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INTRODUCTION

This article gives a survey of the basic facts on the structure and prop-
erties of dense Lie group homomorphisms, i.e.. continuous (analytic)ho-
momorphisms ¢: H — G between connected Lie groups such that the
image ¢(H) is dense in G. The dense embeddings, i.e., injective continu-
ous homomorphisms, from vector spaces into tori are widely known.
Everybody ‘‘feels'" that in some sense this should be the only possible
case. One goal of the present paper is to make this philosophy as precise
as possible. A considerable amount of information concerning this theme
has accumulated during the past 40 or 50 years; it is scattered in the
literature, and we supply a selection of references. However, the material
is only partly covered by the standard textbooks. In particular, the role of
maximal tori, especially the fact that the corresponding homogeneous
spaces are simply connected, has not been sufficiently exploited.

The treatment presented here is conceived as a closed unit which
should be intelligible on the basis of fundamental Lie group theory alone,
such as can, for instance, be found in Hochschild’s book [13], to which we
shall refer freely.

Our organization and analysis of the available relevant literature leads
to some new insights, primarily the description of all dense embeddings of
a given Lie group into other Lie groups, which was formulated as a
problem by Goto (see [10]).

The first section of this article contains the basic general properties of

dense Lie group homomorphisms. It also includes some immediate conse-
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quences of the considerations, like the Malcev criterion for a Lie sub-
group to be closed.

In the second section we describe all dense embeddings of a given
connected Lie group H into other Lie groups. Actually, this classification
is reduced to an abelian Lie group extension problem. The main goal is to
clarify the phenomena of dense embeddings and to deepen our under-
standing of them. Each of the first two sections contains a main theorem,
namely, 1.6 in the first and 2.5 in the second. The latter one is the basis for
the solution of Goto’s problem.

The first two sections are independent of the Levi decomposition. In
other words, they do not consider the question how the semisimple part
and the radical of the *‘smaller’’ group H contribute to the “‘completion”’
G. This question is studied in the short third section. In addition, some
examples are treated.

As compact subgroups of connected Lie groups will be important in the
sequel we recall some of the basic facts. Their importance for the study of
closures of subgroups was already observed by Malcev, [14-17], who
formulated the main properties of maximal compact subgroups in full
generality. Each connected Lie group G contains three distinguished con-
Jugacy classes of compact subgroups, namely:

(A) the maximal compact subgroups which are automatically con-
nected;

(B) the connected centers of maximal compact subgroups:

(C) the maximal compact connected abelian subgroups, the maxi-
mal tori.

Each of the three classes is preserved by quotient homomorphisms G —
G/N with (almost) connected kernels N. In case (A) this is more or less
explicitly stated in Thm. 3.7 of Chap. XV in [13]. For the other classes it
follows from the structure theory of compact Lie groups and from the
theory of maximal tori in compact connected Lie groups (see [13]).

Each of the three classes could serve as a base to study dense Lie group
homomorphisms. Class (C) has the most advantages for our purposes. If T
is a maximal torus then the homogeneous space G/T is simply connected
(see exercise | at the end of Chap. XV in [13]) while for members S of
clgss (B) the homogeneous space G/S has a finite fundamental group, non-
trivial in general: see the proof of [.5 below. Moreover, maximal tori are
maximal in the set of all compact abelian subgroups of G. By the way.
there exist finite abelian subgroups in compact connected Lie groups
which are maximal in the set of all abelian subgroups.

Throughout the paper 1 will use the common convention that a small
German letter denotes the Lie algebra of a Lie group named by the corre-
sponding Latin capital. The commutator subgroup of a group is marked as
G, the derived subalgebra of a Lije algebra as q’. The adjoint representa-
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tion of a Lie algebra is denoted by ad, the adjoint representation of a Lie
group by Ad. If several groups are around occasionally a subscript at Ad
is added. The closure of a subset of a topological space is marked by a bar.
For instance, Ad;(I/)~ means the closure in Aut (g) of the image of the
subset U in the Lie group G.

1. Basic Facts oN DENSE Li1E GRour HOMOMORPHISMS

The following little lemma will be useful at several places of this article.

1.1. LEMMA. Let H and G be locally compact groups and assume that
H is a countable union of compact subsets. Let o: H— G be a continuous
homomorphism with dense image. If T is a closed subgroup of G such
that G = o(H)T and if V is a closed subgroup of G containing T then the
following conclusions hold.

() The induced map ¢~'(V)lo (T)— VIT is a homeomorphism.
(i) @l (V) = V.
Proof. (i) follows from a usual Baire category argument, one may

apply, for instance, Thm. 2.5 on p. 7 in [13]: V/T is a homogeneous space

for the acting group ¢~ (V).
(i) Clearly, W := ¢(p~!(V))™ is contained in V. There is a commu-

tative diagram

Hio- (V) — GIW

N/

G/'V

with the obvious continuous maps i, j, p. Since j is dense and since by the
first part of the lemma i is a homeomorphism, such a diagram is possible
only if j and p are homeomorphisms, t0o. In particular, p is bijective
whence W = V.,

Contrary to general Lie homomorphisms, the dense homomprphisms
behave well w.r.t. connected normal Lie subgroups or, eqmvgiently,
w.r.t. ideals on the infinitesimal level; compare Thm. 2.1 on p. 19010 [13].

1.2. Let ¢: H— G be a dense Lie group homomorphism between
connected Lie groups H and G, and let n be an ideal in 1. If dp denotes

the differential of ¢ then de(n) is an ideal in g.
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The reason is simply that n being Ad;{(H )-invariant the space dp(n) is
Adg(¢(H))— invariant and hence, by density, Ad;(G)-invariant.

The following theorem, see [5, 16], roughly says that the image of a
dense Lie group homomorphism exhausts the whole group except for
possibly a toroidal subgroup.

1.3. THEOREM. Let H and G be connected Lie groups, and let ¢: H—
G be a dense Lie group homomorphism. If ZyK) is the connected center
of any of the maximal compact subgroups K of G then G = ¢(H)Z(K). In
particular, the different maximal compact subgroups of G are conjugate
by elements in ¢(H).

Proof. W.l.0o.g. we may assume that ¢ is the inclusion. By 1.2 the
subalgebra  is an ideal in g. Since Ad(H) act trivially on g/b, Ad(G) acts
trivially, too. Therefore, g/} is abelian, q' is contained in b.

Let 7: G — G be a universal covering group of G. For a Lie subalgebra
p of g denote by (exp p) the Lie subgroup of G corresponding to p. If fis
the Lie algebra of K then (exp(f + b)) = (exp fXexp h) isclosedin Gas f +
b is an ideal in g (see Chap. XII in [13], the case at hand is particularly
simple). The inverse image 7 '(K) is connected as G/7~'(K) is simply
connected being diffeomorphic to G/K which is an Euclidean space. It
follows that 77~ (K) = (exp t). This implies in particular that the kernel of
m is contained in (exp(f + 0)). Therefore, w(exp(f + B)) is a closed sub-
group of G containing H, hence it coincides with G which gives g = f + b.
By Thm. 1.3 in Chap. XIII of [13] the *‘compact Lie algebra’’ f decom-

poses as f =" + 3(f). As @' is contained in § one obtains ¢ = b + 3(f).
whence the theorem.

