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Unitary representations of Lie groups
and operators of finite rank

By DETLEV POGUNTKE

Besides being a principal object of study in harmonic analysis, the con-
volution algebra of L!-functions on a locally compact group is traditionally
used for investigating (unitary) group representations by methods of associa-
tive algebra. With the development of the theory of C*-algebras this role was
more and more taken over by the group C*-algebras. A considerable amount
of information concerning group C*-algebras, in particular of Lie groups, has
accumulated. This article may be regarded as part of a program to use the
obtained insights and methods in order to derive results in terms of more clas-
sical objects, as L!-functions or, in the context of Lie groups, even smooth
functions, briefly, to prove regularity theorems.

To make this more concrete, let me describe two such regularity questions
not to be treated in this paper. The topology on the unitary dual G of a given
locally compact group G can be characterized as follows. A set A in G is
closed if and only if for each w € G ~ A there exists an f € C *(G) such that
m(f) # 0 and p(f) = 0 for all p € A. One may ask whether one can always
find an f € L!(G) with these properties. It turns out that for some groups this
1s possible, for instance for groups with polynomially growing Haar measure;
for others it is not, for instance for noncompact semisimple Lie groups. More
information on this topic can be found in [2].

Secondly, as Pukanszky has shown, {40], each primitive quotient C*(G)/P
of the group C*-algebra of a connected Lie group G has a unique faithful trace
trp. A priori it is not clear that there is an L!-function f on G such that
0 < trp(f) < oo. But Charbonnel has proved [5], [6], that one can find such
an f even in D(G) = C(G).

In this article we shall solve the following problem in the affirmative.
Let 7 be a continuous irreducible unitary representation of a connected Lie
group H, and suppose that 7 (C*(H)) contains the compact operators on
the representation space ) i.e., the norm closure of 7 (L'(H)) contains the
compact operators. Is it true that m (L!(H)) contains an operator of rank
one? Actually, we shall do somewhat better. We shall construct a smooth
function f on H such that n(f) is an operator of rank one and such that fr
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is integrable for each representative function r of H. The smoothness of f is a
minor point; this can be arranged for by convolving with test functions; see 3.2
below. More crucial is the decay of f. I guess that in some sense the obtained
result is optimal. At least it is not true in general that one may choose f to be
compactly supported. In case of the Heisenberg group and of the nonabelian
two-dimensional Lie group this is not possible.

The above problem has some history. Clearly the semisimple case follows
from the work of Harish-Chandra. from the “finiteness of the K -types™: see also
(6.3) below. In this case one may indeed choose f to be compactly supported.
The nilpotent case was settled by Dixmier, [9]. using the symbolic calculus.
It also follows from a paper of Howe, [26]. where the image of the space of
Schwartz functions on H under 7 was determined. The case of exponential
groups was treated by Ludwig, [32], and myself, [37]. While Ludwig followed in
some sense the work of Howe, my approach using some symbolic calculus and
the symmetry of certain L!-group algebras was more closely related to that
of Dixmier. Recently, Du Cloux, [13], has successfully considered the case of,
say, almost algebraic groups in creating a theory of “smooth representations”
of such groups. Like the present article and like Ludwig he followed Howe’s
approach for nilpotent groups.

A major difficulty when treating this problem is how to use effectively the
assumption that = (C*(H)) contains the compact operators. To some extent
one has to deal with all continuous irreducible unitary representations, whence
the title. In doing so I learned a lot from some papers of Dixmier, 8], [10},
[11], in particular the use of algebraic groups, and from some papers of Duflo,
[14], [15], [16], in particular the use of the metaplectic representation. The
difficulty is overcome by associating with each connected Lie group H a group
in the so-called class [MB]; see Section 8. The associated group has, via Takai
duality, more or less the same representation theory as the original group. It
has the advantage that the orbits in the unitary dual of the nilradical are
locally closed. The definition of the class [MB] was arranged that way to
contain the stabilizers of points in that unitary dual as well. By an inductive
procedure the problem is finally reduced to two-step nilpotent Lie groups, not
necessarily connected. According to {31], in this case one understands very
well what the assumption on the existence of compact operators in the image
means.

The paper is organized as follows. After a brief discussion of representa-
tive functions on groups the class [MB] is introduced in the second section.
Moreover, there is established the existence of certain cross sections which
behave well with respect to representative functions. In the third section the
main Theorem 3.1, the existence of operators of finite rank in the image of
L1, is formulated for groups in the class [MB], together with some comments.
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Sections 4 through 7 are devoted to the proof of that theorem. In the final sec-
tion it is shown how connected Lie groups can be treated by means of groups
in [MB].

Let me finish this introduction with a technical remark. I shall always as-
sume that the various left Haar (Lebesgue) measures are suitably normalized
so that Weil's formula and the Fourier inversion formula hold true without
additional constants. Since it is a long paper this remark is repeated occasion-
ally.

1. Representative functions

In this introductory section we recall some elementary facts on represen-
tative functions needed later. More substantial information can be found in a
series of papers by Hochschild and Mostow, [24] is the first, [25] is the last arti-
cle of this series, and also in the books [21], [22], [34]. As we will later construct
functions with a certain decay with respect to all representative functions, the
real ones are good enough for our purposes: The real and the imaginary parts
of a complex representative function are again representative functions, hence
they do not deliver anything new. Of course, the following remarks apply to
complex representative functions as well.

Let G be a topological group. The group G acts on the algebra C(G) of
continuous real-valued functions by left and right translations, (M) )y) =

f (=), (o) f)(y) = f(y ).
PROPOSITION 1.1. Let f be a real-valued continuous function on the topo-

logical group G. Then the following are equivalent. ‘
(i) The linear span of {p(z)f |z € G} is ﬁnite-dz’mensz'onal.
(ii) The linear span of {Mz)f |z €G}is finite-dimensional.
(iii) The linear span of {Ma)p(y)f |z € G} = {p(y)A(@)f | =
finite-dimensional.
(iv) There exist continuous functior)zsf al,[;ll,ag,.e. g
zy) = ai(z 4 ooo+ ap(z)Bn(y) for ali T,y €4
f((V!)I)Therl'e( ei:f;t(?jgmctions 01,51,02, - - - Pn O G such that f(zy) = ay(x) -
Bily)+---+ n () Bn(y) for all T,y € G.
(vi) There exist a continuous representation . ’
real vector space V, a vector ¢ in V and ¢ vector 1 10 the linear du

that f(z) = (w(z)ém) for all T € G.

y € G} is

onyBn on G such that

wof Gina finite-dimensional
al V' such

(i) - (vi) are called (real) repre-

143 9. Functions f satisfying
D o d on of these functions forms an

sentative functions on G. Evidently, the collecti

algebra.

e R
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Proof. Suppose that f satisfies (i). Choose a maximal linearly inde-
pendent system aj,...,a, in the set {p(z)f | 2 € G}. Then a,...,a, is a
basis of the span of {p(z)f | z € G}, say V. In particular, for each y € G
there exist uniquely determined real coefficients Bi(y),...,B:(y) such that
p(y)f = B1(y)ar + - - + Bn(y)an. Evaluation at z gives f(zy) = Bi(y)ai(z) +
-+ ++ Bn(y)an(y). The functions «; are continuous as translates of f. We want
to see that the 3; are continuous, too. To this end define a map Z: G — R"
by Z(z) = (au(x), ..., an(z)). We claim that {Z(x) | € G} spans R". If not,
there would exist m < n and vectors Wy,..., W, € R*, W, = (wj1, .. ., wjn)
as well as functions 71,...,vm: G — R such that Z(z) = D he1 Vi(z)Wj for
all 2 € G, ie, ap = 377"  wjpy; contradicting the fact that the o’s span a
space of dimension n. Now choose ai,...,a, € G such that Z(ay),..., Z (ap)
is a basis of R". For each y € G one gets a system of linear equations

fla;y) = Bi()a (a5) + - -+ + Bu(y)en (a5)

for j = 1,...,n. The “unknown vector” (Bi(y),...,B.(y)) is uniquely de-
termined by this system. Since the functions y — f(a;y) are continuous,
Cramer’s rule shows the continuity of the B;.

We proved (i) = (iv). Concerning (i) = (vi) let, as above, V =
Lg (01,...,ap), define w(z) € GL(V) by w(z)a = p(x)a and define € V'
by {(@,n) = a(e). It is easy to see that f(z) = (w(z)f,n) for all z € G.
It remains to show that w is continuous. The continuity of the 8; shows
that the function z — w(z)f from G into V is continuous because w(z)f =
Bi(z)ar+: -+ fn(z)ay. Since G is a topological group then for each a € G the
function & — w(z a)f is continuous. But as w(z a)f = w(z)(w(a)f) and as the
vectors {w(a)f | a € G} span V it follows that w is a continuous representation.

