X))". % is
contained in &, and E may be considered as a simple L'(R, .« )-module. The
unitary dual % of % is homeomorphic to (¥\&)/C = %, /C. In particular, it is a
transitive G-space. Also all the other assumptions of lemma 2 in [26] are satisfied,
and we obtain that there exist p,g € U with pg=gp = p+#0 such that the
“Fourier transform” of g has an arbitrary small support. Especially, we can
arrange that ¢* * % » g = 0 for all x = (z,m) € Z X M with z # 0. For those x we
also have ¢* * &/ * ¢ = 0. Now, we apply theorem 2 and argue as in the case (A).

Next we consider the case that dimC/8 =2. From G = G,N it follows that
(¢/b)* = b Cc* is an irreducible G -module because otherwise C wouldn’t be
minimal. b* can be identified with the space C of complex numbers such that
the action of G on b* can be written in the form xp= a(x)p where a is an
homomorphism from G into C*. Since G is exponential a is of the form

a(x) = e"*) where A\: G>R is an homomorphism, and where z is a complex
number with Rez # 0 # Im z.

We distinguish after the possible dimensions of N,/ N, where f is an extension
of g toc.

(2.2) dim Ng/Nf =2
Then i) = Nf and hence X = @ is an N-orbit, contradicting the maximality of B.
(2.1) dimNg/Nf=1

We show that this case is impossible. For x G, we put xf=f+ p(x) with
¢(x) € b*. Then ¢ satisfies the equation

P(xp) = @(x) + a(x)p(y).
Putting y = x ! this equation implies
O0=gq(x)+ a(x)p(x~") forall xe G, .
For x € G, y € N, we get

P(0x ™) = o(x(yx 7)) = p(x) + a(x)p(yx ")

= () + a(x)(e(y) + 9(x 1) = a(x)p(y).

Since N, is normal in G, the set ®(N,) is invariant under a(G,). On the other

hand, fp(.Ng) 15 an one-dimensional real subspace of b, contradicting the
irreducibility of b+,

(2.0) N.=N
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We distinguish between

(20.0) Gy=G,  for all extensions f of g
and
(20.1) there exists an extension f with G, C G,.

ad (2-0-0) This case is analogous to (1.0.0). Again every G-orbit in ¥ is an
]Y'O,rb”’ and 9/G=9/N is homeomorphic to b* and hence Hausdorff. A
Similar argument as in (1.0.0) shows that X has to be an N-orbit, in contradiction

to the maximality of B,

2d (20.1) Let f be any extension of g to ¢ with G, G G,. N, is normal in G,
and G / N, is abelian. Since G contains N;= N, also G is normal in G, and
Gy/ Gy is abelian. Again we write

xf=f+e(x) for x €G,,
and find that
P(x) = o(x) + a(x)p(y),

and
®(xy) = p(yx) forall x,y€ Gg.

There.f()re, ()1 = a(y)) = ()1 - a(x)) for all x,y€ G,. From the last
tquation one deduces that Gy =keran G,, and that

¢(x)=(1~a(x))p  for some non-zero p€b*.

_If fis another extension of g to ¢, f =f+dwithé € b, then Gf=j Gg if and only
8=, i.e., except for the extension fo:=f+ p all other extensions f have the
Property that Gfg G,, in which case G;=kera N G,. Put & = Gfy = Nf, and
M=lerq (= NG for all extensions f# f, of ). G is isom.orphic toa ser_mduect
Product R M. The closure of every G-orbit in J) contains &; 1n partl'cular'ai
‘ontains &, Since B is maximal, & is a proper subset of ¥; we choose a pox?t 7 in
*\&. Again we apply theorem 2. Let % := k(©)/k(9), and let &/ := LM )/
(LI(M )* k(?j))‘. % is contained in /%, and E may be considered as a simple
L'R,os )module. The unitary dual of % is homeomorphic to the space Qf
C-orbits n @ \@. This space is homogeneous for the action of the (real) algebraic
bull of the adjoint group Ad(G). Hence we may again apply lemma 2 of [2‘}51] to
th(_: algebra %, and we find p,q € U with pg = gp = p #0, even m(p) # OAXV :re
7 18 the above chosen element in Z\&, such that the “Fourier transfxorm d (.)._ g
has 5 small support. We choose the support of § so small that ¢ * U*q=

=q* ith z # 0 and argue as in the case

T * xq for all x=(z,m)EZX M with z

(1L0.1). Note that (p) # 0 implies that pE #0.
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§5. The parametrization theorem. Since the annihilators of simple L'(G)-
modules in L'(N) are now known we are going to classify all the simple
L'(G)-modules with a given annihilator in L'(N). The idea for doing this is quite
simple. One uses the existence of rank one operators in the image of L'-group
algebras under irreducible unitary representations y (which was proved in [26])
for suitable exponential groups and suitable y’s and applies first theorem 1 (iii) to
suitable quotients of L'-group algebras and then theorem 4. The rest consists of
straightforward calculations. Let’s first introduce and fix some notations.

Notations. Let G be an exponential Lie group with nilradical N. Let 7 be a
fixed irreducible unitary representation of N in the Hilbert space ®. Denote by K
the stabilizer of the unitary equivalence class of 7 in N. It is known that K is
connected and that K = G, N if g€ n* is a functional corresponding to 7. Then 7
admits a pro;ecuve extensnon 7 to K, and we may assume that the cocycle m,

corresponding to 7, is given by a skew symmetric bilinear form u on the vector
group K/N, ie.,

T(X)F(¥) = m(x, y)7 (xp),

and m(x, y)=e®" for x,y€ K, where x—>x denotes the canonical
homomorphism G- G/N. In the sequel, the kernel Z:= {x € K; m(x,K) =1}
of the bicharacter m will play an important role. To the quotient homomorphism
G- G/N we choose a continuous cross section s: G/N— G with s(0) = e and
s(=») = s(»)~". Moreover, we choose a vector space complement ¥ to K/N in
G/N,ie, G/N=V ®K/N, and put H := Ns(V). Next, we form the induced
representation y = ind{  in the space § = L2 (H, ®). v is irreducible because the
stabilizer in H of the class of 7 in N is equal to N. Moreover, y admits a
projective extension ¥ to G, given by

(Y(kR)E)(x) = 7 (Kk)E(h™ k™ 'xk)

for h,x € H and k € K. ¥ is an m-projective representation where, via the
isomorphism G/H = K/N, m is considered as cocycle on G.