From the theorem we derive two corollaries. for the first one compare
[13, p. 190].

1.4. CorOLLARY. Ler ¢: H— G be a dense Lie group homomorphism

between connected Lie groups H and G. If d¢ denotes the differential of ¢
then de(h') = q'.

Proof. Again we may assume that ¢ is the inclusion. By 1.2, both b
and b’ are ideals in g. As Ad(H) acts trivially on h/b’, also Ad(G) does so
which implies that [g, b] C b’. This together with the fact that g is a sum

of b and an abelian subalgebra, namely, the center of f. K as above, gives
the claim.

1.5. COROLLARY. Let¢: H— G be a dense Lie group homomorphism
between connected Lie groups H and G. If U is a closed subgroup of G
containing ZyK) for some maximal compact subgroup K of G then

el WUN = U. If, in addition. U is connected then ¢ (U) has only
finitely many components.

i
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Proof. The first statement follows immediately from the theorem and
1.1. The second statement can be reduced to the case U = Zy(K ): ¢ (U
¢ (ZyK)) is connected being homeomorphic to U/Zy(K), by 1.1 (D). If
¢ (ZyK)) has only finitely many components one can deduce the same
property for ¢~'(U) by considering the fibration ¢ (ZfK) = ¢ '(U) —
¢ MZy(K)).

In the case U = Zy(K) we first observe that the fundamental group
m(GIZy(K)) is finite for the following reasons. The group (Gl Zy(K)) 1s
the same as m(K/Zo(K)). But K/Z(K) is isomorphic to K'/Zy(K) NK',
and the latter semisimple compact Lie group has a finite fundamental
group. Since H/¢ (Zy(K)) 1s homeomorphic to G/Z«(K) it has a finite
fundamental group, too. Therefore, the covering H/ [ (Zo(K)]o — H/
¢ "(Zs(K)) has to be finite which shows that ¢~ '(Zy(K)) has only a finite
number of components.

If we replace Zy(K) by a maximal torus T (which is larger in the sense
that each T contains Zy(K) for a certain K) in G we obtain the following
result, which collects some of the most important properties of dense Lie
group homomorphisms.

1.6. THEOREM. Let H and G be connected Lie groups, and let ¢: H—
G be a dense continuous homomorphism. For any maximal torus T in G
one has G = ¢(H)T. In particular, the different maximal tori in G are
conjugate by elements in o(H). If a connected Lie subgroup U of G
contains one of the maximal tori of G then U is closed, the inverse image
¢ WU) is connected, ¢~U) contains a maximal torus of H and
ele™(U)™ = U.

Proof. The equation G = e(H)T is an immediate consequence of 1.3.
From this equation and from the fact that maximal tori are conjugate in G,
one concludes that maximal tori are conjugate by elements in @(H). Let‘ U
be as in theorem, suppose that U contains the maximal torus T. Applying
the first part of the theorem to the inclusion U — U~ it follows that U™ =
UT = U. To see that ¢ '(U) is connected one may argue as in the .pm(')f ‘of
1.5. Using the sharper fact that the fundamental group of G/T is trivial
instead of merely being finite on¢ obtains the sharper result. Let S be any
maximal torus in H. Then ¢(S) is contained in a maximal torus of G,
hence there exists x € H such that ¢(5) C o(x)To(x)"'. The maximal torus
x71Sx of H is contained in ¢~ '(U). Again the equation U = el (U
follows from 1.1.

First of all we draw two well-known consequences from this theorem;
see, for instance, {13, pp. 189/192].

1. 7. CoroLLARY. The center Z(H) of a connected Lie group H is
contained in a connected closed abelian subgroup.
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Proof. Let T be a maximal torus in the group G := H/Z(H). The
inverse image U of T is a connected nilpotent Lie group. Hence the

adjoint group of U in Aut(u) is unipotent. Being compact in addition it
must be trivial.

1.8. COROLLARY (Malcev Criterion). A connected Lie subgroup H of
a connected Lie group G is closed if the closure in G of every one-
parameter subgroup of H lies in H.

Proof. Clearly, we may assume that H is dense in G. Let T be a
maximal torus in G. By 1.6, G = HTand A := TN His a connected
subgroup of H such that A = T. As an abelian connected Lie group A is a
product of the maximal torus S in A and a vector group V. Take any
“line” L in V. The closure L is contained in T, hence compact. On the
other hand, by assumption L is contained in H. It follows that L is con-
tained in A. Being compact L is part of S. Hence L is zero, V is Zero, A=
S is compact, and A = T = § is contained in H which implies G = HT =
H.

Let ¢: H— G be a dense embedding of connected Lie groups, let Tbea
maximal torus in G and Ty be a maximal torus in H. Then the number n =
dim T — dim T, which is equal to dim T/o(Ty) if, as we can arrange,
¢(Ty) is contained in 7, is a rough measure for the ‘‘size’’ of the embed-
ding ¢. A somewhat refined version of the proof of 1.6 gives another

description of n in terms of the fundamental groups of the groups in
question.

1.9. THEOREM. If ¢: H — G is a dense continuous embedding of
connected Lie groups then the following assertions hold true:

(@) The homomorphism m(e): m\(H) — 7 (G) is injective.

(b) Ifim(m{¢)) denotes the image of m\(¢) then m(G)/im( (¢)) is_‘_‘
free abelian group whose rank equals the above introduced number n =
dim T — dim Ty.

(c) The embedding ¢ is an isomorphism iff n is equal to zero; L€
mi(e) is an isomorphism.

Proof. The theorem will be reduced to the abelian case. Therefore, W€
first recall the following well known facts. Let j: A — B be a continuous
embedding of connected abelian Lie groups, and let T4 and Tp be the
maximal tori in A and B, respectively. Then m(A) is free abelian of rank
dim T4, in fact (A) is canonically isomorphic to Hom(T, T4) = Hom(T
A). Moreover, () is injective and (A)/im(r(j)) is free abelian of rank
dim T, — dim T, actually there is an exact sequence

0 — Hom(T, T,) = Hom(T, Tg) — Hom(T, Ts/j(T4) — 0.
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Now let T be a maximal torus in G, let A := ¢ '(T) which is connected
by 1.6. and denote by ¢': A — T the induced embedding. Also from 1.6,
we conclude that ¢ induces a homeomorphism ¢ H/A — G/T. Using
m(G/T) = 0 = m,(H/A) the homotopy sequence gives a commutative
diagram

m(H/A) — m(A)— m(H) — 0
l e l il ) l mlet
Trj((;/T) - TT:(T) e d 7T|(G) -0

with exact rows. Since ml¢”) is an isomorphism., the injectivity of m(¢")
implies that m{(¢) is injective. whence (a).

Also from the diagram one reads off that the kernel of the composition
of m(T) — m(G) with the gquotient homomorphism m(G) — m(G)
im(r,(p)) is precisely the image of mi(¢’). Hence m(G)/im(m(¢)) is iso-
morphic to m(T)/im(m (¢ ). If Ty is the maximal torus of A then Ty is a
maximal torus of H. By what we have seen above m(T)/im(m(¢’)) 1s a
free abelian group whose rank equals dim T — dim Ty, whence (b).

Claim (c) is obvious in view of (b) and of 1.6.