It is easy to see that (iv) implies (iii) and it is evident that (iv) implies
(v). Hence we have (i) = (iii), (iv), (v), (vi). The opposite implications are
clear; therefore, (i), (iii), (iv), (v) and (vi) are equivalent. Also (iii) = (ii)
is clear. If f satisfies (ii) then fV, f¥(z) = f(z™!), satisfies (i), hence f has
property (iii) which implies that f satisfies (iii).

As a corollary of the proof one obtains the following lemma.

LEMMA 1.3. Let X and Y be topological spaces, and suppose that f: X X
Y — R is a function, which is separately continuous in each variable and
which is a tensor; i.e., there are functions aly...,an: X =R and B1,....0:
Y = R with f(zy) = ai(2)Bi(x) + - + an(z)Buly) for all z € Xy € Y.
Then the o's and 3’s can be chosen as continuous functions.

Proof. 1f n is taken to be minimal with respect to the possible represen-
tations of f then the o,...,a, and the 8i,..., 3, are linearly independent
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in the linear space of all functions on X and Y, respectively. The argument
above shows that there exist a1, . .., an € X such that (a; (ax)) is 2 nonsingular
n x n matrix. Hence for each y € Y the f1(y),...,Bn(y) are determined by
the system

f(aj,y) =01 (a) Br(y) + -+ + o (a5) Bn(y)

of linear equations, 1 < j < n. As above Cramer’s rule gives that the f1,...,6n
are continuous. Of course, the analogous argument applies to the os.

For later use we state the following easy lemma.

LEMMA 1.4. Let G be a topological group, and let H be an open sub-
group of finite indez. Let f be a continuous function on G such that the
right translates p(h)f, h € H, span @ finite-dimensional space. Then fisa

representative function on G.

Proof. Let V =Lg{p(h)f;h€ H } and let S be a set of representatives
for the H-cosets, i.e., each element T € G can be uniquely written as z = s h
with s € S, h € H. Then every right translate p(z)f = p(sh)f = p(8)p(h)f is
contained in the finite-dimensional space 3 es p(s)V.

This section is concluded by the following remark which later on will
simplify some arguments.

Remark 1.5. For each finite-dimensional continuous representation t of
G in the real vector space V there exists a positive representative function
r dominating all the representative functions associated with 1 i.e., for £ €
V,n €V there exists a constant C depending on ¢ and 7 such that

()¢, n)| < Criz)

for all z € G. Moreover, T may be chosen to be submultiplicative; i.e., 7(zy) <

r(z)r(y) for all z,y € G.

Proof. Choose a basis of V and define ¥jx: G — R, 1.5 jok < dimV =
7. to be the entries of the matrix associated with ¥(x) with respect to the

V .
2 + % whi i i sentative

chosen basis. Then let s = }:;‘ k=1 Vi +¥jk which evidently is a represent; o
function of G. If the chosen basis is declared to be an orthonormal basis for
a euclidean structure on V' then s(z) is essentially the sum of th.e squares of
the operator norms of ¥(z) and gb(:v)". More precisely, there is a positive

constant E such that :
12 « =

Es(z) < [p@)|* + @71 < 5@

for all z in G. From this interpretation of s it follows easily that s dominates

all representative functions associated with v and that s i submultiplicative
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up to a positive constant D: s(zy) < D s(z) s(y) for all z,y € G. Replacing
s by r =D s we find a representative function which is submultiplicative and
still dominates the representative functions associated with .

The remark means in particular that some of the representative functions
are so-called weight functions; for more detail see, for example, [41].

2. Cross sections

Later, cross sections with certain properties with respect to representative
functions will play an important role. Also we introduce here the crucial
class [MB] of auxiliary non-connected Lie groups which will be used to study
connected groups.

PROPOSITION 2.1. Let H be a connected Lie group with Lie algebra b.
Suppose that H admits a locally faithful continuous representation in a finite-
dimensional real vector space. Let to be an ideal in b contained in the nilradical
of b, i.e., in n=[hx] = [h,h] Nt where t denotes the radical of h. Then:

(a) The image W = exp o of tv under the exponential map is a closed normal
subgroup of H, and exp induces a diffeomorphism from w onto W.

Moreover, there exists a C®-cross section s: H /W — H with the follow-
tng properties:

(b) There exist Aq,...,A, € to and real functions o,....a,, Bi,...,0n

on H/W such that s(zy) = s(x)s(y) exp(Z;Ll aj(x)ﬂj(y)Aj) for all z)y €
H/W.

(¢) If p: H — H/W denotes the quotient map then s(zp(z)) = s(x)s(p(z))
for all z € H/W and all z in the center Z(H) of H. Moreover, s(p(e)) = e

and s(p(Z(H))) C Z(H). Hence s induces a homomorphism from p(Z(H))
into Z(H).

Proof. Let ¢: H — GL(V) be a continuous representation in the finite-
dimensional real space V with discrete central kernel. Then H/ker allows
a faithful representation with closed image; see [21, Chap. XVIII]. Hence we
may assume from the beginning that 1(H) is closed in GL(V). Since tv is
contained in n the differential dy’ induces an isomorphism from v onto a Lie
algebra consisting of nilpotent matrices. From this fact (a) follows easily.
Moreover, ¥ induces an isomorphism from W onto Y(W).

To construct the cross section s we form the “scindable hull” g of dvy(h)
in End(V) in the sense of [4, Chap. VIIL, § 5]. It is the smallest Lie algebra
in End(V) containing dy(h) such that with each element X in g the semi-
simple and the nilpotent parts in the additive Jordan decomposition of X are
contained in g. The algebra g is a semidirect sum (s x t) x u where s is a
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semisimple algebra, t consists of semisimple linear transformations on V such
that [¢, €] = 0 = [t, 5], and u consists of nilpotent transformations. In the nota-
tion of [4], u is just ny, is uniquely determined, and is the set of all nilpotent
transformations in the radical (= tx u) of g. Of course, di(rv0) is contained in
u, and de(ro0) is an ideal in g. Let G < GL(V) be the Lie group corresponding
to g (in its internal Lie group topology). The group G contains Y(H) as a
closed (co-abelian) normal subgroup.

The image V(Z(H)) of the center Z(H) of H is contained in the center
of G because if (), x € H, acts, via conjugation, trivially on di(h) it acts
on g trivially as well by the construction of the scindable hull. Also, if for
some z € H the image ¥(z) is central in G then z isin Z (H) because 1 is
locally faithful. Hence Z(H) = ¥~ '(Z(G)). Let § = {exps), T = expt and
U = expu. Then G is a semidirect product of ST and U, and in particular, the
groups ST and U have a trivial intersection. The center Z(G) consists of all
products zu where 2 is in the center of ST and z acts by conjugation trivially
on U (and on u); i.e., 2 is in the center of G, and u is in the center of U and
fixed under conjugation with elements in ST. The reason for this is that the
center of ST acts by conjugation semisimply on u while U acts unipotently.

Denote by 3(u)5T the space of elements in the center 3(u) of u which
are fixed under the action of ST, and choose a subspace a of 3(w)*T such
that 3(u)5T + dy(tv) is a direct sum of a and dy(ro). Moreover, choose an ST-
invariant vector subspace b of u such that u is a direct sum of v and a+dy(to).
This is possible because u is a semisimple .5 T-module under conjugation. Then
put C = ST expvexpa. This is a set of representatives for the 1 (W)-cosets
in G. More precisely, by the well known properties of the exponential map for
nilpotent groups (applied to U), for each = € H there exist unique elements
c¢(r) € C and v(x) € W such that () = ¢(z)w(y(z)); moreover v is a C>-
map. The desired s is given as s(z) = zy(x)~" which is actually a function on
H/W. Bvidently, s is a cross section against p: H — H/W. Very often we
will consider s as a function on H as well.

Concerning (b), let z1, 2 be given elements in G. We may write

(s(z;)) = b exp Xjexp¥; = c(z;)

with uniquely determined b; € ST, X; € v and Y; € a. We know that s(ziz2)
is of the form s(x)s(z2)w with a certain w € W which we want to compute.
On the one hand, 9 (s(zx172)) is in C and on the other hand, ¥(s(z122)) equals
Y(s(z,))(s(x2))h(w). This information determines w. Now

¥(s(@1))¥(s(x2))y(w) = by exp X1 exp Y1bg exp Xz exp Yatp(w)
= bybyexp (by ' X1b2) exp (Xa) exp (Y1 + Y2) Yh(w)

#

RIS e
[
g
B
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because Y is contained in 3(u)5T. Using the Campbell-Hausdorff formula one
finds a uniquely determined polynomial function P on v x v with values in fo
such that

expViexpV; € expoexpo exp(dy¥(P(V1,V3)))

for V1,V2 € v. Since exp(dy(Z)) = y(expZ) for Z € 1v one obtains w =
exp(~P(b; ' X1by, X3)). Choosing bases in v and v one readily sees that the
function (zy, ) —P(by ' X1 by, X3) has the form claimed in the proposition.