The cross section s:G/N- G defines a cross section o:G/H->G by
combining the 1somorphlsm G/H=K/N with the restriction of s to K/N.
Using o the Banach space L'(G) can be identified with L'(G / H,L'(H)).In[14],

it was computed how the convolution and the involution in L'(G) are transferred
into L'(G/H,L'(H)): The group G acts on L' (H) by

a*(hy=A(x)"'a(xhx™")  for x€G,
a € L'(H), h € H, where A denotes the modular function of the action of G on

H (or on N), ie. d(xhx™")=A(x)"'dh. For x,y€ G/H the “multiplier”
: L\(H)> L'(H) is defined by

(Prya)(h) = a(o(y) 'o(x) 'a(x + y)h).
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Then the convolution and the involution in L(G /H,L'(H)) are given by

(f*e)(x) = fG /dePm,-y(f(x + ) Mg (~y)
and
) = f(=x)*.

Since the ideal ker y in L'(H) is invariant under the action of G we may form the
algebra L'(G/ H, L'(H)/kery) with induced action and multiplier. This algebra
is isomorphic to the quotient algebra L'(G)/(LY(G)+kery)™. Let g be an
element in L'(H )/kery such that y(g) is a projection of rank one in §, say
Y(@)={=,})\ (by the theorem in [26], such an g exists). As was shown in [26],
it is possible to “compute” the algebra q*L'(G/H,L\(H)/kery)* q. Here, I will
only describe the result:

(I) There exists a unique continuous function v:G—> L'(H)/kery with
V(X)) = =, \)F(x)"'A. o(x) is contained in g*+(L'(H)/kery)*q. The
function v . G >R, defined by w(x) = ||v(x)|, is constant on cosets modulo H
and defines a symmetric weight function on G/H. Then one may form the
?llgebra LG / H,m,W) as in §2. Here it is even an involutive Banach algebra, the
involution being given by g*(x) = g(— x). The map h— k', K'(x) := h(x)o(a(x)),
S an isometric s-isomorphism from L'(G/H,m,#%) onto the subalgebra
9*LYG/H,L\(H)/kery)* g of L'(G/H,L'(H)/kern).

In a similar way one may treat the algebra L'(K)/(L'(K)*ker 'r)'l. Using the
€10ss section s this algebra turns out to be isomorphic to L(K/N,LY(N)/ker).
Let p be an element in LY(N)/kerr such that 7(p) is a projection of rank one,

%8y 1(p) = { =, £)¢. Then one finds:

(2) There exists a unique continuous function u: K-> L'(N)/kerr with
Y(u(x)) = ¢ —,£7(x)"Y%. u(x) is contained in p**(L'(N)/kerr)*p. The
function w: x— R, defined by w(x) = [lu(x)|| is constant on cosets modulo N
and defines a symmetric weight function on K/N. Forn} the' algebnja
Liky N,m,w) as above. The map h— k', h'(x) = h(x)u(s(x)), is an isometric
*-isomorphism from LYK /N,m,w) onto p+ L'(K/N,L'(N)/kerr)# p.

Let E be g simple L'(G)-module with Anng (£ )= k(G7). Since llie_f Y
={L'(H)+ k(Gt)}~, E may be considered as an L'(H )/]kery—module. I claim
that gE + 0, To this end, let £, be the ideal of all f € L (H )lsuch that ¥( f)is
4N operator of finite rank, and let F be the closure of FoinL (H ). Since y @3(
'S unitarily equivalent to y for all unitary characters x of H/N the_ ideals £ Odaxl;
# are invariant under multiplications with x. It follows that J is generated by

anideal £ in LY(N), ie. J =(L(H)* g )" Since kery is strictly cont’a(iined
f k(Gr)= Ann,yy,(E) has to be strictly contained in J - Hence /} kc:e;
not annihilate £ from which one deduces that £oE #0. From ( #o/kery

*94(fo/kery) = £ /kery (compare [7)) it follows that gE 7 0.
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gE is a simple module over g * LY(G/H,L'(H)/kery)* g, and theorem 1 (iii)
shows that E is uniquely determined by this module gE.

qE may be considered as a simple L'(G/H,m,%)module via the isomorphism
in (1). By theorem 4, to this simple module there corresponds a character ¢ of the
kernel of m, ie., of ZH/H = Z / N, with || < W. Denote all these characters by
ZA";,. On the other hand, every n € ZA‘; gives rise to a simple module over
g* L\(G/H,L'(H)/kery)*q and then to a simple L'(G)-module E, with
Ann iy, (E,) = k(G7). Let’s summarize:

(3) There is a bijection between the set of isomorphism classes of simple
L'(G)-modules E with Ann,, y,(E) = k(Gr) and the set ZA‘; of characters n on
ZH/H = Z/N with |n| < . Moreover, there exists h € L'(G) such that AE is
one-dimensional.

The last assertion follows from the corresponding statement in theorem 4.
Similarly, one gets

(4) There is bijection between the set of isomorphism classes of simple
L'(K)-modules F with Ann L'wvy(F) =ker7 and the set 2w of characters x on
Z /N with |x] < w.

The following connection between the modules in (4) and certain LY(G)-
modules will be used in the proof of theorem 8.

(5) Let F be the simple L'(K)-module corresponding to x € 2w, and denote
by p the isometric action of K in F. Form the induced module ind$ F = L}(G,
F). Then g+ L'(HZ /H,L'(H)/kery) * q acts in ¢L%(G, F) by the character x if
q*L'(HZ/H,L'(H)/kery)*q is identified with L'(HZ/H,w)= L'(Z/N,%)
as above.

In order to prove (5) we need some preparations. First, we claim the following
formula which reflects the fact that F is the simple module corresponding to .

(6) p(2)p(u(2)) = x(z)p(p) for all z € Z.