In the spirit of our program to relate arbitrary dense embeddings to t.he
embeddings of vector groups into tori we deduce from 1.6 the following
consequence.

1.10. PROPOSITION. Let ¢: H— G be a dense continuous embedding
of connected Lie groups H and G. There exists a vector subgroup Vof H
such that ¢(V)~ is a torus, G = e(H)p(V) ™ and e (V) = V.

Remark. 1f one gives up the property that ¢ W@(V)") = V, by
Kronecker’s theorem one may even choose V to be a one-parameter
group. In this form it is occasionally called Malcev’s theorem; compare
(10, 16]. This point of view will be discussed in 1.13.

Proof. Again,let Tbe a maximal torus in G, and let Ty be the maximal
torus in the connected abelian Lie group A := ¢~ (T). There exists a torus
S in T such that T is a direct product of S and (7 +) because the dual
sequence 0 — (T/e(Tw)" — T — o(Ty)y  — 0 splits. The group V=
¢~ !(S) satisfies the requirements of 1.10.

Instead of 1.10 one might like to have a better result of the form: For
each dense embedding ¢: H— G there exist a vector subgroup V of H and
anormal subgroup N of H such that H is a semidirect product of V and NV,
such that ¢(N) is closed and that G is a semidirect product of the torus
©(V)~ and ¢(N). There is an obvious obstruction against such a result,
namely G’ = o(H’) has to lie in the closed group ©(N), hence the closure
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(G')” has to be contained in ¢(H). Below, we will give an example which
shows that this is not always true.

The next theorem tells that the desired splitting holds true if (G')™ is
contained in ¢(H). Such a situation typically arises in the following man-
ner: Take a faithful linear representation ¢: H — GL,(R) of the connected
Lie group H, and let G := @(H)~. Then G’ = p(H’) is closed in GL,(R);
see Thm. 4.5 in Chap. XVIII of [13]. The theorem was first obtained by
Goto (see [8, 10]) under a slightly stronger assumption. It will not be used
in the sequel.

I.11. ExAMPLE. Let H be a connected semisimple Lie group such that
the center Z(H) ts isomorphic to Z2, for instance one may take the product
of two copies of the universal covering group of SL»(R). Choose an injec-
tive (dense) homomorphism y: Z(H) — R and form

G := (H X RY/{(x, y(x))/x € Z(H)}.

Clearly, ¢: H — G, h — [(h, 0)], is a dense embedding, and ¢(H') =
e(H) = G' 1s dense in G.

1.12. THEOREM. Let ¢: H— G be a dense embedding of connected
Lie groups. If ¢(H) contains the closure of the commutator group G’
(= @(H')) then there exist a closed connected normal subgroup N of H
and a closed vector group V in H such that

(a) H is a semidirect product of V and N,

(b) @(N) is closed in G,

(c) (V) is atorus group,

(d) G is a semidirect product of (V)™ and ¢(N).

__Proof. The normal (coabelian) subgroup W of H is defined by (W) =
G’, it coincides with (H ') in view of 1.4. Choose maximal tori Tw. Tu.,
and T in W, H, and G, respectively, such that Ty C Ty and ¢(Ty) C Ts-
Then Ty is the maximal torus in ¢~ '(T;) and ¢~ /(Tg) N W = Ty is con-
tained in Ty. Since (G’)~ is connected the image T5(G’)~/(G')™ of T in G/
(G')" is the maximal torus in the connected abelian group G/(G’)~. Hence
G/T(G')™ is a vector group. Actually, 75(G’) is the smallest group
within the set of all closed normal subgroups M of G such that G/M is a
vector group, in particular T(G’)~ is independent of the choice of Tg.
Correspondingly, H/Ty W is a vector group. The homomorphism ¢ in-
duces a dense homomorphism ¢': H/Ty W — G/T;(G')~ between vector
groups, hence ¢’ is surjective and open. Then decompose the vector
group H/TyW into a direct product of the vector group kerg’ and a chosen
complementary vector group B. The desired group N is defined as the
preimage of B under the quotient map H — H/TyW. It is easy to see that
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¢(N) is closed in G. From the construction follows G = e(N)Tg;. Using
¢ '(Tg) N W C Ty one deduces ¢(N) N T = o(Ty). As in 1.10, we now
choose a torus S in 7; such that Ty is the direct product of § and ¢(Ty),
and put V := ¢~ I(§5). It is easily checked that V and N satisfy the require-
ments of the theorem.

Theorem 1.6 can also be used to **determine’” all dense Lie subgroups
of a given group G.

1.13. ProPoSITION. Let G be given connected Lie group. Choose a
maximal torus T in G and define N := T(G')". Actually, N is independent
of T; it is the smallest closed normal subgroup M such that GIM is a
vector group. For a connected Lie subgroup H of G there are equivalent:

(i) His dense in G.
) hb+t=g,h =g explt Nh~ =T
(i) b+n=g, HDq,expdnNfh =T.

All the Lie algebras of minimal dense connected Lie subgroups H are
obtained in the following manner: In case N = (G')™,i.e., T C (G')” one
chooses a subspace 10 of g with g = n® v and one puts b = g’ + . In
the other case one chooses 10 as above and in addition one chooses a one-
dimensional subspace v of t such that {(exp v)~ = T. Then one puts
b=qg' +ct+w. In particular, all minimal dense connected Lie subgroups
have the same dimension.

Proof. For the properties of N compare the proof of 1.12.

(i) = (i) is an easy consequence of 1.6 and 1.4.
(1) = (1) is trivial.
(iiiy = (i) Let K = H = {exp b)~. From the assumptions § D g’ and
exp(t N h)~ = T it follows that N is contained in K. Since f) + n = g one
concludes f = g.

Itis clear that the “‘constructed’’ Lie subalgebras lead to minimal dense
subgroups. Now, et a minimal dense connected Lie subgroup H be given.
We consider only the case N # (G’)". By 1.6, U := T N H is a dense
connected subgroup of 7. It is not hard to see that there exists a one-
dimensional subspace r of 11 such that (exp r)~ = 7. From (iii} follows the
existence of a subspace v of §) such that n & v = q. The subalgebra @’ +
I + b is contained in B, and it delivers a dense subgroup. Hence, b = g’ +

I + 1v by the minimality.

2. CoNSTRUCTION OF DENSE EMBEDDINGS

The first section was concluded by a description of all dense subgroups
of a given Lie group G. In the present section we are mainly concerned
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with the ‘‘dense extensions’’ of a given Lie group H up to equivalence.
The equivalence relation is, of course, the following.

2.1. DEFINITION. Dense embeddings ¢;: G — G,, j = 1, 2, of con-
nected Lie groups are called equivalent if there exists a (unique) isomor-
phism o: G, — G, such that ¢, = ¢-.

More precisely, we will reduce the classification problem to an exten-
sion problem for connected abelian Lie groups. In the considerations, an
eminent role will be played by the closure Ady(H )~ of the adjoint group in
Aut(h). Clearly, the group Ady,(H) only depends on b, it is the group of
inner automorphisms of f). One of the main theorems tells that Ady, (H)™ is
an invariant of dense embeddings ¢: H — G in the sense that the linear
groups Ady(H)™ and Adg(G)™ are canonically isomorphic.

First we apply the results of the first section to the dense homomor-
phism Ad: H — Ady(H)".