Concerning (c), we first observe that for h € Z(H) the element ¢(h) is
in Z(G) and v(h) is in Z (H). From the above discussion on the centers it
follows that 1(h) may be written as Y(h) =bexp Z with b ¢ (ST)NZ(G) and
Z € 3(u)T. The element Z decomposes as Z = Z, + Z,, with Z, € a C 3(u)’T
and Zy, € 3(u)T N di(w). But c(h) = bexp Z, is in Z(G) and v(k) is in Z(H)
because ¢(y(h)) = exp Z,, is in Z (G). Moreover, Ce(h) = C = ¢(h)C. The
claim (c) is equivalent to the equation s(zh) = s(z)s(h) forz € H, h € Z(H).
By definition, this equation is equivalent to zhy(zh)™! = zy(z) thy (k)L or,
as h is central, to y(hz) = Y¥(h)¥(z). But from P(x) = c(z)y(y(z)) and
(k) = c(h)9(y(h)) follows

V(ha) = Y(h)(z) = e(h)b(1(h))e(z)(1(z)) = c(R)e(@)b(v(h) ) (v(z)),

as Y(y(h)) is in Z(G), and hence YO (¥(z)) = Y(y(he)) and c(hz) =
c(h)c(z) because c(h)e(z) € C.

Definition 2.2. We denote by [MB] the class of Lie groups G which are
semidirect products G = B x M with the following properties:
(i) The group B is a compactly generated abelian Lie group.
(ii) The connected component My of M allows a locally faithful representa-
tion in a finite-dimensional rea] vector space.
(iii) The adjoint group Ad(My) in Aut(m), m = the Lie algebra of M, is the
connected component of an algebraic group.
(iv) The commutators [M,B] are central in G.
(v) The commutators [M,M] are contained in the B-fixed point set M5.
(R) There exists a closed subgroup D of M, central in G, such that G/D is
isomorphic to a closed subgroup of GL,(R) for a certain n.
(Z) There exists an open subgroup L of M, invariant under the action of B
such that M/L is finite, I, = MoZ(L) and L/M, is a finitely generated abelian
group.

Remarks 2.3,
(2) Condition (iii) is, of course, a local property, i.e., a property of the Lie
algebra m. Actually, by a theorem of Goto’s, see [7. Chap. V, § 5, p. 336] or
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[23], it means that m is the Lie algebra of a real linear algebraic group; i.e.,
M is locally isomorphic to such a group.

(b) The properties (i) through (Z) are somewhat redundant. For instance
it follows from (R) that B is necessarily a compactly generated Lie group.
Moreover, the above properties are certainly not minimal for the arguments
to go through in the proof of the main Theorem 3.1. For instance, I am almost
sure that one can circumvent property (ii). Its presence simplifies some proofs
and eliminates tedious discussion of a number of uninteresting cases. Property
(if) is not shared by the Heisenberg group with “compactified center.” In any
case the class [MB] is good enough to give the theorem for connected Lie
groups — and this is the justification for its existence.

(c) From (i), (iv) and (v) it follows that all commutators [G,G] are contained
in MB,

(d) For examples of such groups see the final section.

In the next theorem we extend the cross sections of Proposition 2.1 to
cross sections for groups in the class [MB.

THEOREM 2.4. Let G = Bx M be a Lie group satisfying (i), (i), (iv), (v)
and (Z) of Definition 2.2. Let ro be a subspace of the nilradical of m, invariant
under the adjoint action of G. Then the following hold true.

(a) The image W = expto is a closed normal subgroup of G, via exp diffeo-
morphic to tv.

(b) There exists a C®-cross section o: G/W — G such that for each rep-
resentative function r on G the composite function r o o is a representative
function on G/W . Moreover, o(e) = e, and when o is viewed as a map from G
into G then o(Z(M)) C Z(M) and o(zz) = o(z)o(2) for x € G, z € Z(M).

(c) If in addition G satisfies (iii) and (R), i.e., G belongs to [MB], then
G/W = B x M/W belongs to [MB], too. Actually, if D is a central subgroup
of G as in (R) then DW is closed, DW/W is central in G/W and G/DW s
isomorphic to a closed subgroup of some GLy, (R), i.e., D' = DW/W has the
required properties with respect to Bx M/W . Also there is a C*°-cross section
T: G/WD — G/D such that r o T is a representative function of G/WD for
each representative function r of G/D.

Proof. Claim (a) was shown in Proposition 2.1. Observe that part (ii)
of Definition 2.2 gives that H = Mj allows a locally faithful representation.
The assumption that ro is G-invariant guarantees that W is normal in G. To
prove (b) we extend a cross section s: My/W — My with the properties of
Proposition 2.1 step by step. First we choose a subgroup L = MyZ(L) of M

as in (Z). Without loss of generality we may assume that Z(M) is contained
in L.

e
R
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When the cross section s is viewed as a function on M, constant on
W-cosets, it induces a continuous homomorphism Z(M,) — Z(Mp). This
homomorphism delivers a continuous homomorphism v : Z(My)/Z(My)NW —
Z(My) with s(z) = v(z- (Z(Mo) NW)) € 2(Z(My) NW) for z € Z(Mj). Since
to is contained in the nilradical, the group Adys, (W) consists of unipotent
linear transformations. In particular, Adss, (W) is a simply connected group,
which implies that Z(Mg) N W = W N ker Adyy, is a vector group. From
this fact one easily deduces that v can be extended, there exists a continuous
homomorphism ¢: Z(L)/Z(Mp) "W — Z(L) such that e(z(Z(My) N W)) €
2(Z(Mp) NW) for z € Z(L) and e(2(Z(Mo) NW)) = v(2(Z(Mp) N W) = s(2)
for z € Z(My). Viewing € as a map on Z(L) we defineo: Bx L — Bx L by

o(brz) = bs(z)e(z) forbe B, z € My and z € Z(L).

Using the properties of s and ¢ we easily check that o is well-defined,
smooth, and constant on W-cosets, and that o induces a cross section against
the quotient map B x L — B x (L/W).

Next we show that ¢ differs from a homomorphism in a controlled way
as in (b) of Proposition 2.1. By (iv) of 2.2 the commutator b~!yby~!, b € B,
y € L, is central in Gj; in particular such a commutator is contained in Z(L).
Moreover, b~'yby~! equals b~ o(y)bo(y)~! because o(y) differs from y by an
element in W, but W is contained, by (v) of 2.2, in the B-fixed point set. By
construction of ¢ the element

E(b,y) = (b yby )b yby ! = (b7 yby ™) b o (y)bo (y) !

is contained in WNZ(Mp). The map E on B x L factors through B x (L/L?).
By (v) of 2.2, L/L? is an abelian group, actually a compactly generated abelian
Lie group. We conclude that E defines a continuous bicharacter on B x (L/L?)
with values in W N Z(M,), which is a vector group. Such bicharacters are
essentially given by matrices; in particular, we find functions ay,...,¢ponL,
Bi,..., 0, on B and elements Aj,..., Al in wN3(m) such that

E(b,y) =exp ) o}(y)B}(b) AL
i=1

For each element y € L = MyZ(L) we choose an element t(y) € Mg such
that t(y) 'y € Z(L). According to (b) of 2.1 we choose elements A, ..., An
in v and functions ay,...ay, Bi,..., B, such that

8(x122) = s(z1)s(z2) exp Z aj(:cl)ﬁj(zg)Aj

j=1



UNITARY REPRESENTATIONS OF LIE GROUPS 513

for 21,29 € My. Now let by,bp € B and y1,12 € L be given. We want to
compare o (b y; baya) with a(biy)o(baya), hence define w € W by o(byibatp) =
o(byy1)o(boys)w. Then we get

o (bybaby ' yibaya) = bibao(by 'yibays yiye) = bro(yr)bea (ge)w,
hence
o(by yibayy 'yrye) = by o (y1)bao(y2)w = bild(yl)bfzo(yl)—ld(yl)a(yz)'w-

Since by 'y1boy; I is central in B x L and since ¢ is multiplicative with

respect to central elements we find
o(y1y2) = 5(551ylbzyfl)—1bz—l0(3/1)1)20(?/1)_10(?!1)0(?/2)“’
— E(bs,yn)o(y)o(y)w = oly)oy2)wE (b2, 1)
Now write y; = t(y;)z; with z; € Z(L) for j = 1,2. Then
o(y1y2) = e(2122)s(t(y1)t(y2))
= 6(2122)S(t(yl))3(t(y2))expiaj(t(yl))ﬁj(t(yz))/ij
=
and

o () (y2)wE(be, y1) = e(z1)s(t(y) e(z2)s(t () wE (b2, 1)

whence

b= By ) exp Y s Bi(e) Ay

j=1

= exp (Z 0 (4 ) B (t(2) A ~ 209(1/1)‘33'(”2)‘49’)‘

j=1 i=1

It follows that there exist elements @1, - -
tions A1,..., Ak, f1, .- Mk OB B x L such that

., Qr € w and real-valued func-

k
() o(uw) = o(u)o(v) exp Z Aj(u) (V)i
j=1
gh the construction of the A/s and p's does

thou :
for all u,v € B x L. Even nction ¢ might be discontinuous) it follows

not ma. continuous (the fu :
from L:rflrtrf: I1n.3 that one c.'(m arrange for them to be co?tlnuous.t e hole

Finally we extend the cross section ¢ in the most obv1oustw§y Go. | : hole
of G. Choose any set F of representatives for the. B x L-cosets iln ,G.I; cac
element in G can be uniquely written as fu with f € F and u .