Let h € L\(Z/N,w), and let h’ be the corresponding element in p* L'(Z/N,
L'(N)/kerr)# g, ie., k'(f) = h(t)u(s(r)). For all B € p(p)F, we get

Jo AROXOB= p(HYB= [ dh(ip(s(t)a(u(s(c))B

Since this equation holds true for all h € LYZ/N,w), one obtains x(#)B
= p(s(Np(u(s(1))B for all B € p(p)F and all t € Z/N, and hence x(£)o(p)
= p(s(N)p(u(s(1)) for all t € Z /N. From this equation one induces (6) by using
the fact that u(zn) = 8, \*u(z) (n € N, z € Z; §, -, denotes the Dirac measure at
n"") and, therefore, p(u(zn)) = p(n)™ ‘p(u(2)).

Next, let & be the span of {7(f)R; f € L'(N), 7(f) is of finite rank}. It is
kr:own that & is a simple L'(N)-module (see [7]), in fact it is the unique simple
L (N)module whose annihilator is kerr. Especially, we have §, = r(L'(N))¢;
recall Fhat T(p)={—,6¢& Using § one may introduce a norm on ®, by
llal| =.mf{)].f]}| :f € L\N), 7(f)t = a). Then f, becomes a Banach space and N
acts, via 7, isometrically on . Tt is easy to see that &, is invariant under 7(K).
In particular, one gets a representation 7’ of Z in Q. Foreveryz € Z,7(z)isa



IRREDUCIBLE REPRESENTATIONS OF L '-ALGEBRAS 1095

bounded operator on R, and 7’ is a strongly continuous representation of Z in
f;, but not necessarily uniformly bounded. In fact, it is not hard to see that the
weight w' on Z /N defined by w'(z) = ||7'(2)|| is equivalent to w. Let L} (H,R)
be the induced H-module, and denote by & the isometric representation of H in
Ly(H,8,). The representation e of Z in L3(H,®y) is defined by

(e(2)a)(x) = x(2)r'(x” 1.zx)oz(x) =x(z)r'(2)a(z” l)cz).

§ can be integrated to a representation of L'(H), also denoted by 8, and it may
be considered as a representation of L'(H)/kery. We claim that

(7) €(2)8(v(2)) = x(2)8(g) for all z € Z.

The injection of §, into ® induces an injection of Li(H,®,) into
9= Li(H,8). This injection intertwines 8 and y, and it intertwines e and
¥z ® x. Hence it suffices to show that §(2)x(z)y(v(2)) = x(2)y(g) for all z €

Z. But this equation is obvious.
(8) Denote by = the representation of G in the induced module Lg(G,F).

Then m(z)m(0(2)) = x(z)m(q) for all z € Z.
The space L2(G,F) may be identified with L2(H,F)=ind} F,y, and the
fepresentation T yz in this space is given by

(n(hya)(x) = «(h ™),
(7(2)a)(x) = p(x~'2x)a(x) = pl2)oc(z " ¥2)

forz € Z and h,x € H. Let 8 be a nonzero element in p(p)F. Then lwe defm_e
the operator § = S, from @ into F by S(r'(g)f) = p(g)B for g € L'(N). Tt 1s
€asy to see that § is a well-defined bounded operator. S induces a bounded
Operator W = W, from L%(H,®,) into Ly(H, F) by putting (Wa)(x) = S(a(x)).

S intertwines 7' ® x and Pz . 1
Letze Zand & € Ry. Put 8 =1 (g) = 1(g)s with g € L (N). Then

S((r®x)(2)%) = x(2)S(T'(2)7(8)¢)
= x(2)S(*()T (&))" (2}
= x()8(7 (g )7 ("))
because 7(z)¢ = r(u(z~ ")t It follows that S((~'® x)(2)3) = x(2)p( g )
Pu(z™"NB = x(2)o( g* p(z)x(z~ "ol p)B because of (6), hence
S((" ®x)()) =p(g” (D) F

But 0(2)59 = p(2)p( ) = p(2)p(g)oke) o) = plg" Jol2)6: Trom tzis(}'{m;f)
Wining property of § one deduces very easily that W: Ly(# ’;@0)—8’ '
Ntertwines ¢ and m,,. Moreover, it is obvious that F intertwines an o Zl:d
From these facts and (7) it follows that for z € Z the operators m(2)7(v(2
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x(z)7(q) coincide on the range of W = W;. But the union of the ranges of Wy,
B € p(p)F, is total in Ly (H, F), and (8) is proved.
Now, (5) is an easy consequence of (8), compare the computations in the proof

of (6). After these preparations it is not hard to prove the parametrization
theorem.

THEOREM 8. Let G be an exponential Lie group with nilradical N, and let r be
an irreducible unitary representation of N. For every simple L'(G)-module E with
Anngn\(E) = k(G7) there exists a unique simple L'(G,)-module F with
Ann,y,(F)=kerr such that E can be embedded into the induced module
ind§ F = L{ (G, F). For every simple L'(G,)-module F with Ann,y,(F) = kerr
the induced module Li (G,F) contains a unique simple L'(G)-module E with
Ann; v, (E) = k(G7). Hence there is a bijection between the set of isomorphism
classes of simple L'(G)-modules E with Ann, w{(E)=k(Gr) and the set of
isomorphism classes of simple L'(G,)-modules F with Ann,y,(F)=ker. The
latter set can be parametrized by the set of characters Z, on Z /N which depends,

of course, on 1. Moreover, for every simple L'(G)-module E there exists an
h € L'(G) such that hE is one-dimensional.

Proof. The existence of an L'(G,)-module F such that E can be embedded
into ind% F was already established in theorem 7. The uniqueness is an
immediate consequence of the following fact, which is easily deduced from (5):

(9) Suppose that the simple L'(G)-module E corresponds to 5 € ZA‘; in the

sense of (3) and that the simple L'(G,)-module F corresponds to x € Z,, in the
sense of (4). If E can be embedded into ind§ F then x = 1.

Now, let F be a simple L'(G,)-module with Ann, v, (F) = ker. Suppose that
F corresponds to x € Z,,. By (5), ¢* L'\(HZ/H,L'(H)/kery)* g = L'(Z/N,%)
acts in q(indg, F) by the character x. Since this is a bounded representation it
follows that |x(z)] < w(z) for all z€ Z, ie, x€E ZAW. Let E be the simple
L'(G)-module corresponding to y in the sense of (3). By theorem 7, there exists a
simple L'(G,)-module F’ such that £ can be embedded into ind% F’. From (9) it
follows that F” is 1somorphic to F, hence ind F contains the sirhple module E.
The uniqueness of E is also an immediate consequence of (9).