2.2. THEOREM. Let H be a connected Lie group, let T be a maximal
torus in Ady(H)~, and let U = Ad;\(T) be the inverse image of T. Then U
is a connected abelian subgroup of H, Ady(U) is dense in T, and
Ady(H)™ = Ady(H)T. The elements t € T act trivially on the Lie algebra
uof U. If Ty is another maximal torus in Ady(H)~ then U; = Adg(T)) is
conjugate to U. For each s € Ady(H)™ there is a unique automorphism

k(s) of H whose differential is s; « is a continuous homomorphism from
Ady(H)™ into Aut(H).

Proof. In view of 1.6, from the statements in the second sentence we
only need to show that U is abelian. Since ker Ady; = Z(H), U/Z(H) is
abelian, hence U is nilpotent. Therefore, Ady(U) = Adg(U)|, is a group
of unipotent linear transformations. On the other hand, Ady(U) C T
consists of semisimple transformations. It follows that Ady(U) is trivial,
U'is abelian. A similar argument was already used in the proof of 1.7 and,
of course, 1.7 follows from the present theorem. The density of Ady(U)
in T implies that T acts trivially on 1. As 7, and T are conjugate by an
element in Ady(H) their preimages are conjugate in H.

Concermng k we only note that s € Ady(H)~ induces an automorphism
§ of H where 7: H — H is a universal covering of H. Since § can be
approximated by inner automorphisms it leaves the central subgroup ker
7 pointwise fixed and hence it induces an automorphism x(s) of H. Alter-
natively one could argue that Aut(H) considered as a subset of Aut fisa
closed subgroup containing Ad(H).

Remark. Some parts of 2.2 were obtained in [10] by different consid-
erations. In that paper groups U of the form Ad;'(T) are called *‘general-

ized maximal tori” or gm tori for short. Occasionally we will use this
notation, too.
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The next proposition gives a characterization of the Lie algebras of gm
tori. The characterization is of a purely local type. This proposition as
well as the following one are not needed in the sequel: they are only
included to complete the picture.

2.3. PROPOSITION. Let @ be the Lie algebra of a connected Lie
group G. For a subalgebra v of  there are equivalent:

(a) There exists a maximal torus T in Adg(G)™ such that W is the
Lie algebra of Ad;\(T).
(b) The subalgebra 1 is maximal in the set of subalgebras v of @
satisfying
(1) vis abelian.
(i) For each x € v the operator ad(x) is semisimple and it has a
purely imaginary spectrum.

Proof. Obvious.

In the classification of pointed generating invariant cones in Lie alge-
bras an eminent role is played by the so-called compactly embedded
Cartan algebras: see [11] or [12]. Those are Cartan algebras which satisfy
conditions (i) and (ii) above; their existence is a necessary condit?on for
the existence of pointed generating invariant cones. In general it 18 only
true that an algebra v as in 2.3 (b) is contained in a Cartan algebra.

2.4. PROPOSITION. Let g be finite dimensional real Lie algebra, and
let v and 0, be two subalgebras as in 2.3. (b).

(a) The algebras 1o and \v; are conjugate by an element in the inner
automorphism group of @, i.e., by an element in (Exp ad(g)).

(b) The centralizer ¢ of 1 in § is solvable. |
(c) There exists a Cartan subalgebra b containing 1. Each such b is
Contained in the centralizer (.

d) If G and B, are Cartan subalgebras containing 10 and Ww,, re-
spectively, then b and B, are conjugate by an element in (Exp ad(@))-

Remark. The above Cartan algebras should be compared with the so-
Calied standard Cartan algebras introduced by Goto in [9].

Proof. (a) follows immediately from 2.3 and 2.2 as (Exp ad(q)) is
nothing but Adg(G) for any connected Lie group G with Lie algebra g.
Concerning (b), let us assume that ¢ is not solvable. Then ¢ coErzntz;mtsh 2
simple subalgebra ¢. If ¢ is a ““compact’’ alg_ebral for each x e
Operator ad,(x) is semisimple and has a purely imaginary spegtrum. s X
commutes with v from the maximality of 1 it follows tl_wt x is contamte.t
In 1v, hence % is contained in 10, 2 contradiction. If 318 not compact 1

48171697220
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contains a subalgebra [ isomorphic to 3[,(R). By the well known represen-
tation theory of s[,(R) it is clear that [ contains a non-zero element 4 such
that ady(#) is semisimple with purely imaginary spectrum. Again h has to
be in v, hence to commute with [ which is absurd.

(c) is a special case of Prop. 10, p. 24 in [1]. For the convenience of
the reader we repeat the simple argument. Let b be any Cartan algebra of
the Lie algebra c. As v is central in ¢ it has to be contained in h. We claim
that b is a Cartan algebra of the Lie algebra a. There is only to show that §
coincides with the normalizer n of § in g. Let n = ) @ b be an adip-stable
vector space decomposition of n. In particular, [, d] is contained in b.
On the other hand, [iv, D] is contained in (b, n], hence in §. Therefore, [1v,
blis zero, b is contained in ¢. It follows that 11 js contained in ¢, hence n is
the normalizer of f) in ¢ which is b as b is a Cartan algebra. Conversely, if f)
is any Cartan algebra of g containing v then for any x € v the operator
adyx = ad, x|y is nilpotent and semisimple, hence adyw = v, §] = 0 which
means that § is contained in ¢.

(d) By (2) we may assume that 1p = ;. From (¢) it follows that § and
b, are contained in ¢. But Cartan algebras in solvable Lie algebras are
conjugate under inner automorphisms: see Theoréme 3, p. 31in [1].

After this digression we return to the study of dense embeddings
¢: H — G. For such an embedding we introduce two notations. Since
de(h) is an ideal in g it is invariant under Adg(G)~. Hence there is a
unique continuous homomorphism R,: Ad;(G) " — Aut(h) such that
dp(R,(sHY)) = s(de(Y)) for s € Adg(G)~ and Y € §. As ¢ has a dense
image R, clearly takes its values in Ady(H)™. Besides others in the next
theorem it will be proved that R, is actually an isomorphism from
Adg(G)~ onto Ady(H)~. The composition R, o Adg is denoted by A,.

Evidently, A, o ¢ = Ady, hence A, is a dense homomorphism from G into
Ady(H)~.

2.5. THEOREM. Let ¢: H— G be a dense embedding of connected Lie

groups H and G. Let T be a maximal torus in Ady(H)", let U = Adz(T)
and let V = A (7).

(@) The subgroup V of G is abelian and connected, A,(V) is dense
inT.

b)) ¢ YV)=U, o(U) = V. In particular, ¢ induces a dense em-
bedding from U into V.

(c) If Ty denotes the maximal torus of V then Ty is a maximal torus
of G. Hence G = e(H)T) .

(d) The homomorphism R.: Adg(G)~ — Ady(H)" is an isomor-
phism. Consequently, R;U(T) is a maximal torus in Adg(G)™ and, there-
Jore, V = A;'(T) = Ad&'(R;'(T)) Is a gm torus in G.
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N V(;t)_ ?he lineat" group Adc(G) in Aut(q) is closed if and only if
V) = T. In particular, if Adg(H) is closed then Adg(G) is closed.