Then define o: G — G by of fu) = fo(u). Clearly, o delivers a C>®-cross
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section G/W — G. We are left to show that r o ¢ is a representative function
for each function r on G which is of the form r(z) = (y(z)¢,n) for some
continuous finite-dimensional representation ¢ of G in V, £ € V and neV.
By Lemma 1.4 it is sufficient to show that the right translates of r o ¢ with
elements uy € B x L are contained in a finite-dimensional space. This means
that we have to consider the following functions in z = fu, fe F,ue Bx L:

r(o(zu)) = r(fo(uuo))

k
= (W{Fo(w)p(o(u0)) (exp (T (u)uj<uo)czj))s,n>
j=1

k
= Wieteotu) exp( Y- () )b @) )€1
j=1

by means of (*).
But as 1 is contained in the nilradical the above exponential is actually a

polynomial. Hence there exist endomorphisms P, ... , P, on V and functions
Kly--.yKqy V1,...,Vg on B x L such that
k q
exp( 3 A )EQ) ) = D ry (a0,
j=1 j=1

for all u,up € B x L. Extending &, to G by Kj(fu) = k;(u) one obtains

q
ro(zuo)) = )_&;(@)($(o(2))p(o(uo))v; (uo) Pié, m);
j=1

.e., each of the functions z — r(o(zup)) is of the form

q
z— > F(2) (W (o(x))E;, )
j=1

with vectors £y,...,&, € V. This set of functions forms a finite-dimensional
space.

ad (c) Except for (ii), (iii) and (R) all other properties of the groups in
[MB] are evidently satisfied by B x (M/W). Concerning (iii) it is enough to
observe that the adjoint group of (M/W)o = My/W is obtained from Adm(Mo)
by taking the induced transformations in m/r. Also it is a general theorem,
see e.g., [23], that the quotient of an algebraic Lie algebra with respect to an
ideal in the nilradical is again an algebraic Lie algebra.

Let D be a closed subgroup of M, central in G ,and let 9): G — GLn(R) be
a continuous homomorphism with closed image and kery = D. Since ¥(W) i
a closed (simply connected) subgroup of GL,(R), the group WD = ¢~ (v(W))
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is closed in G. The group G/D = Bx (M/D) evidently satisfies the properties
(i), (ii), (iv), (v) and (Z) of 2.2. The Lie algebra of WD/D «G/D fulfills the
hypothesis of the theorem. Applying part (b) of the theorem to the quotient
map G/D — G/DW we find a cross section 7: G/WD — G/D with the
properties described there. In particular, if ¥i(z), T € G, are the entries of
¥(z) then there exist representations pix of G/WD in real vector spaces Vik
and vectors & € Vix and n; € Vi, such that

Yik(T(2)) = (pi(£)Eiks Tik)
for € G/WD. Forming the direct sum p = @pi We see easily that pis a
ik

faithful representation of G/W D and its image is closed.
Similarly, even more easily, one can show that (M/W)y = Mo/W has

property (ii).

By the way, both (i) and (R), can be verified for G/W along the following
lines. The group (W), ¥ as above, is an algebraic subgroup of GL.(R). The
normalizer H of y(W) is an algebraic group, too, containing ¥(G). The quo-
tient H/y(W) exists as an affine algebraic group, and it contains ¥(G) /¥ (W)

as a closed (in the euclidean topology) subgroup.

3. Statement of the main theorem and remarks

THEOREM 3.1. Let G be a Lie group in the class [MB), and let 7 be a
continuous irreducible unitary representation of G such that 7 (C*(G)) con-
tains the compact operators. Suppose that a central subgroup D of G according
to (R) of Definition 2.2 s chosen. Then there erists a C®-function f on G

such that
(a) [ |f(x)r(z)|dz < o0 for all representative functions 7 of G/D, and

(b) m(f) is an orthogonal projection of rank 1.

will be used at several places. Their content is,
roughly speaking, that to construct functions f with Ll-estimates with re-
spect to representative functions and to construct functions with uniform esti-
mates with respect to representative functions, such that m(f) is an operator
of rank 1, are more or less equivalent tasks. Also smoothness is no problem at
all, since this can be arranged for by convolving with test functions.

to a general Lie group G with a given
o a closed subgroup of some

The following remarks

Remarks 3.2. These remarks apply
central subgroup D such that G /D is isomorphic t

GL.(R).
ter of D. If a measurable function g on G

(A) Let v be a unitary charac
satisfies g(zz) = g(z)y(z)" forall z € Dandz € G and sg[/)D|g(x)r(a:)| <
ze
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for all representative functions r of G/D (observe that |g| is a function o1

G/D) then the integral
[ sl
G/D

is finite for all representative functions on G/D.

For the next three remarks let # be a continuous irreducible unitary rep
resentation of G such that n(z) = y(z)Id for z € D.

(B) The following are equivalent:

(1) There exists a measurable function g on G with the propertie
described in (A) such that

r(g) = ]G @)

is a nonzero operator of finite rank. Observe that the integrand g(z)n(z) i
actually a function on G/D by the transformation property of g.

(2) There exists a measurable function h on G such that h(z2)
h(z)y(z)~! for all z € D and z € G, such that

/ |h(z)r(z)|dz < oo
G/D

for all representative functions r of G/D such that 7(h) is a nonzero operato
of finite rank.

If (1) or (2) is satisfied then there exists a C™-function k on G Wit
k(zz) = k(z )'y(z) ! for all z € G,z € D such that
(@) fgp Ik(x)r(z)|dz < oo for all representative functions r on G/D,
(b') m(k) is an orthogonal projection of rank one,

)
() sg;/)D|k(x) r(z)| < oo for all representative functions on G/D,
ze

(d') All derivatives X % k * Y where X, Y are in the enveloping algebra i
satisfy (a') and (¢') as well.

(C) If there exists a continuous function f on G satisfying (a) and (b) as i
the theorem then (1) and (2) are satisfied, hence there exist functions k 2
above.

(D) If (1) or (2) holds true then there exists a C°-function f satisfying (2
and (b) of the theorem and in addition

(c) stelgl f(@)r(z)| < oo for all representative functions r on G/D, and

(d) all derivatives X « f x Y where X,Y ¢ g, satisfy (a) and (c).

Combining (C) and (D) one sees that one might add the properties (¢
and (d) in the statement of the theorem.
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Proof of (A). Let ¢ be an isomorphism from G/D onto a closed sub-
group H of GL,(R). Define 3 on GL,(R) by

Ba) = (14 Y ahm(detz)™

1,k=1

where m is some large positive integer and z;; are the entries of the matrix z.
Since the left Haar measure on GL,(R) is given by (detz)™"dz1 .. .dzy,y, the
integral over %,- equals

n
[{1 + Z 2%} ™dz11 ... dTnn

i,k=1

which is finite if m is chosen large enough - and this is assumed from now on.
Hence for almost all z in GLy(R) the integral

/ ! A(w)b(w) " du
H

(zu)

is finite where du denotes the Haar measure of H, A and § are the modular
functions of GL,(R) and H, respectively; see €. 1, p. 95]. Pick such an :f
Then evidently the function ro on G /D given by ro(u) = Bz p(w) A (w) ™
6((u)) is a (positive) representative function on G/D satisfying

/ ro(u) 'du < co.
G/D

Now let  be any representative function on G/D. Then |g(z)r(z)] =

\9(z)r(z)ro(x)|ro(z) " for all z € G. Since |g7 7ol is uniformly bounded on

G/D by assumption and rl is integrable we conclude that |g(z)r(z)| is inte-
0

grable over G/D.