The last statements of the theorem were already established in (4) and (3).

Let’s summarize the results of §4 and §5. Let G be an exponential Lie group
with nilradical N. The canonical map from the set /= ./(L'(G)) of
isomorphism classes of simple L'(G)-modules onto the set Priv(L'(G)) of
Prin}itive ideals is a bijection. To every E € .7 there is associated an G-orbit Gr
in N such that Ann yy(E) = k(Gr). This defines a surjection # - N/G. The
flbers of this map can be described as follows. To an G-orbit © = Gr in N there
15 associated a connected subgroup Z=Z., NC Z C G, C G, and a weight
w:Z/N-R such that the fiber over © is in bijective correspondence with the
set Z, of continuous characters x:Z/N->C* which are dominated by w.
Moreover, this correspondence is an homeomorphism if # carries the Fell
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topelogy and Zw is equipped with the compact open topology. To complete the
description of .#* one has to know the group Z o and the weight w = w. The first
problem was already solved by Dulfo, see [8]. Suppose that © corresponds in the
Kirillov picture to the orbit Gg in n*. If f is any extension of g to g then
Zy= GN. The second problem will be treated in §6. We will prove an estimate
for the weight w which allows to determine all the continuous characters
dominated by w, ie., the set ZAW.

§6. Estimate of the weight w. First, we recall some notations and introduce
Some new ones. G is an exponential Lie group with nilradical N, g and n are their
Lie algebras. f is a real linear functional on g, g:= fln € n*. 7 is the irreducible
representation corresponding to g, realized in the Hilbert space ®. p is a
Projection of rank one in L(N)/kerr, r(p) =< ,£¢. 7 admits an extension 7 to
Z= GfN, and there exists a unique continuous function u: Z - LY(N )/kerr
,With T(u(x)) = ,F(x)7'¢ w:Z->R is defined by w(x)=|[u(x)|. w is
independent of the choice of 7 because different extensions differ only by a
unitary character of Z /N. And w is essentially independent of the choice of p:
different p’s give equivalent weights. Let ¥ be an irreducible finite dimensional
real G-module; of course, V is one or two dimensional. If the Gf-action is given
by the homomorphism 7:G;— Au(V) we define ch,: G,~>R by chy(x)=
(detm(x) + detz(x)~")!/2 if ¥ is one-dimensional, and by ch,(x) = detn(x)'"/
,+ de”’(x)— /2 if ¥ is two-dimensional. Note that if ¥ is two-dimensional and H
'S a subgroup of G, such that ¥ decomposes into two one-dimensiqnal
H-submodules V, and ¥, then chyy = chy chy . Now let p be an G-invariant
Polarization at the point g. Since G is exponential such a polarization exists, see
_[ 1] Next we choose a Jordan—Hoélder composition series for the Gf-module n/ p,
e, Vo=n> ViDV,D ... DV, =p,the Vs are Gf-invariant, and V;_,/V;is
an irreducible Grmodule. Then we define p: G~>R by p=1Ili~ chy_ -

f course, y is independent of the choice of the Jordan-Holder seres.

But it is also independent of the choice of the polarization for the following
Teason:
If V* denotes the orthogonal space to ¥; with respect to the skew symmetric
form associated with g ie, V= (X €n g(X, Vi) =0} then ¥V, O ¥, 2 -~
SV, =p= Viovi o.--.ovtD Vo = n, is a Jordan-Holder series tfor
the G-module n/n,. Since there is an G;-invariant nondegenerate dua2hty
between ;_ /Viand VX /L, it follows that ch,,_ = chy.y. . Hence p”=
H?';lchwf_l sw, for any Jordan-Holder series Wy=n2 W, D -+ D Wy, =1,
of the G-module n/ M.

THEOREM 9. For a continuous complex character 7 of Z/N=GN/N

=G;/G:N N into C* the inequality |n| < w is equivalent fo | < Note t]lz,at pis
constant on cosets modulo G; N N and may be viewed as a function on Z/N.

Remark. By taking logarithms, the condition |n| < p can be linearized. In
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fact, |q| < p is equivalent to
n
log |n(x)] < —é— 21 llogdet, _,, Ad(x)|  forall x€ G;.

And the latter inequality is equivalent to the existence of real numbers ¢, . . ., ¢,
with —1<¢; <1 and

log|n| = —é— > c;logdet,, ,, Ad.
i=1

The latter equivalence is a consequence of the following well-known general fact:

Let B,qa,, . . ., a, be linear functionals on a finite dimensional real vector space.

Then 8 < 3_,|a,] iff there exist real numbers ¢y, . . ., ¢, with —1 < ¢; < 1 and
n

B=2i-1c0;.

Proof. Let’s first assume that |g| <w. We are going to show that
[n(exp(tX))| < p(exp(tX)) for X € g, and r €R. Let D =ad (X):n—>n be the
associated derivation on n. We will reduce the problem to the case that D is
semisimple where one can do explicit calculations. To this end, let D = D, + D,
be the additive Jordan decomposition of D, where D, is the semisimple part, and
let exp(tD,) and exp(¢D,) be the automorphisms of N such that the diagrams

Exp(tD,) Exp(tD,)
n———mm1u n——n
ex and
P exp(1D,) exXp xp exp(tD,) exp
N————N N 5N

commute. Then exp(1D,)exp(¢D,) = exp(tD,)exp(tD,) is equal to the inner
automorphism corresponding to exp(:X). Moreover, we fix an g f-invariant
polarization b of n at g. Then p is invariant under D, and under Exp(:D,), and
u(exp(£X)) = p(Exp(1D,)). We realize the representation 7 in @ = L2(N,C) with

P = exp(p). The one-parameter groups of unitary operators, corresponding to D,
and D_, are defined by

(7.(D®)(x) = p(exp(— D, )(x))
and
(r(N@)x) = 8(1) " Sp(exp(— 1D, )(x))

where §(1) is }he determinant of Exp(1D,) on n /. From the irreducibility of r it
follows that 7(exp(X)) and 7,()7,(1) = 7,(¢)r,(#) differ only by a unitary char-

acter x: 7(exp(¢X)) = x(1)7,(N7,(1). Next, we choose elements b..c. € LY(N)/
kerr with ©