APor?po;i I;e equation 90“_'(V) = U is an immediate consequence of
SLrbgrou T ?Acl?y 1-6_ applied to the dense homomorphism A, and the
and thatpV 0 _H(H) ) 0.ne obtains that V is connected, that AJVy =T
ow to C(()jntams a maxupal torus of G, say S. Applying 1.6 once more,
SHIS andethense. embedding ¢ and the subgroup vV, we get that G =
particular, it gl;f)::f]s(i ?}f ets\:;1 'dense embedding from U = ¢~ (V) into V. In
’ a - :
Vv, ;}md (@), (b, (c) are provlesde_l elian, hence S is the maximal torus Ty of
indu(::s, ::;e claim that R, s injective. Let s € Adg(G)" be given. Then s
ks(s) is the ?gtomorphlsm kg(s) of G, by 2.2. If R,(s) is the identity then
o identity on ¢(H). Since o(H) is dense, kq(s) is the identity on
’ s is the identity.

Shgg‘i‘l’lzrtﬂglg‘the surjectivity Of R, we first observe that it is sufficient to
€ Tth the image of R, contains _Tas Ady(H) = TAdy(H). Toa given
Since vttre exists a sequence (ve) 1n V such that (A,(vy)) converges to L.
easil is abelian Adg(v,) acts trivially on v. From g = de(f) + b one

ily deduces that Adg(vy) converges to an element s € Aut(g) with the
property that R,(s) = t.
Adslr(l;f _R*’ is an isomorphism, Adg(G) is closed iff R, (AdG)) =
lenft )~ or A (G) = Ady(H)™. Evidently, the latter equality is equiva-

0A,(V)=T.

imal torus 7 in Ady(H)~ defines a
f H and a dense homomorphism a:
bedding ¢: H— G gives rise 1o

Let us summarize: Any chosen max
gmnected abelian closed subgroup U0
. — T, namely o = Ady|U. Any dense em
A connected abelian closed subgroup V of G and a dense embedding
Jj: U=V, namely the restriction of ¢ to U. such that a can be (uniquely)
extended to a continuous homomorphismy: V—T. i.e.,yej = o, namely
Y= A,v. The main point is that also the converse is true. Suppose there is
given a triple (W, j, y) consisting of a onnected abelian Lie group W, 2
dense embedding j: U — W and a continuous extension y: W— T of .
Then there exists a connected Lie group G and a dense embedding ¢: H—
G such that the given triple is equal (up to equivalence) to the triple

derived from ¢. Clearly, two triples (Wi, Jis YR k=1,2,arc called
ivalent in the sense of 2.1.

equivalent if the embeddings jx: U— W, are cqul
NOte that an isomorphism o Wl - W, with O'jl = jz also satisﬁes

720- = -yl .
To construct the group G one forms the semidirect product W H with
.7 "Y(hi) ) where K = Ki 1S

multiplication (w;, h)(w2, ) = (WiW2. Ky (W :
the map constructed in 2.2. Clearly. A = AU) = G 0l € Utisa
closed subset of W & H. Using 2.2, in particular the fact that T acts
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trivially on 11, one verifies easily that A is a central subgroup of W x H.
Define G := W X H/A, ¢: H— G is the obvious embedding. Of course,
¢(H) is dense in G. We put V := A (T), and we claim that (W, j, y) is
equivalent to (V, ¢, A|y). First one observes that if {w, #] denotes the A-
coset of (w, h) € W X H then A ([w, h]) equals y(w) » Ady(h). Hence
AJNT) = (W X U)/A. It is easy to verify that o: W — V = (W X U)/A
defined by o(w) = [w, e] establishes the desired equivalence. Similarly
one can show that the procedure: **Start with a dense embedding ¢: H —
G, from the associated triple (V, ¢, A,|y) and apply the construction to
this triple” gives back ¢ up to equivalence. We have proved the follow-
ing.

2.6. THEOREM. Let H be a connected Lie group. Let T be a maximal
torus in Ady(H)~, let U = Ad5'(T) and denote by a: U — T the dense
homomorphism obtained as restriction of Ady. There is a bijective corre-
spondence between (equivalence classes of) dense embeddings from H
into connected Lie groups and (equivalence classes of) triples (V, j, ¥)
where j is a dense embedding from U into the abelian connected Lie
group V and y: V — T satisfies yj = a.

Namely, corresponding to a dense embedding ¢: H— G, we have the
triple (V, ¢y, A,lv), where V = A;(T); conversely, corresponding to the
triple (V, j, ¥), we have the natural embedding of H in (V X H)/AU),
where A(U) = {(j(x)™!, x)}x € U}.

(Ifo: H— Gis a dense embedding, then deg(Y) is an ideal in q, so G acts
on Y. This action defines the homomorphism A,: G — Ady(H)".)

The ‘‘classification’’ of dense embeddings is reduced to an abelian
problem concerning a given (dense) homomorphism a: U — T. This prob-
lem can be reduced a little further to see ‘‘how many’’ triples (V, j, ¥)

exist. To this end, one fixes a vector group complement U, to the maximal
torus Ty of U. Starting from the data

D vector subspace of U,

S torus group

iiD—> S dense embedding

B:$§— T  homomorphism such that 8i = alp

one can construct a triple (V, j, y) in the following manner.

Choose a vector space complement F to D in U,,define V:= Ty X § X
F, define j: U— V by j(tdf) = (t, ild), f) fort € Ty, d € D, f € F, and
define y: V— Tby y(1, 5, f) = a(t)B(s)a( f). The equivalence class of the
constructed (V, j, ) is independent of the choice of £. In fact, in this way

one obtains all possible triples (V, j, ¥) up to equivalence. More precisely,
the following remark holds true. Its easy proof is omitted.



it

DENSE LIE GROUP HOMOMORPHISMS 639

2.7. Remark. Let U be a connected abelian Lie group and let a: U —
Tbe a (dense) continuous homomorphism into the torus group T. Choose
a vector group complement U, to Ty in U, and consider quadruples (D, S,
i, B) with the properties stated above. Two such quadruples (D, Sk, i,
By are called equivalent if Dy = D: and if the embeddings i and i, are
equivalent in the sense of 2.1. The equivalence classes of such quadruples
are in bijective correspondence to the equivalence classes of triples (V. J,
y) with the usual properties.

In this sense, all dense embeddings of Lie groups can be reduced to the
standard example, namely dense embeddings of vector groups into tori.
Moreover, the choice of gm tori in order to describe all dense embeddings
of a given connected Lie group H is in a sense canonical. Of course, t0
“produce’” the extra elements in a dense extension of H one does not
need the maximal torus T in a gm torus U of H, but the next theorem tells
that one needs, so to speak, all the other elements in U, compare problem

3 on p. 730 in [10].

2.8. THEOREM. Let H be a connected Lie group and suppose that M is
a connected Lie subgroup such that G = o(H)e(M)~ for each dense
embedding ¢ from H into a connected Lie group G. Then there exists a
gm torus U in H such that M N Uis a connected Lie subgroup of H and
such that U = (M 0 U)Ty if Ty denotes the maximal torus of U. The
group M 0 U need not to be closed in H but it contains a closed vector
group U, such that U is the direct product of U, and Ty.