Proof of (B). The implication (1) = (2) is obvious in view of (A). pne
may simply take b = g. Actually, (A) is necessary to ensure that m(g) exists.
To prove (2) == (1) let h be as in (2), take any compactly supported

continuous function y on G and let g = @ *h. Then. g satisﬁes g(zz) =
g(z)y(z) L for all z € G, 2 € D. Let r be a representative function of G/D.

We want to show that |gr] is uniformly bounded. In view of Remark 1:5 we
may suppose that T is positive and submultiplicative. Hence there exists a

positive constant C such that
r(sy) < Cr(y)

1 the support S of . Let T € G be given. Then |gr|(z)

f dallsi .
orll y € G and o ) = fodsl@ |1 (5712) ). Sinee

is estimated by [ dule()! [h (7'2)
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r(z) < Cr(s7'z) for all z € G and s € S we obtain

lgri(z) < C/Gdy le)h (y~'z)| r (y'x)

_C /G dylp(zy)h(y)lr(y).

Define ® on G/D by ®(y) = Ip le(y 2)|dz, where y denotes the D-coset
of y. Then ® is a compactly supported continuous function on /D, hence
uniformly bounded by C, say. One gets

lgrl(z) < © /G L WRERWIG) < fc L dilhr)

which is finite by assumption.

Moreover, 7(g) = w()x(h) is an operator of finite rank and clearly ¢ can
be chosen in such a manner that 7(g) # 0.

The equivalence of (1) and (2) is established. We are left to prove the
existence of a k with the properties claimed in (B). Let B denote the set of all
measurable functions f on G such that f (zz) = f(z)y(2)"! for all z € D and
z € G and such that (a) holds; ie.,

/ |f(z)r(z)|dz
G/D

is finite for all representative functions of G/D. Using once more that each

T may be substituted by a submultiplicative one, and that r ~— + transforms
the representative function into itself one deduces that B forms an involutive
algebra where the convolution and involution are given by

(f *9)(z) = /G TP

and f*(z) = f (z71)” A(z)~L.

It is easy to see that B contains “many” functions; e.g., for each ¢ € C.(G)
the function ¢#, defined by o*(z) = [ p P(z2)7(2)dz, belongs to B.

Now, let h as in (2) be given; i.e., h is contained in B and n(h) is a nonzero
operator of finite rank. Then clearly A := h*xBxh is an involutive subalgebra
of B. The image m(A) is a nonzero finite-dimensional involutive subalgebra of

B(9) if 9 denotes the space of 7. Since 7(.A) is finite-dimensional it coincides
with

m(R)'m (€@ m(h) = m(h)*x (LY(G)) m(h) = m(h)*n (CH(G)) 7 (h).
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If & denotes the kernel of w(h) then m(A) annihilates & and transforms the
(finite-dimensional) orthogonal complement &1 into itself. In the obvious way
one may view m(.A) as a C*-subalgebra of B (84).

Using the irreducibility of 7 one deduces immediately that 7(A) acts
irreducibly on &*. Hence, in the original picture, 7(A) actually consists of
all T € B($) with T(R) =0and T (RL) C A*t. In particular there exists a
ko € A C B such that 7 (ko) is an orthogonal projection of rank one. Take a
test function ¥ on G and form k = ¥* * ko x¢. Then k satisfies (a'), also k is
equal to (¢*)¥ x ko xy# where ¥ is defined as above and now the convolution
has to be performed in B. The operator m(k) equals m(1)*m(ko)m (1), hence
7(k) is a nonnegative multiple of an orthogonal projection of rank one. Clearly,
one may choose v such that m(k) is an orthogonal projection of rank one.
Viewing k, for instance, as the convolution of " and ko * ¢ € B we saw in the
proof of (2) = (1) that k satisfies the uniform estimate (¢/). Concerning (d')
one observes that the derivatives X » k ¥ Y of k are of the form @1 * ko * @2
with test functions ¢i,@2 which is, as we have seen, good enough to ensure

(a') and (c').

Proof of (C). Suppose that the continuous function f on G satisfies the
properties (a) and (b) of the theorem. As above form f#(z) = [p f(z2)y(z)dz.

Then clearly h = f# has the properties stated in (2).

Proof of (D). If (1) or (2) holds true then there exists a fl.mction k
with the properties (a') through (d) of (B)- Tal.ce a Bruhat f.unctlon‘b, sec
for instance [41], on G with respect to D; jie,bisa nonneg.at%ve continuous
function on G such that for each compact set K in G the restriction of bto KD

is compactly supported and that [pblzz)dz =1 fo.r all z € G. Then put ];0 =
kb. The function fy satisfies (a) and 7(fo) = w(k) is an ortho*gonal projection
of rank one. Choose a test function ¢ on G such that r(tp)* m(fo)r(¥) {sﬁan
orthogonal projection, too. Then the smooth fun.ction' f‘= P x {10 :zp Szlgl)s es
(a), (b), (c) and (d). This can be seen by reasoning similar to that in (D).

4. Nontrivial kernels of dm on the nilradical

Tn this section we begin with the proof of Theorem 3.1 which proceeds by

induction on dim M. First we consider the case: o ' -
(T) There erists a nonzero ideal v in the mlrad@l'nl ; nI}I’/' Tv;gas
under the adjoint representation of G, such that w s trinal on

In other words, © is not locally fi aithful on eXp- Iso denoted by 7.

. . tation of G/W, a
The representation 7 yields a repres‘gl/f;v‘ _ B x M/W belongs to [MB].

As was shown in Theorem 2.4 the group &/ M/ o the
Given D in G the canonical choice for pinGWisD = DW/W. In

Fe; e
wib
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proof of (c) of Theorem 2.4 we constructed a C*-cross section 7: G/WD —
G/D carrying representative functions of G/D into representative functions
of G/WD.

Clearly, we apply the induction hypothesis to the representation 7 of G/W
with given central subgroup D’'. As in the Remarks 3.2 we let v € D be the
character corresponding to 7. Of course, we will view 7 also as a character of
D' = DW/W ~ D/(Wn D). By (C) and (D) of 3.2 there exists a smooth
function f on G/W satisfying

o f(zz) = f(x)y(z)"! for all z € G/W,z € D',

o 7(f) = [, ow J (z)m(z)dz is an orthogonal projection of rank one;

o[- WD |f(z)r(z)|dr < oo for each representative function r of G/W D.

To lift f back to G appropriately we use the above cross section 7. Denote
by p: G — G/D and by q: G — G/W D the quotient maps. For each
z € G the element 7(¢(2))"'p(z) of G/D is contained in WD/D. Choose a
nonnegative test function ¢ on WD/D such that [, D ¢(v)dv = 1. Then
define the (smooth) function F on G by

F(x) = f(z)p (r(g(z)) ' p(x))

where, of course, the function f on G/W is considered as a function on G in
the most obvious way.

The function F satisfies F(z2) = F(z)y(z)™! for all z € G,z € D. Next
we want to show that [, sp |F(@)r(z)|dz is finite for each representative func-
tion r of G/D. By 1.5 we may assume that r is positive. Choose a continuous
representation p of G/D in the finite-dimensional real vector space V and vec-
tors £ € V and 1 in V' such that r(z) = (p(z)£,n). When we use the cross
section 7 the integral [, /p |F(z)|r(z)dz may be written as

/G/WD Y /WD/D dw |F| (r(y)w) r(r(y)w).

For y € G/WD and w € WD/D the value |F|(r(y)w) equals
[fl(r(¥)e(w) = |f}(y)p(w). Hence

/G/DlF(er(x)dx -/ o /WD/D du|F|(y)p(w)p(r () (),
= [, S )

where £ = fWD/D dwo(w)p(w)€. But the integral fG/WD dy |f1(w) (p(r (@))€’ M
exists because y — {p(7(y))¢',n) is a representative function of G /WD.
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Using [y p /D ¢(v)dv = 1 one easily computes in a similar fashion that
7(F) = n(f). Hence h = F satisfies the requirements of (2) in (B) of 3.2 and
by (D) of 3.2 we are done.

5. Induced representations

Next we consider the case Ind), the case of induced representations, which
constitutes the main body of this paper. An isomorphism constructed by
Green for C*-algebras will be «concretized” in terms of smooth functions.

Ind) There ezists an abelian ideal 1o in the nilradical n of the Lie algebra
m of M, invariant under the adjoint representation of G, such that the kernel
of m in LY(W), W = expw, is of infinite codimension in LX(W).

The Pontrjagin dual /W, which is the structure space of the Banach algebra
LY(W) can be identified with the linear dual tv* in the usual manner, the
functional 4 on v corresponding to x € W given by x(expY) = e‘%“”(y)., Y €
to. The group G acts on * by (z¥)(Y) =¥ (Ad(z)™! /Q/ )) and, accordingly,
on W by (xx)(w) = X (z'lw:c) for z € G,w e W,x € W, €10’ and Y € 1.
From (iii) of 2.2 it follows from a theorem of C. Chevalley, (see [10,. p. 183],
for an outline of the proof), that the My-orbits in r*, which are orbits of the
“almost algebraic” group Ad(My), are locally closed in ro*. From (Z) of 2.? we
obtain that the M-orbits in ro* are locally closed, too. They are finite unions
of My-orbits, whose numbers do not exceed the index of'L in M. .