T(bl) = < ‘-€>Tg(r)_‘£
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and
7(¢) ==, E7,() 7'

It is easy to see that X(#)u(exp(1X)) = b ">l Recall that for f € LY(N) the
function f*P("2) is defined by f*PUP)(x) = f(exp(tD,)(x)); and this induces an
isometric action on L'(N)/kerr. Tt follows that [n(exp(tX))] < w(exp(tX))
= llu(exp(eX )| < ol llc,]l- In the last step, we will prove that there is a
constant B with ||b,|| < Bu(Exp(1D,)) = Bu(exp(tX)). In the moment, we take
this inequality for granted and show how the first part of the theorem follows.
can be written in the form

k m
w(exp(eX)) = T] (e% + e~ %) [ Ve + e ¢
j=1

j=1

with real numbers A, .o o, By, ..o, B, Suppose that [n(exp(:X))| = e, The
desired inequality is equivalent to

j=1

k m
ol < X Jal + 3 11
j=
Assume to the contrary that
k m
A:i=|a - 2 ,aj,— 2 "81">0'
j=1 J=1

From e < By (exp(1X))| ¢, if follows that €~ <[] for all A with —A <A
SA Let L'R,LYN )/ker) be the generalized L'-algebra for the action of R on
L'(N )/ker T which is given by the one-parameter automorphism. group exp( tD,),
S¢¢ above. Then L'(R,L'(N)/kerf) is symmetric because it is a lquotxc‘znt of
L'Rx Nyand Rix & s nilpotent, see [22). On the other hand, p = L'(R, L'(N)/
kerr)s p i isomorphic to L'(R,v) where the weight v is given by o(1) = [l ].

This algebra has non-hermitian multiplicative linear functionals (given. by
characters ™, 0 <A < A), and is, therefore, not symmetric. So, we have obtained

4 contradiction.

It remains to estimate |6, We do this for a particularly chosen rgnk one
Projection p in L'(N) /kerr which is essentially given by the GauB3 function. We
Start with a simple lemma, compare [1] for similar statements.

Lemma 1, Let 1t be a nilpotent Lie algebra, let N be f‘he 'correspondmg szmpl.y
connected Lie group, and let D :n—>n be a semisimple derivation. Suppose tZat b is
. D-invarigny subalgebra of n. Then there exist D-irreducible su ;pac;’s
.., Dy Of nwithn=0p,&--- ®v, Bb such that.!he map (X;_, cee Z"m)
TexpX - -exp X, exp Y from v, @ - - - ® v, B into N is a diffeomorphism.

I i izer of b in n. ¢ is
Proof (by induction on dimn/3). Let ¢ be the normalizer of b in 1.
D-stable, ang from Engel’s theorem it follows that b is strictly contained in c.
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Then choose a minimal nonzero D-invariant central ideal /b in ¢/b. w can be
decomposed into v =p_@ h with an D-invariant subspace v,,. It is easy to see
that the map (X,Y)—>exp(X)exp(Y) from v, @Y into expw is a diffeo-
morphism. Then use the induction hypothesis for the algebra .

Of course, we apply lemma 1 to h=p and the derivation D, and get
n=p® .- Bp,®p with the properties listed above. Then we identify
f = L2(N) with LX(b), o:=b,® - - - ®,,, via the map ¢— ¢’ from L*(v) in &
given by

@'(expX,: ... expXexp¥)=e B Vp(X, + - +X,,)

for X, €v,, Y €p. Next we fix identifications of b; with R or C, respectively,
such that D acts by multlphcanon with a real or complex number, and define
£€ L¥v) by 4X, + -+ + X,)= e %I, By a theorem of Howe, [11], there
exists p € L'(N )/ker'r with 7(p) = {-,§ >£ As one will see soon, it is useful
to know the matrix coefficients (7 ()§,§) = (a(1)§, &) if o denotes the repre-
sentation on L*(b) corresponding to 7,. From the definition of 7, and the identifi-
cation g ~> ¢ one deduces very easily that (s(De) X, + - - - + X,)=8(r)""/*

o[Exp(—tD )X, + - - - + X,))]. Recall that §(¢) is the determinant of Exp(tD)
on n/p = v. Hence

(r(),€) =(a(1)§.&
=5(1)-'/2J;g(2 Exp(— tD,) ) (zx)dx, ...dX,

/=1

m
- 6(1)"/2 H]Le"xlz"E"p‘“'D‘)Xlde.

The integrals can easily be computed, and one finds that {7,(1)¢,¢) =
p(Exp(tD,))~'B, with some positive constant B,. Recall that we have to estimate
b where b € L'(N)/kert is now given by 7(b) =< —,&)r,(1)"'¢. Corre-

sponding to the one-parameter group exp(tD,) of automorphisms we define an
isometric action R X L'(N)- LY(N) by

f1(x) = detExp(1D,) f(exp(1D, )(x)).
One ea31ly checks that 7(f)) = 1.(= 1)7(f)7,(r). This action induces an action

on L'(N)/kert, also denoted by (t, ay—>a'”. A straightforward calculation
shows that b, = (r,(N€,£)~'p'" * p. Hence

1B/l = By 'w(Exp(1D,))]| p* * p|

< p(Exp(tD,))By || p|%.

This finishes the proof of one part of the theorem.
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For the other part we first state a proposition, then we show how the theorem
follows, and finally we prove the proposition. Moreover, the proof of the
proposition contains some information about realizations of simple modules as
spaces of functions.

PROPOSITION.  Let H be an exponential Lie group with Lie algebra 9. Let m be
a nilpotent ideal in b with [b,b]Cm, let h € b* and g:= R Suppose that
by+m=1Y. Let v be the unitary representation of M = expm corresponding to g.
Let 7 be realized in the Hilbert space R, and let 8, C R be the corresponding simple
L\(M)-module. Let p: H/ M- R be constructed to m/m, as above, and let 7 be a
complex character of H/ M with |n| € . Then there exists an extension 7 of T (o
H 6 a Strongly continuous representation = of H by isometries in a Banach space E,
and a non-zero bounded operator T:Ry—> E with 4(x)T7(x)g, = 7(x)T for all
X € H. Moreover, the subspace n(L'(H))T®, of E is a simple LY(H)-module.