Proof. The assertion in the last sentence follows from the previous
one; this is an easy exercise in abelian Lie group theory. )

Enlarging an arbitrarily chosen maximal torus in Ady(M )~ to a maximal
torus in Ady(H)~ one finds a maximal torus Tin Ady(H)~ such that 7N
Ady(M)~ is a maximal torus in Adg(M)". We claim that the gm torus U=
Ad7\(T) has the required properties. Applying 1.6 to the obvious Idense
homomorphism M — Adn(M)~, one€ obtains that M N Aq (T N
Ady(M)) = U N M is aclosed connected Lie subgroup of the Lie group
M. Hence U N M is a connected Lie subgroup of H and of U. Agam
elementary abelian Lie group theory shows that My := (U N M)Ty1s 2
closed (connected Lie) subgroup of U. For alter use, W€ note here thz_u by
1.1 the homogeneous spaces M/M N U and Ady(M)ITN Ady(M)™ are
homeomorphic. . N

So far ths particular property of M played no role; 'everyt.hmg we said t1s
true for any connected Lie subgroup of H. Using this particular propef y
together with the appropriate choice of U made above we now prove:

G into a connected Lie group G

* i :H—
(*) For any dense embedding ¢ O U)eU N M) hold

the equalities G = @(H)p(U N M)~ and e(U)”
true.
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Let x € G be given. By assumption there exists # € H and a sequence
(my) in M such that ¢(my) converges in G and such that x = ¢(h) lim..
o(my). As Ady = A, ° ¢, where A, is the homomorphism defined in front
of 2.5, the sequence Ady(m,) converges in Ady{(M)~. Using the above
homeomorphism the cosets of m, converge in M/M N U. Hence there
exists a sequence (z;) in M N U such that (m, z,) converges in M (w.r.t. the
internal Lie group topology of M and a fortiori in the topology of H). As
o(my) converges, clearly ¢(z;') converges and we find x = ¢(h) lim.
emzizi ) = ph)e(im. mz) lime.x @(z2i') € ¢(H)e(U N M)~. The
second asserted equation in (*) follows from the first one using U =
¢ (p(U)7); see 2.5 (b).

Now assuming that, on the contrary to the theorem, M, = (U N M)Ty
is a proper subgroup of U we are going to construct a particular dense
embedding ¢: H — G which violates (*). To this end, we choose a closed
vector group B in U such that U is the direct product of B and M,,. Given
B we choose a dense embedding i from B into a torus S as well as a
continuous homomorphism 3: S — T such that 8 i = Ady. Of course,
such a triple (i, 8, §) exists. One may simple take any injective homomor-
phism y from B into a torus R. Form x X Ady: B— R x T, let § be the
closure of (x X Adg)(B), let i be the corestriction of x X Adyto §, and let
B be the restriction of the second projection R X T— Tto S.

Given (i, 8, S) let V = My, x S, and define j: U— V and y: V— T by
Jjwb) = (w, i(b)) and y(w, s) = Ady(w)B(s) forw € My, bE Band s € S.
With the triple (V, j, y¥) we carry out the above construction; i.c., we form
the semidirect product V X H with the multiplication (vy, h)(V2, h2) =
(V1v, kY3 H(h)h,), we put G = V ix H/N where N = {(j(x)™}, x)lx €
U}, and we define ¢(h) = w(e, h) where m: V x H — G denotes the
quotient homomorphism. One easily verifies that o(M,) is closed in G,
hence ¢(U N M)~ C ¢(My) C o(U) and o(U)p(U N M)~ = o(U) = UX
UIN. But ¢(U)~ = V X U/N is strictly larger as i is not onto. This
contradicts the assumption that My is a proper subgroup of U.

Knowing all dense extensions of a given group it is easy to tell when no
proper extension exists. The following criterion was explicitly formulated

in [7], where the corresponding groups are called absolutely closed, but it
follows also from the results of van Est [3].

2.9. THEOREM. A connected Lie group H allows no proper dense
embedding if and only if the preimage Ad;\(T) of a maximal torus T i.H
Ady(H)™ is compact. The latter property is equivalent to: Adu(H) 15
closed and Z(H) is compact.

Note that the criterion consists of a local part; namely, Ady(H) is
closed, and of a global one.

Proof. Let T be a maximal torus in Ady(H)", let U = Ad5'(T) and let
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U, be a vector group complement (o the maximal torus T, in U. If U.is
zero, H allows no proper dense embedding by the above considerations.
If U, is non zero, for each non-zero subspace D of U, one can construct at
least one triple (S, i, B) in the sense of 2.6./2.7. It follows that the non-
existence of proper dense extensions is equivalent to the compactness of
U. But if U is compact then clearly Z(H) as a subgroup of U 1s compact.
Since Ady(U) is dense in T compaciness of U implies that Tis contained
in Ad(H). hence Ady(H) = Ady(H)T = Ady(H). On the other hand, if
Ady(H) is closed Ady defines a surjective homomorphism from U onto
the compact group T with kernel Z(H). Therefore. the compactness of U

is equivalent to the criterion stated in the theorem.

Of course, semisimple Lie groups with finite center satisfy the criterion
of the theorem. But also some solvable Lie groups like the “‘ax + b —
group”” do so. In other words, the criterion is that gm tori are maximal
tori. Above we observed that every gm torus is contained in the Lie
subgroup corresponding to a Cartan algebra. Hence the criterion is satis-
fied if the Lie algebra of a maximal torus is a Cartan algebra. This fact can
also be proved directly, i.e., without using 2.3/4.

2.10. PROPOSITION. Let S be a maximal torus in the connected Lie
group G. Suppose that % is a Cartan algebra of q.i.e.. % coincides with its
normalizer in §. Then any dense embedding of G into another connected
Lie group is an isomorphism.

Proof. Let T be a maximal torus in Adg(G)~ containing Adg(S), and
let U= Adg!(T) DS. As we know U is connected and abelian, hence U =
S because 3 is a Cartan algebra. But the compactness of U implies that G
does not allow dense extensions.

Theorem 2.9 gives rise to the question whether dense embeddings can
be described simpler in the case of a closed adjoint group. The next
proposition says that this is indeed the case and explains why we could
construct in 1.11 a dense embedding of SL(R)™ X SL»(R)~ in a different
fashion than suggested by 2.6/7. Observe that the proposition applies in
particular to semisimple groups. The class of groups, or rather Lie alge-
bras, with closed adjoint group was intensively studied by van Est, [2-4],
the proposition follows from his results. Generalizations to arbitrary con-
nected locally compact groups are discussed in [6].

.2.11. PROPOSITION. Let ¢: H—> G be a dense embedding of connected
Lle groups. Suppose that Ady(H) is closed in Aut(b). Then also Ad(G)
is closed in Aut(q). If Z(H) and Z(G) are the centers of H and G, resp.,
then o(Z(H))~ = Z(G) and G = ¢(H)Z(G). Each dense extension of H is
obtained in the following manner: Choose a closed subgroup D of Z(H)
and a dense embedding v: D — W where W is a connected abelian Lie
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group. Then form W X H/{(«(x)"', x)|x € D} and take the obvious embed-
ding of H into this group.

Remark. One may ask whether the claim o(Z(H))~ = Z(G) is true
without the assumption “‘Ady(H) is closed.”” This is not the case as can
be shown by examples.