As B acts by (v) of 2.2 trivially on no*, the G-orbits @d the M-orbits
coincide. Since 7 is irreducible the kernel of 7 in E(W) is the kerl}el (in
the hull-kernel sense) of the closure of a G-orbit in W As the G-Orblt.S are
locally closed such a closure contains a unique relatively Ope'n G-orbit 2),
say 9) = Gyp. Altogether we obtain kerpyw)® = k @) Usmg the above
identification we will view 9) as the subset Gy of m*: tI‘he M(]-OI‘.bIt X :;' }Il\/low(;
is a relatively open subset of 9. Let H be the stabilizer of %o In G. The se
9 is a submanifold of tv*, diffeomorphic to G /H. .

For later use we choose a measurable cross section 7
o(¥)y = ¥ and a(tho) = & and a coor

the following properties:
(5.1) e & is a diffeomorphism from the unit cube Q = {(z1,--- . Tm)

in R™, m = dim v, onto the open subset #(Q) of 10

*5(Q)NYP CX, . .

Py ';(—lex)g)z ﬂ—l @) — Qn X {0} where n = dimX = dlmG/H and
Q" = {(z1,...,2zn) €ERY lzj| < 1},

* (0) = 1,

e o is smooth on (@) NX.

9 — G, ie.,

dinate system K around y in r* with

|asl < 1}
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The cube Q" will be identified with Q™ x {0} C @ and similarly the unit
cube Q™™™ in R™™" with {0} x @™ C Q. In the sequel we will use the cross
section o effectively only on k() N X. A crucial réle will be played by the
map {: G x Y — H defined by

(5.2) ((y, %) = o(yy) 'yo(v).

Next we claim that the stabilizer group H belongs to the class [MB]. Since
B does not act on tp* it is contained in H. Hence H is the semidirect product of
B and HNM. The properties (i), (ii), (iv), (v) and (R) are obviously satisfied
by H. Observe that D is contained in H. To prove (Z) for H pick a subgroup
L of M according to (Z). Since Z(L) fixes 1 we obtain from L = MyZ(L) that
LNH = KZ(L) where K = MyN H. Moreover, (LN H)g = (M N H)y = K.
Since the stabilizer of ¥y in the “almost algebraic” group Adm (Mp), which is
nothing but Ady(K), has only finitely many components (because stabilizers
in linear algebraic groups are again algebraic, (see e.g., [7, Chap. 1II, n°9,
p. 208]), and real linear algebraic groups have only finitely many connected
components with respect to the euclidean topology, (see e.g., [45])), we deduce
that Adw(Kp) is of finite index in Ady(K).

Hence Z(Mg)Kp is of finite index in K. Therefore, Z(L)Z(Mo)Ko =
Z(L)Kjy is of finite index in Z(L)K = LN H, which is of finite index in MNH.
Altogether, Z(L)Kj is an open subgroup of finite index in M N H. Hence
as the “L-group” of B x (M N H) we may take L' = Z(L)K,. Clearly L' is
B-invariant as L, and hence Z(L), is B-invariant, and as M N H, and hence
Ko = (M N H)y, is B-invariant.

To see that the discrete abelian group L'/Kj is finitely generated we
first observe that the quotient L'/L’' N My of L'/Kj is isomorphic to a sub-
group of L/My, hence finitely generated. Therefore, we only have to study
(L' N My) /Kp. Since L' N My = KoZ (Mp), the latter quotient is isomorphic
to Z (Mo) /Ko N Z (Mp), which is finitely generated because Z (Mp), as the
center of a connected Lie group, is compactly generated.

It remains to show that the adjoint group of (H N M)y = Kj is the
connected component of an algebraic subgroup of GL(¢) where £ denotes the
Lie algebra of K. The theorems on algebraic groups mentioned above imply
that Ady (Ko) is the connected component of an algebraic subgroup of GL(m).
Since Ady (Ko) in GL(¥) is obtained from Ady (Kg) by restricting the linear
transformations to ¢, it has the claimed property. Of course, the Zariski closure
of Adw (Kp) in GL(m) leaves ¥ invariant as well.

We are going to apply the induction hypothesis to the group H. By
Mackey’s 1mpr1m1t1v1ty theorem 7 may be written as an induced representa-
tion, 7 = ind% 7, for some continuous irreducible unitary representation 7 of H
with 7(w) = xo(w) Id for w € W. But we need some more information, namely
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that 7 (C*(H)) contains the compact operators. This information is supplied
by a theorem of Ph. Green, (18], which may be viewed as a C*-algebraic version
of Mackey’s imprimitivity theorem.

To be specific, let G x W be the semidirect product with multiplication
(z,a)(y,b) = (zy,y 'ayb). There is a canonical homomorphism Gx W — G
given by (z,a) — za. This homomorphism delivers a representation p of
G x W, p(z,a) = m(za). The Ll-group algebra LY(G x W) may be viewed as
the covariance algebra L! (G,L!(W)); see [29]. The representation p vanishes
on L! (G, k (9)), hence one obtains a representation of L! (G,L(W)/k ®?)),
also denoted by p. The p-image of the C*-hull of this algebra, which equals
7 (C*(G)), contains the compact operators.

The C*-hull is nothing but C* (G, Coo(D)) where the action of G on C(Y)
is induced by the action of G on 9. Moreover, p is nontrivial on the ideal
C*G,Cx(9)) in C*(G,Cu (7)) where C (D) is identified with the set of func-
tions in Coo (%)) vanishing on 2\9. Hence p(C*(G,Ceo ())) contains the com-
pact operators. By Corollary 2.10 of [18] the algebra C*(G ,Co(D)) is isomor-
phic to the C*-tensor product of C"(H ) and the algebra of compact operators
on L2(G/H) for a suitable (quasi-invariant) measure on G/H. This means that
the space of p, which is the space of 7, can be written as the tensor pr'oduct
of a Hilbert space $ and L%(G/H) such that the representation p co,nmdered
as a representation of C*(H) ® A(L%(G/H)) acts by p(f ®.A) = T (f)*® A
for f € C*(H),A € A(L¥(G/H)) and a certain representation 7’ of C*(H).
Evidently, 7/ (C*(H)) has to contain the compact operators on 9. o

Now one can either show that 7 = ind 7' (avoiding the application of
the classical imprimitivity theorem) or if one starts from = ind 7 one can
show that one may choose ) = Hr, 7/ = 7. In any event, 7 18 induced from a
continuous irreducible unitary representation 7 of H such that 7(w) = Xo(w). Id
for w € W and 7(C*(H)) contains the compact (?perators. Instead of ;slmg
2.10 of [18] one could deduce this fact even more directly from Theorem 3.1 1n

' ' for th
18]. 1 preferred the other approach because it contains the program Ior the

treatment of case Ind): |
Go through the various identifications

" : *_alaeb lements.
ions instead of C*-algebra e lar on D, say m(z) = ¥(z)1d and

The representations 7 and T are sca | . . .
T(z) = y(z)Id for v € Dandall z€ D. Applying the induction hypothesis

to (H,, D) we deduce from 3.2 that there exists a ¢-function f on H such

that
— D.
(5.3) o f(x2) = :x;fyz)lforalla:EH,ze ; .
| ‘);‘(X *)f *fl(’drl( is uniformly bounded on H/D for all representative
functions r of H/D and all X, Ye Ll‘h;
o 7(f) is an orthogonal projection of rank one.

above with particularly chosen func-
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Suppose that left Haar measures on G' and H are chosen, let A and §
be the respective modular functions. Then take the “measure” y = gy on
G/H in the sense of [1, p. 93); i.e., u applies to functions T on G satisfying
T(xh) = 6(h)A(h)'T(z) for z € G,h € H, and for any compactly supported
continuous function S on G one has

/ Si)dz=¢ du(z) / dh S(zh)é(h) ' A(h).
G G/H H

We choose a smooth function u on the manifold ) such that the (compact)
support of u is contained in & (%Q") where x is the coordinate system of (5.1).
In particular, the support of u is contained in X. Moreover, we assume that

CO S @ ()8 (olaw) 12) & (olavo) a) = 1.