_ Of course, we apply the proposition toh =g, +n, m=n and h = f,. Note that
I general by, will be strictly bigger than g /- But since they differ onl.y by elements
In the nilradical, considering 1/ n, as an H,- or as an Gf-module yle-lds the same
“w-function” on B /N.Letq, 1,7, E, 7 and T be as in the proposition. Suppose
that u(x) (and then w) is constructed with respect to 7, i.e. 7(p)=<{—,£%
")) =~ &7(x)"'¢, w(x)=|u(x)| where p,u(x)€ L'(N)/kerr. De-
note by r': H - Aut(®,) the restriction of 7 to ®; 7y is an isometric
representation. It is obvious that 7'(x)r'(u(x)) = 7'(p) for all x € H. If we apply
T to M(xX)7'(p) = n(x)r'(x)r'(u(x)) we obtain n(x)Tr'(p)= 7 (x)Tr'(u(x)).
Taking the operator norms yields |n(x)| || Tr(p)) < | T 7' ()] < [ T]w(x)
and hence |5(x)| < Cw(x) with a positive constant C. But then |n(x)| < w(x) as

¢an be seen by taking powers of x.

Proof of the Proposition. The proposition is proved l?y indllmtion. on the
dimension of §. Let m be the center of m. wNkerh is an 1d.eal in b. If
N kerh #0 the proposition follows from the inductiOI_l h)’POt}}eﬂS apphed to
the algebra b/mw N kerh. Hence we may assume that I is one dimensional and
h(rv) # 0, Since h([b,,w]) = 0 it follows that /v is central‘m b. Leta/lv C m/mw b'e
8 minimal nonzero ideal in §/m. The dimension of a is two or three, and a is
abelian (this follows from the fact that b is exponential). ,

Let m' be the centralizer of a in m, let if = b, +m', A = hy, and g’ = g, We
collect some simple well-known facts:

(1) by N'm Cm,

QD m=mny,y /m’ is commutative,

() m, cmy, Cm,

@ m, =m),=m, +qanm=m,

g) dimm/m’ =dim mé,/mg = dima/m,

) by =5, +a , . P

() If p is han bj~invariant polarization at g’ € (m)* then lp 18 a:eSZ’;l :;2232;
Polarization at g € m*. In particular, if o 1thhe irreducible rep
M = expm’ corresponding to g’ then 7 = ind;. .
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The homogeneous space X = H/H', H' = exply, can be identified with the
(one- or two-dimensional) vector group M/M’ via the map M 3 x—>xH".
Denote by » the measure on X obtained from the Lebesgue measure on M /M.
Of course, » is invariant under translations by elements in M. But translations by

elements @ € H' correspond to conjugation on M /M’. Hence we find that » is
quasi-invariant, namely

dv(ax)=detAd, (a)dr(x) for a€H, x€X

Let § = detAdm fur If i is the “p-function” on H'/M’ = H/M corresponding
to m'/ m, then it follows easily from the definition of p (and from (7)) that
p= “Chm/m’ LE,

,u=p,’(81/2+ 87 or p=pys+87".

Now we decompose the given character 4, 7 =17'n", such that |n/| < p
In"| < 82+ 8 /2 and #” = 1 on kerd (this is possible by the remark after the
theorem). Denote by © the representation space of 0. We apply the induction
hypothesis to §,4’,m’,n’ and find an extension 6 of ¢ to H’, a strongly
continuous isometric representation 7' of H' in E’, and a nonzero bounded
operator T': §,—> E’ with 9'(a)T'o’(a) = 7'(a)T for a € H' where ¢’, of course,
denotes the restriction of & to §,, the simple L'(M’)-module contained in .

The induced representation 7 = ind}f. 6 in ® = L2, (M, $) can be extended to a
representation 7 of H by the formula

[7(&y\](x) = 8(a)"*G(a)(y "'a ™ 'xa)

foraeH',x,y€EMand AEQ.

Starting from £’ we will construct for complex numbers z, —1 < Rez < I, a
family of isometric strongly continuous representations =, of H in Banach spaces
E, like in [24] or [27]. Let E, be the space of all continuous functions ¢ : H—> E’

such that p(ah) = 8(h)‘/""+‘ '(h) " 'p(a) fora € H and h € H' and such that
has a compact support modulo H’. Define a norm on E, by

el =[L|lq>(a)|l"8(a)“dv(a) Ve

where gRez =2~ ganda=aH’ € X. H acts in E, by (ag)(x) = p(a”~'»); and
this action extends to an isometric strongly continuous representation «, in the
completion E, of E.. In the case Rez = ~ | which corresponds to g = oo the
norm || ||, must be modified to |||, = |||, = sup, < ,lp(a)|; then E, consists
of continuous functions vanishing at infinity modulo H'.

Next. we define embeddings T,: 8, E, by

(TA)(xh) = 8(h)" 2" x'(hy " [ T'A(x)
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for A€ERy, x €M, h € H'. Of course, this definition has to be justified, in
particular one has to show that A(x) € §,. To this end, let € be the space of all
continuous functions ¥ from M into the Banach space §, with the properties:

(1) ¥(xy) = U'(y)'l‘l’(x) forye M, xe M.

(if) The function M/M' R, defined by x — || ¥(x)|s,, vanishes at infinity.
Then ||¥|, is defined by |¥|,= sup, e ul[¥(x)lls,- Similarly, we form the
spaces Lyj(M,9,) for 1< g< o, and put # =4 N Ly,{M,9,) = n,cn
L§(M,9,). # may be considered as a subspace of & ./ is invariant under
L'(M), and since 8, is the smallest L'(M )-invariant subspace of ® one finds that
& is contained in /. Moreover, all the embeddings from the Banach space &,
nto ¢ and into LY (M,&,) are bounded.