Proof. We observed already in 2.5 that Ad;(G) is closed. From the
fact that in the present case R, is an isomorphism from Adg(G) onto
Adg(H) it follows that every inner automorphism [, , x € G, of G equals
I, for a suitable & € H. Hence G = ¢(H)Z(G) which implies G =
e(H)Zy(G) as Z(G)/Zy(G) is countable. Lemma 1.1 gives that ¢ induces a
dense embedding from ¢~"{Z(G)) = Z(H) into Z(G).

We omit the details for the *‘constructive’ part, we remark only that
for a given dense embedding ¢: H — M we choose D = &~ (Zy(M)).

As an illumination and application of 2.6 we construct two dense em-
beddings with certain properties.

2.12. PROPOSITION. (a) To each connected Lie group H there exists
a dense embedding ¢ into a connected Lie group G such that G allows no
further dense embeddings. In particular, Ads(G) is closed in Aut(g).

(b) Let o: H— G be a dense embedding of connected Lie groups.
Suppose there is given a covering p: H,— H. Then there exist a covering
q: G1— G of G and a dense embedding ¢,: H, — G, such that qo; = ¢p.

Proof. (a) As usual let T be a maximal torus in Ad,(H)~ and let U =
Ad;\(T). Then one can construct a torus S, a dense embedding j: U— $
and a continuous homomorphism y: S — T such that Ady 1y = vj. Namely,
similar to 2.8, one takes any dense embedding ¢ from U into a torus R and
defines S to be the closure of {(«(x), Ady(x))|x € U} in R x T; v is the
restriction of the second projection. Then one applies the construction of
2.6 to the triple (S, j, y) and obtains the desired embedding ¢: H — G.
There are several ways to see that G allows no dense embeddings, one of
them is to apply 2.9: Since R, is an isomorphism the preimage R, (T)of T
is a maximal torus in Adg(G)~. The Adg-preimage of this maximal torus s
precisely A.'(T) = (S X U)/A = §, hence compact.

(b) Itis not hard to see that the assertion is true in the abelian case.

One way is to use universal coverings and to apply the following easy
lemma:

Let a be a vector subspace of the vector space b. Let K be a discrete
subgroup of b such that a + K is dense in b. To a given subgroup D of a N

K there exists a subgroup E of K such that EN q = D and that E + a lies
dense in b.

. Now, we consider the general case. Let, as usual, T be a maximal torus
in Ady(H)~, let U = Ad5\(T), let U, = Ad;(T) = p~'(U), and let V =
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A NT) C G. By the *“‘abelian proposition”” there exist a connected Lie
group V,, acoveringq: V,— V,and a dense embedding ¢,: U; — V, such
that g ° ¢; = ¢|v ° ple,. There is also a map, namely, A.g, from V,into the
maximal torus T of Ady,(H,) = Adu(H)" which acts as group of auto-
morphisms of H, as well. Hence we may apply the construction of 2.6 to
the triple (V,, ¢, A.q) and we obtain an extension G, of H, G, = V| X
H,/A with the obvious embedding ¢;: Hy = G where A = {(¢:(0)", DX E
U,} is a central subgroup. The homomorphism g: G, = G is defined by
q(lvy, l]) = qlue(plhy)). 1t is easy 1o verify that g is a well-defined
homomorphism, that g is a covering and that ge) = ¢p-

Remark 1. In the above proof of (b) one could replace V by a maximal
torus S in G, U by ¢ '(S) and U, by p~le~!(S). Each connected abelian
Lie group V, together with a covering g: Vi — $ and a dense embedding
e p e i(S)— V,such thatge g1 = @ly 10510 Plp 1 1) delivers a solution
G, in a similar way as well. The latter approach is technically a little
easier. | preferred the first one in order to exhibit the direct relation to 2.6.

Remark 2. The solution G, is by no means unique. There exist dense
embeddings ¢, from R* into R X T2 such that ¢, followed by the projection
gof R x T2 onto T? is a dense embedding, too. Hence ¢ = 4¢1 leads to at
least two coverings, namely g and the identity of T°. Even more evident,
the solution in (a) is far from being unique as the construction shows. This
should be compared with the fact that with each Lie algebra there may be
associated an essentially unique Lie algebra with closed inner auto-
morphism group (see [2-4]). Closely related, in [18] one finds dense em-
beddings of a given Lie group into Lie groups with closed adjoint groups
and with certain additional properties.

3. THE LEvi DECOMPOSITION AND DENSE HOMOMORPHISMS

Let ¢: H—> G be adense homomorphism of connected Lie groups. The

““additional’’ elements of G, i.e., the elements outside the image, should
be essentially a solvable phenomenon. And indeed, Gisa product of o(H)
and the radical of G, see below. On the other hand, as the example of 1.11
shows, at least the center of the semisimple part of H may contribute
additional elements. Therefore, we study the product Sy of the center of
H with the radical, and we investigate how it behaves yvhen df:nSfa homo-
morphisms are applied. It turns out that this prodgct is of finite mﬁex in
the largest normal solvable subgroup of H. As Section 2 shows, an 1mP0_f'
tant role is played by the dense homomorphism Ady: H = AdH(Ht)h.
Therefore, we pay some attention to this case. At the first glance, ! e
largest normal solvable subgroup of H has the better behaviour u? ;r
dense homomorphisms than its subgroup Su of finite index. We In¢ lihe
some examples to show that this is indeed the case. But Sy has the
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advantage that it is a smaller group which actually is also able to produce
via completion all additional elements of G.

3.1. DEFINITION. For any connected Lie group H the largest con-
nected normal solvable (closed) Lie subgroup of H is denoted by Rad(H ),
the product of the center Z(H) and of Rad(H) is denoted by Sy. A maxi-
mal connected semisimple Lie subgroup L is called a Levi factor of H.

Observe that Levi factors L need not to be closed; see 1.11. The equal-
ity H = L Rad(H) is true for any Levi factor L.

3.2. PROPOSITION. Let H be a connected Lie group.

() If L is a Levi factor of H then Rad(H)Z(L) is a closed normal
subgroup. In fact, it is the largest closed normal solvable subgroup of H;
in particular it is independent of the choice of L.

(i) The group Sy is closed and normal in H, it is a subgroup of
Rad(H)Z(L) of finite index.

(tit) H/Sy is a semisimple Lie group with finite center.
(iv) Rad(H/Z(H)) = Sy/Z(H).

Proof. Let Q = H/Rad(H), the quotient map p: H — ¢ induces a
covering from the semisimple Lie group L onto @ which implies that
p(Z(L)) = Z(Q). From pZ(L)) = Z(Q)and H = L Rad(H), one deduces
p~'(Z(Q)) = Rad(H)Z(L). From this equation, (i) follows using the fact
that Z(Q) is the largest normal solvable subgroup of the semisimple Lie
group Q.

As p(Z(H)) C Z(Q) one has the inclusions Rad(H) C Sy =
Rad(H)Z(H) C p='(Z(Q)). Since p~Z(Q))/Rad(H) is discrete (isomor-
phic to Z(Q)), Sy is closed in H. Clearly, Sy is normal in H. To see that Sy
is a finite index in P~ (Z(Q)) one considers Y. L — Aut(r), where 1 is the
Lie algebra of Rad(H), defined by y(x) = Ad(x)|;. The image (Z(L)) is
the center of the linear semisimple Lie group (L), hence finite; see Prop.
4.1in Chap. XVIII of [13]. The intersection K := ker Y N Z(L) is con-
tained in Z(H), and Rad(H) K is of finite index in Rad(#/)Z(L). Therefore,
Rad(H)Z(H) is of finite index in Rad(H)Z(L).