Observe that o'(z) := o(xyp) 'z € H for all z € G and that o’(zh) =
o’(z)h for all h € H. From the latter equation one deduces easily that the

above integrand satisfies the requirements for the application of p. Then define
Fo: GxYP — Chy

(5.5)  Fo(y, %) = 6(Cy, ¥)2 Ay, ¥) V2 uly) Ao (¥)) T(9) F(C(y, v))

where ( is as in (5.1). The support of this function Fy is contained in the closed
set {(y,¥);%,y¥ € supp(u)}. On the open neighborhood {(,v);v,y¥ €
% (3Q")} of this set, the map ¢ is smooth, hence Fy is smooth. Our next goal
is to extend Fj to a function F on the whole of G x w*. This can be easily
done by means of the coordinate system x. Choose any smooth function s
on QM " = {($n+1, e Zm) s x| < l} such that s(0,...,0) = 1 and that the
support of s is contained in Q™ ™. Then put F = 0 on G x (tv* \ k(Q)), and
on G x k(Q) define F by

Fy,k(z1,...,2m)) = Fo(y,k(T1,...,2n)) S (Tns1,- - -, Tm)
(56 =5, zm) (82A72F) (Com (a1, ., 20)
X u(yk(z1,...,2,)) u(k(x1,...,20)) Ao (k(z1,...,24)))

where, of course, x(z1,...,T,) means K(z1,...,2n,0,...,0) in view of the
identification of Q" with Q" x {0}.

Clearly F'is smooth. For each y € G the support of F(y,—) is a compact
subset of K (%Q) Moreover, just like f, the function F has a transformation
property with respect to D,

F(yz,¢) = 7(2)" F(y,¥)
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for all z € D, y € G and ¥ € w*. Next we take the inverse Fourier transform
of each F(y.—): i.e.. Fy on G x w is given by

Fly.X) = |

L]

dy X F(y,9).
Then we define g: G — C by
o) = [ aX Blyen(=X).X)
o

(5.7)
= / dX/ dy e X Py exp(—X), ¥)-
o n*
This step corresponds to the transition G x W — G in the above consid-
erations. The existence of the integral defining g requires some justification.
Actually, we also want some decay of g. Both will later be deduced from the
following structure of the derivatives of F. .

(5.8) For each linear partial differential operator A on r* with smooth
coefficients there exist some natural number J and for 1'§ j < J smooth
functions v; on Q, wj on k(Q"), hj on H and representative functions r; of
H/D such that:

® hj(zz) = hj(a';)'y(z)“l forallz € H,z € D;

® |(X h; *Y)r| is uniformly bounded for all X,Y €
sentative functions r of H/D;

o (AF) (b, &k (z1,.-,%m))

1h and all repre-

=Y v (@ sam) s (b (21, .+ n)) (rihs) (C By (@1 )
j=1

(z1,-.-1Tn) € k(@)
tion of AF is indeed complete be-
it even vanishes on a considerably

for all (b,z1,...,zm) € G x @ such that bk

Observe that the above partial descrip
cause at other points AF vanishes anyway,
larger set.

To verify (5.8) we need the (total) d
Do C(b, 1) € H for (b,) € Gxro’ with b € £ o Ttter
“computed” by using the chain rule and introducing fur ot space at p; for a
o & point p on a manifold N we denote by M I tagge) the differential of
differentiable map ¢ between manifolds we‘ de.note b% }(1 sﬁi i;; locbras § and g
¥ at p (if we do not use particular abbreviations). te spaces at the origin.
of H and G, respectively, are considered 2% the tane”” tl-)al at 1) of the map

(5.9) For ¢ € k(Q") let S (1) denote thc? dlﬁgen 1For h e H let C(h)
Y o (1) 4; S () is a linear map from Xy, 10 A

be the differential at o of the map o — hy-

erivatives of the maps Y by 6 ¥ and
Q"). These derivatives are
s. As usual

o
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One may identify X,, with g/h in a canonical manner. Under this identi-
fication C'(h) is nothing but the operator Ad,,(h). We will not use this fact.
What we will use is that C is a continuous representation of H which is trivial
on D. The latter facts can be easily checked directly.

Let b € G and ¥ € k(Q") be given such that by € x (Q"). In terms of
S and C the differential T'(b,v;) of ¥ — b at 1 can be expressed as

(5.10) T(b,¢1) = S(bwby) o C (¢ (b,v1)) 0 S (tr) .

This is a linear map from X, into Xpy,. The claim (5.10) follows from the
factorization of ¢ — by into the product of ¥ — ¢ (wl)_1 P, Y- (b)Y

and ¥ — o (b)) 3. Recall that ((b,¥) = o(by)~lbo(v).

Let again b and 1 be as above. We want to find the differential of ¢ —
¢(b, 1) at ¥y, which is a linear map from X, into Hy, where h := ( (b,v) € H.
For z € G we denote by L the left translation on G, L*(y) = zy; for z € H
we denote by R” the right translation on H, R*(y) = yx. Define the map ¢
(with values in H, for ¢’s close to 1) by

C(b,9) = e(b,¥)h,

ie.,

e(b,9) = a(by)'ba(¥)h! = o (b)) o (byr)ha(vn) o (k™
= [o (1) " o (b)) " ho (1) o ()R]
because b = o (b)) ho (wl)'l.

From this description of ¢ one reads off that the differential of 1 — &(b, ),
first viewed as a function from (a part of) X into G, at ¥, equals

-1
- (d Lo )aw 0 (o), o T (b,1)
1

-1
+ Adg(h) o (d Lot )o(w o (do)y,.

(5.11)

This is a linear map from Xy, into g. Since we know that ¢ takes its
values in H, the linear map has necessarily to take its values in §. Multiplying
the above linear map from the left by (dRh)e one gets the differential of ¢ —
C(ba 17[)) at wl-

We turn to the proof of (5.8) and first observe that F itself as defined in
(5.6) has the claimed structure. This is clear because z — 6(z)!/2A(z)"1/2,z €
H, is a representative function of H/D and (z1,...,z,) — A(o(k(zy, . .., Za)))
is a smooth function on Q". For the general case it is sufficient to show that
if v;,wj,7; and h; are given as in (5.8) the k' partial derivative of

(Z1y. oy Tm) = v (T1, .. T) wi (K (1, . ., Ty)) (rih;) (C (b, K (21, ..., 20)))
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has again such a structure. This is evident for k > n. For 1 < k < n let
ex be the k" standard basis vector in R". As v; is harmless we are left to
differentiate the other factors. Since j is fixed from now on we omit the index
7 (and use j for other purposes). Using the above formula (5.10) for T'(b,%)
one sees that Eﬁ—kw(bn(xl,.,.,xn)) at ¢ = (x1,...,%n) € Q" 18 obtained by
evaluating (of course, as always under the assumption that bk(z) is contained
in £ (Q"))
(dur)pu( sy © S(bK(x)) 0 C(C(b.K(2))) © 5 (K(z)) " 0 (dK)z

at ex; for the definition of S and C compare (5.9).

Let Xi,..., X, be a basis of Xy,. For each z € Q" there are real co-
efficients \;(z), 1 < j < n, such that S(k(z)) ™" ((dx)e (ex)) = 2j=1 Aj(z) X
The ); are smooth functions on Q" depending on k. Applying C(¢ (b, k(z)))
to the obtained expression we find representative functions Bjp, 1 £ 7, P <n,

of H/D such that

{C(¢(b s(z))) 0 S(x(z) ™" 0 ()} (er) = \;(2)Bip(C (b, K())) Xp:

Jp=1

For any ¥ € x(Q") the linear functional (dw)y o S(¥) on Xy, d:pend}s1
smoothly on 1. Hence there exist smooth functions g1, -« fn 00 K (Q™) suc
that

(dw)y 0 SW)) (Xp) = 1Y) for 1 <p<m.