Let's return to the operator T,. Since A(x) is contained in §, for A € &; and
X €M one may apply T’ to A(x). Next we show that T,A is a well defined
function on H, ie., if xh=yk with x, y€M and hk € H’ then (T A)xh)
= (T,\)(yk). The assertion is equivalent to 7'(h)™'T"A(x) = 7'(k) " 'T'A(y) or to
T(kh™)T'Nx) = T'N(p). But kh™'=y~'x € H'N M= M, hence '(kh”")
T'Mx) = 7'(y ') T'A(x) = T'o’'(y ™ "0OAx) = TA(xx " y) = T'A(p). It is obvi-
ous that T,A has the correct transformation property for right translations with
elements in H'. It remains to show that T, has the right integrability propert.y
(We do this only for Rez % —1, the case Rez = ~1 is similar) and that 7, is
bounded. Let gRez =2 - g. Then

(T A)(xh) |98 (xh) ™= 8(k)~§(hy? 2R DI TA(x)||7
= | TACT < [ T IFAx)IE, -

Hence
ITAlL <171 fM/M,nA(x)nggod)e}”% 171, A,

with 2 positive constant Cq, because &, is continuously embedded into

Lgl '(M, @0)
i oti on 7 of H
Denote again by 7’ the restriction to &, of the extended representation 7 0

in Q. A straightforward computation (using the explicit fqrmgla for 7) shows
that Y(@)T,7(a) = 7,(a)T, for all a € H where y =1y, is given by y(a)=
(@)8(a)~**. For a suitably chosen z one gets 7" =87 2" and n=y,. The
Proposition is proved.

Remark. The (proof of the) proposition contains some iqsight how‘ Fhe simple
modules can be realized as subspaces of spaces of functions 'If the stablhzgr of t.he
functional in question is big enough, i.e, =15, + m. In t!ns rgmark I wﬂlbpomt
out how the general case can be reduced to such a situation. Let g betz}ilx;
exponential Lie algebra with nilradical n, let f €¢% g = fins ?nd_ let h‘? o
skew-symmetric form on g associated with f. g, + n/g,+n is isomorphic
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h=g, /@ g0 (g, + ), and B induces on y a nondegenerate form because g, is the
orthogonal space to g, + n. Let ¢ /4, N (g; + n) be a maximal isotropic subspace
of p or, equivalently, ¢ is maximal with respect to ¢Cg, N ¢t. Then put
h=c+mn, and h=f,.bhas the property that j = b, + b, in fact ¢ is contained in
b,. Obviously, dim(g, +n)/b=dimh/(g,+1h). Now, let F be a simple
L'(H)-module with Ann,.,(F)=kerr, 7 as usual. Then the induced module
ind$ F = L}(G, F) contains a unique simple L'(G)-module E with Ann,: y,(E)
= k(Gr). In this way, all such simple L'(G)-modules are obtained. But this is not
a parametrization: different F’s may yield isomorphic E’s. More precisely, if E
and E’ are obtained from F and F’, respectively, then E is isomorphic to E” iff
AnnL‘(GjN)(F) = Anng g n(F).

Next, I will discuss the relations of the results on simple modules to questions
of the symmetry or *-regularity of L'-group algebras. Recall that an involutive
Banach algebra &/ is *-regular if the canonical map from the space Priv(C*(#))
of primitive ideals in the enveloping C*-algebra onto the space Priv,(#') of
kernels of irreducible involutive representations of &/ is an homeomorphism
where both spaces are equipped with the Jacobson topology. *-regular L'-group
algebras were investigated by Boidol in several papers. Finally, in [4], he found a
characterization of those connected Lie groups which have a *-regular L'-group
algebra. In the case of an exponential Lie group G, Boidol proved in [3] that

L'(G) is *-regular if and only if every real linear functional f on the Lie algebra g
of G satisfies the equivalent conditions of the following lemma.

LemMa 2. Let g be a solvable Lie algebra, and let m be a nilpotent ideal in g
with [, 0] C m. Let f € g* and g = f,... Let v be the smallest ideal in g; + w such
that g, + m /o is nilpotent, let b be the largest ideal in g with f(6) =0 and let a be
the largest ideal in m with f(a) = 0. Then are equivalent

(i) f(w)=0.

(ii) g, acts nilpotently on g/b.

(iii) g, acts nilpotently on m/a (note that the maximality of a implies that a i
invariant under g;).

(iv) g acts nilpotently on m/m,.

Remark. (i) shows that the conditions are independent of the choice of m.
(iv) establishes the relation to the p-function.

Proof. (iii)=(i) From (i) it follows that (g s+ m)/a is nilpotent. Hence m is
contained in a and f(w) C f(a) = 0,

(=) It suffices to show that g acts nilpotently on m+b/b=m/mNb.
Since w is an ideal in g it follows from (i) that w is contained in b. Therefore,

m/m N b is a quotient of m/m N 1v, and g, acts nilpotently on the latter space by
construction.

 (i)=>(iii) ¢ acts nilpotently on m+b/b = m/b N m, and b N m is contained
in a.

(11)=>(iv) a 1s contained in m_.
(tv)=(iii) Let X € ¢, and put D = ad, X:m—m. Let b=, _,D"(m) or,
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equivalently, b = D (m) if D, is the semisimple part in the additive Jordan
decomposition of D. One verifies easily that D +[d,d] is an ideal in m. From
X €g, it follows that f(®) =0. The assumption (iv) implies that d C m, and
consequently f([b, b]) = 0. Hence b + [b,b] is contained in a. In particular, b is
contained in a which means that X acts nilpotently on m /a.

It turns out that for exponential Lie groups symmetry and *-regularity of the
L'-group algebras are equivalent.

THEOREM 10.  For an exponential Lie group G there are equivalent:

) LY(G) is symmetric.

(R) LY(G) is *-regular.

(F) Every real functional fon the Lie algebra ¢ of G satisfies the equivalent
conditions (i)~(iv) of lemma 2.

Proof.  As mentioned above, the equivalence of (R) and (F) was proved by
Boidol. By the way, (R)=> (F) or better: non(F) = non(R), follows easily from the
results of this paper. The implication (F)=>(R) requires some additional work.

(8)=(F). This implication was already proved in [26] using the results of [24].
Actually, suppose that g does not satisfy (F). Then there exists a functional f on g
such that the p-function for n/ n, is not constant where n is the nilradical of g
and g = Jin- Consequently, there exist non-trivial real characters n with 7 < p.
These characters give rise to simple L'(G)-modules which cannot be embedded
nto Hilbert representations, even their annihilators are not involutive ideals.