(iii) is an immediate consequence, (iv) is obvious.

3.3. THEOREM. Let ¢: H— G be a dense continuous homomorphism
between connected Lie groups H and G.

(@) Rad(G) C o(Sy)- C S¢. The subgroup ¢(Sy) is of finite index
in Sg.

(b) G = ¢(H)Rad(G) = e(H)e(Sy)™.

(©) Ifker ¢ is contained in Sy, then Su is a subgroup of ¢ '(S¢) of
finite index.
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(d) Ifker ¢ = Z(H) then G = ¢(H)p(Rad H)™, Rad(G) = ¢(Rad
H)~ and Rad(G) is of finite index in S¢;. In particular, this applies to G =
AdH(H)_ and ¢ = AdH

(e) If T, is a maximal torus in Ady(Rad H)~ then Ady(H)™ =
Ady(H)T.. There exists a maximal torus T in Ady(H)~ such that T =
T,Ady(U) where U = Adg'(T).

Proof. Of course, o(Z(H)) C Z(G) and ¢(Rad H) C Rad G, 'h‘ence
e(Sy) C Sg as S is closed. The homomorphism ¢ inducés a dense
homomorphism from H/Sy in Gle(Sy)~. As HISy is semisimple with
finite center this homomorphism has to be onto, hence Glo(Sy)™ is semi-
simple with finite center as well. From the latter fact one easily deduces
that Rad(G) is contained in ¢(Sy)~ and that ¢(Sy)" is of finite index in Sg.

By 1.4 any Levi factor of G is contained in ¢(H), hence G =
¢(H)Rad(G). From (a) follows G = ¢(H)e(SK) "

Concerning (c) one first observes that Sy is always a subgroup of
¢ '(S¢), compare (a). Since ker ¢ and Sg are solvable, ¢ '(Sg) is a solv-
able closed normal subgroup of H, hence contained in Rad(H)Z(L) for
any Levi factor L of H. As Sy is of finite index in Rad(H)Z(L), it has to be
of finite index in ¢ '(Sg) as well.

(d) is an easy consequence of (a) and (b): By (a), Rad(G) C ¢(Sy)” =
o(Rad H)- C Sg. and o(Sy)~ = ¢(Rad H)™ is of finite index in S¢. Since
¢(Rad H) is contained in Rad(G) the latter group has to coincide with
¢(Rad H)~. The equality G = ¢(H)e(Rad H)~ now follows from (b).

Concerning (e) we first apply 1.6 to the dense homomorphism
Rad(H)— Ady(Rad H)™ obtained by restricting Ady . One gets Adg(Rad
H)~ = Ady(Rad H)T,. Using (d) one concludes that Adg(H)™ =
Ady,(H)T,. Let T be a maximal torus in Ady(H) suchthat TN Ady(Rad
H) = T,. Any such T does the job.

As an illustration we will consider two further examples. The exgmples
will also show that some equalities one might guess are not true in gen-
eral, in particular one has:

(A) @(Sy)~ is possibly a proper subgroup of Sg. even if ¢ is a dense

embedding or ¢ = Adyand G = Ady(H).

(B) Sy is possibly a proper subgroup of ¢~ (e(Sy)") evenif ¢ is a
dense embedding or ¢ = Ady and G = Ady(H)™.

(C) ¢ '(¢(Sy)) is possibly a proper subgroup of ¢~
a dense embedding or ¢ = Adyand G = Ady(H)".

(D) For dense embeddings ¢: H — G the center Z(G) might be
strictly larger than ¢(Z(H)) , compare the remark after 2.11.

1(Sg)evenif ¢ is

Moreover, we note that the example of 1.11 shows
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(E) For dense embeddings ¢: H — G the radical of G might be
strictly larger than o(Rad H)~ .

3.4 EXAMPLE. LetX=(R2®C)BRD R, the tensor product is taken
over the reals. The group SL,(R) x R acts on X by

A, r) u®uv,w,z) = (Au ® e, w, z + rw)

where Au = (a”u; + api;, ar u, + (1221,42) lfA = (z;zzg), U = (u;, le). We

form the semidirect product H of SL,(R) x R with X , .., the multiplica-
tion is given by

A, r,u®uv, w, 2B, s, u' @ v, w', z)
=AB, r+ s, B ' u®e sy + WwRv,w+w',z+ 7 — sW).

One quickly computes that ZH)={0,0,7) e x |z € R}. Then clearly
Sy =Rad(H) = Rx X. Next, one observes that the adjoint group of H is
closed, hence isomorphic to H/Z(H ) =: G. The group G is a semidirect
product of SL,(R) X R with ¥ = (R? ® C) ® R where the action is given by

A, (uQu, w) = (Au ® eiry, w).

The center of G is the union of {(id, 27k, 0, w)|k € Z,w € R} and {(~id,
2k + D7, 0, wlk € Z, w € R}, hence S¢ = {zid} x Rx Y.

We see that Ad(S,)- = Ad(Sy) = Ad(Rad H) = Rad(G) is a proper
subgroup of S and that Ad 1 (Ad(Sy) ) is a proper subgroup of Ad~!(S¢);
compare (A) and (C).

3.5. EXAMPLE. Let a and B be two real numbers which are linearly
independent over the rationals. The group SU(Q2) x R acts on C? by

(A, 7 (21, 22, 23) = (ei(ay 7, + a1222), €'(anz) + axnzy), ez,
if A = (31%). Again we form the corresponding semidirect product H =
(SUR) x R) x C*. One quickly shows that the center of H is trivial, so

Sy = Rad(H) =R x C3,
Also SUQ2) X T x T acts on C? by

A, 0, 6) (21, 22, 23) = (tlanz + apngy), tanz + anzy), hzy),
and we form the semidirect product

G=(EUQ2) xT x T)x C.
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The embedding r — (e, ¢#") from R into T x T induces a dense
embedding ¢ from H into G. The center Z(G) consists of two points, (—id,
~1, 1, 0, 0, 0) is the non-trivial element. So, ¢(Z(H))" is a proper sub-
group of Z(G); compare (D). Clearly, S = ({*id} X T x T) X C3. We see
that ¢(Sy)- = Rad(G) is a proper subgroup of S and ¢ No(Sy)) is
strictly contained in ¢ '(S¢;); compare (A) and (C).

The adjoint group of G is closed being a semidirect product of the
(closed) unipotent group Ad(C') and the compact group Adg(SUQR) X
T x T). The adjoint group Ad(G) is isomorphic to G/Z(G). As we known
from 2.5 the embedding ¢ induces an isomorphism R, from Adg(G) =
Ad(G) = G/Z(G) onto Ady(H)". In other words, Ady(H)~ can be iden-
tified with G/Z(G)., and the composition ¢: H — G/Z(G) of ¢ with the
quotient map G — G/Z(G) is essentially Ady: H — Ady(H) ™. Observe
that  is injective as well. We see that Sy = Rad H = RX C3 is strictly
contained in ¢~ '(W(Sy) ) = ({xid} x R)x C*; compare (B).
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