(F)=(8). (F) implies that for every f € g* the set Z, = (G,N),; consists only
of unitary characters because the p-function is always constant. But this means
that every simple L'(G)-module can be embedded into a Hilbert module. Hence

LYG) is symmetric.

Let’s conclude the paper with three open problems. |
(A) Describe the Fell topology on Priv(L'(G)) for exponential Lle' grou;?s G.
Note that under the assumptions of Theorem 10, Priv(LY(G)) = Priv,(L'(G))
= Priv C*(G). And all these spaces are homeomorphic, equipped W.ith the Fell or
with the Jacobson topology. Moreover, in this case Priv(C*( G)). is homeomor-
phic to the orbit space g*/G, see [3]. This problem involves', in general, the
determination of the space Priv(C*(G)) for arbitrary exponential Lie groups G
which is not yet solved. It is conjectured that Priv(C*(G)) is homeomorphic to
the orbit space g*/G. ' ,
(B) Is Priv,(LY(G)) contained in Priv(L'(G)) for all connected Lie groups G’
(C) Describe Priv(L'(G)) for general solvable Lie groups G. A possxb]el way to
attack this problem is to solve first problem 2 in §3 on the or'blts of tor1 in the
unitary dual of nilpotent Lie groups. Between writing this paper and its

acceptance problem 2 was solved to the affirmative.

REFERENCES

solubles, Paris, Dunod, 1972.

P. Be ~~ ; ons des groupes de Lie re
I, B ot il Representations das g7 4P Jgebren, Math. Ann. 236 (1978), 113

- BomoL et alii, Raume primitiver ldeale vont Gruppena



1106 DETLEV POGUNTKE

'().)

J. BowboL, *-regularity of exponential Lie groups, Invent. Math. 56 (1980), 231-238.
, Connected groups with polynomially induced dual, J. Reine Angew. Math. 331 (1982),
32-46.
5. F. F. BONSALL AND 1. DUNCAN, Complete normed algebras, Ergebnisse der Mathematik 80. Berlin,
Heidelberg, New York: Springer 1973. )
1. BRowN, Dual topology of a nilpotent group, Ann. sci. Ecole Norm. Sup 6 (1973), 407-411.
J. DIXMIER, Operateurs de rang fini dans les representations unitaires, Publ. math. Inst. Hautes
Etudes Sci. 6 (1960), 305-317.
8. M. DUFLO, Sur les extensions des representations irreductibles des groupes de Lie nilpotents, Ann.
sci. Ecole Norm. Sup. § (1972), 71-120.
9. J. M. G. FeLL, The dual spaces of Banach algebras, Trans. Amer. Math. Soc. 114 (1965),
227-250.
, Non-unitary dual spaces of groups, Acta Math. 114 (1965), 267-310.
R. E. HowE, On a connection between nilpotent groups and oscillatory integrals associated 10
singularities, Pacific J. Math. 73 (1977), 329-363.

12, N. JacossoN, Structure of Rings, third edition, Amer. Math. Soc. Coll. Publ. 37, Providence,
1968.

=~

10.
1.

13. W. KirscH AND D. MULLER, On the synthesis problem for oribits of Lie groups in R", Ark Mat. 18
(1980), 145-155.

14. M. LEINERT, Beitrag zur Theorie der verallgemeinerten L'-Algebren, Arch. Math. 21 (1970),
594-600.

15, H. LepTiN, Verallgemeinerte L'-Algebren und projektive Darstellungen lokalkompakter Gruppen,
Invent. Math. 3 (1967), 257-281; 4 (1967), 68-86.

16. , Ideal theory in group algebras of locally compact groups, Invent. Math. 31 (1976),
259-278.

17. H. LepmiN AND D. POGUNTKE, Symmetry and nonsymmetry for locally compact groups, J.
Functional Analysis 33 (1979), 119-134.

18. J. Luowic, Polynomial growth and ideals in group algebras, Manuscripta Math. 30 (1980),
215-221.

19. , On points in the dual of a nilpotent Lie group, submitted to Ark. Mat.

20. , On primary ideals in the group algebra of a nilpotent Lie group, to appear in Math. Ann.

21. M. A. NAMARK, Normed Algebras, third edition. Groningen: Wolters and Noordhoff, 1972.

22.  D. POGUNTKE, Nilpotente Liesche Gruppen haben symmetrische Gruppenalgebren, Math. Ann. 227
(1977), 51-59.

23. . Symmeiry (or simple modules) of some Banach algebras, pp. 177-193 in: Harmonic
Analysis Iraklion 1978. Lecture Notes in Mathematics 781. Berlin, Heidetberg, New York:
Springer 1980.

24, » Symmetry and nonsymmetry for a class of exponential Lie groups, J. Reine Angew.
Math. 315 (1980), 127-138.

25. + Einfache Moduln uber gewissen Banachschen Algebren: ein Imprimitivitatssatz, Math.
Ann. 259 (1982), 245-258.

26. » Operators of finite rank in unitary representations of exponential Lie groups, Math. Ann.
259 (1982), 371-383.

27. . Kunze- Stein phenomenon and L’-estimates of matrix coefficients for a certain solvable
Lie group, to appear in the Proceedings of the OAGR conference in Neptun (Roumania)
1980, Pitman Publ.: London.

28

C. E. RICKART, General Theory of Banach Algebras, New York: van Nostrand, 1960.

DEPARTMENT OF MATHEMATICS, UNIVERSITAT BieLEFELD, PosTracH 8640, 4800 BIELEFELD, WEST
GFRMANY



	Seite 1 
	Seite 2 
	Seite 3 
	Seite 4 
	Seite 5 
	Seite 6 
	Seite 7 
	Seite 8 
	Seite 9 
	Seite 10 
	Seite 11 
	Seite 12 
	Seite 13 
	Seite 14 
	Seite 15 
	Seite 16 
	Seite 17 
	Seite 18 
	Seite 19 
	Seite 20 
	Seite 21 
	Seite 22 
	Seite 23 
	Seite 24 
	Seite 25 
	Seite 26 
	Seite 27 
	Seite 28 
	Seite 29 
	Seite 30 