Applying this to ¥ = bi(x) one finds

D@ = 3 M(@h(or(@) (R

a.’l?k j,p:l

After multiplying by v (&, Tn+1- -  zm) (rh)(C(b, x(z))) we obtain the de-

sired structure.
Next we compute %h(( (b, n(m)))
derivative of ¢ — ((b,%) we obtain this par

(dh)¢(bs) © (dRC(”’W)e ]
- dL"(”“’)_]) o (do)p © S(b¥) C(¢(b,¥)) o S(W)
o {= (47
(da)y o (de)a

_ Using the formula (5.11) for the total
tial derivative by evaluating

+ Adg(¢(b,¥)) © (dLo(W )a(w) °

at e, where we put ¢ = K(z)-
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As above

[, 0 S0)™ o (d)] (er) = 3 Ay(&)8(C(b )X,

Jp=1

Let Y1,...,Y; be a basis of g such that Y1,...,Y, is a basis of §. There
exist smooth functions v, ..., on Q" such that

¢

(a®7) ooy (@) 1) = 3w

j=1
Applying Ady(¢(b, %)) to this vector one gets
t t
[Adg(€,9))0 (AL7™)  o(da)yo(dn).] (er) = 3 vy(a) Z an (¢,

o) =

with representative functions aji of H/D. Note that Ad, is trivial on D. The
map

W (dLU(T/’/)"I) o (do)y o S(y)

a(¥)

from & (Q™) into Homg (Xy,,8) depends smoothly on ¢'. Hence there are
smooth functions p, on & (@), 1<p<n,1<i< t, such that

t
a(y)!
(@277 o @hoo 561 () = Yt
I=1
Applying this formula to 1/ = by we obtain

{ - (dL"(W’)_’)G(W o (do )y 0 S(byp) 0 C(((b, 1)) © S(3p) !
+ Ady(¢(b, ) o (der ) O(do')w}((d”)x(ek))

t t
=ZZUj($)aﬂ )Y Z Z >\ ,ij b 'Qb )ppl(bw)

I=1 7=1 = 1j,p=1
t

_Z {ZV‘I ()aq (¢( Z Ai(2)B;p(C(b, ))Ppl(b¢)} Y;

1 Jp=1

since we know that the value has to be in b.
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Using the formula (Z * h)(¢) = [ (dRc) ](=Z) for all Z € b and
all ¢ € H one finally obtains (by substltutlng Y= rc(:c))
a r
. h(¢(bk(2))) = Y (Yi* B) (C(b,5(2)))

=1

(5.12) ] t
- { 3 X(@)B(C (b, k(@) P (br(2)) = D va(@)ear(C b, ﬁ(m)))} :

Jp=1 ¢=1

Multiplying by r(¢(b, k(z)))w(bs(z))v (£, Tns1s. .., Tm) One gets a func-
tion of the claimed structure. Observe also that Y, x h satisfies (Y] * h) (z2) =
(Y1 *h) (z)y(z) ! forall z € H,z € D.

Finally one has to compute B——T(C (b,(x))). This can be done as above
and one finds a formula as in (5. 12) The only extra thing to be noted in this
case is that Y] x r is again a representative function of H/D.

From (5.8) we deduce the following basic estimate:

(5.13) sup |(AF)(b,¥)B(b)| < 00
beG Yem*

for all representative functions 8 of G/D and all linear partial differential
operators A4 on to* with smooth coefficients.

To prove (5.13) we may assume again that 3 is positive and submultiplica-
tive. From the structure of F as defined in (5.6) it follows that we only need
to consider pairs (b, %) with the property that there exists (2, Tnt1, - - - ,Lm) €
%Q = %_n X %_m% with ¥ = & (2, Tn41,..-,Zm) and be(z) € & (%Q—n) In
view of (5.8) for (b,4) as above one has to consider terms of the form

B(b) [v; (T, Tng1, - - - Tm) Wi (b(2)) (rsh3) (C(b, K(2)))]

where the v;,w;,r; and h; have the properties stated in (5.8). Clearly v; and
1 A"
w; are uniformly bounded on Q and on K (2Q ), respectively. From the
definition (5.2) of ¢ it follows that b= o(br(z)) (b, k(x)) o(k(z))™?
Since o (k (3Q")) is a compact subset of G the submultiplicativity of 3
yields a constant K = Kj such that 8(b) < KB(((b,s(x ))). Hence up to

constants we are left to consider

(87 hy) (C(b, £(x)))-

Since 8|y is a representative function of H/D this expression stays bounded.

From (5.13) a uniform estimate of the Fourier transforms of the AF’s
readily follows. Recall that by the index 2 we denote the inverse Fourier
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transform with respect to the second variable; for instance

Fz(b,X)=/

dy e21riv(X)F(b, d’)
-
for (b, X) € G x 1.
(5.14) For each representative function 8 of G/D and each differential

operator A on to* as above there exists a constant K = K(3, A) such that
[(AF)2(b, X)A(b)] <K

forallbe G, X € .

The reason is simply that the uniform norms of (AF)y(b, -)B(b) are es-
timated by the L'-norms of (AF)(b, —)B(b). And since all the (AF)(b,—) are
supported by the fixed compact set x (1Q) the latter Ll-norms are estimated,
up to a constant, by sup, , [(AF)(b,)5(b)| which is finite by (5.13).

Now we are ready to prove that the function g defined in (5.7) actually

exists and that g 8 is uniformly bounded for each representative function 3 of
G/D. Recall that g is “defined” as

g(b) = /m dX Fy(bexp(~X), X)

forbeG.
Indeed we will show a little more, namely that

(5.15) g(b) = / dX [Fy(bexp(~X), X)|, be G,

exists and 3 g’ is uniformly bounded. Note that since F) satisfies Fy(bz, X) =
Falb, X)v(z) tforbe G, 2 € D, X € v one has g(bz) = v(z)~1g(b) while ¢’
is a function on G/D.

Once more we assume that 3 is positive and submultiplicative. In partic-
ular,

(5.16) B(b) < B(bexp(—X)) Bexp X)

forall X € w and b € G. Since v is contained in the nilradical we know that
Q(X):=pB(expX), X €, is a polynomial function on . Choose a positive
polynomial function P on to such that % is integrable over tv.

Then for b € G,

¢ (b)8() = B(b) / dxﬁ(% IP(X) Fy(bexp(~X), X)|

~ 8(b) [ dxj—f,(—lx—) |(AF)a(bexp(~X), X)|
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for a certain differential operator A on w*, depending on P. Using (5.16) one
gets

g'(b)3(b) E[dX%%%]B(bexp(—X))(AF)g(bexp(—X),X){

which is finite because of (5.14).
From (A) of 3.2 it follows that ¢’ is integrable over G/D. Consequently,
|lg| is integrable over G/D. We claim that

rlg) = /G LT

is an orthogonal projection of rank 1, and this will finish the proof of the
present case in view of (D) of 3.2.

We think of 7 as being realized in a space of measurable function n: G—
$, such that n(za) = A(a)"26(a)/? (a) ' n(z) for (z,a) € G x H and

f du(z)(n(z), (=)
G/H

is finite; compare [1, p. 98]. The representation 7 is given by

(m(y)n)(x) =n(y'z) .

Recall that 7(z) = y(z)Id, z € D, and 7(w) = xo(w}1d, T(expX) =
e~ (X) 14 for w € W, X € ro; in particular, v = Xo on W nD.

Pick a vector n € 9. To avoid difficulties with sets of measure zero when
evaluating, we assume that 7 is continuous with compact support modulo H.

By definition of 7 and g, see (5.7),
(x(g)n)(x) = / dyg(zy)n(y™')
G/D
=/ dy / dX Fy(zyexp(=X), X)n (y™") -
G/D to
For fixed z,y € G we first compute the integral over WD/D = W/WnD:
/ dw/ dX Fy(zywexp(—X), X)n (w_ly_l)
W/WnbD 1o
z/ dw/ dX Fy(zywexp(—X), X) xo (ywy_l) n (?J_l)'
W/WnD w

Substitute v = wexp(—X). Observe that for all z,y € G the function
at hand is absolutely integrable over W/W N D x ro. Above, following (5.15)
and (5.16), the corresponding question was considered for the integral over



532 DETLEV POGUNTKE

G/D x 1o; the cases are very similar. The integral turns out to be equal to
f dv xg (yvy‘l) / dX Fy(zyv, X) e”z"i(yfl“’o)(x)n (y"l) .
W/DnD w

By the Fourier inversion formula (the functions in question are Schwartz
functions with respect to the second variable), if the Lebesgue measures are
suitably adapted one gets:

[
W/WnD
:/ dvF(:ryv,y"iwo)U((yv)_l)
W/WnD

= / dv Fy (zyv, (yv)""vo) n ((yv) ™)
W/WnD
because v € W acts trivially on *. Using this result one obtains
(rlon)@) = [ duFo(evy i) n (57,
G/D
or, by substituting y - y~1,
B17) (o) = | L AE) R oy y ) nty).

Note that there is no difference between the modular functions of G and
of G/D as D is central in G.

The integral in (5.17) will be evaluated using Weil’s formula with respect
to the subgroup H/D of G /D. To prepare the application of this formula, for
fixed 2,y € G, we establish the following:

daA(ya)™ Fy (za™ly !, yto) n(ya) 6(a) ! A(a)
H/D

= . daA(y) ' 6(a) 1 Fy (z ol y‘l,ywo) A(a)~1/2 6(a)/? m(a) ' n(y)

= / da A(y)—l Fy (a:ay_l,yzjzo) A(a)1/2 (5(0)—1/2 7(a) n(y).
H/D
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Using the definition (5.5) of Fj the integral takes the form

da A(y) ™' Ao (y o)) T (y ¥o) u (z o) (51/2A_1/2f) (¢ (zay' yvo))
H/D

- Aa)'?8(a) 21 (a)n(y)

= da A (y'o(y o)) uly o) u(z vo)
H/D

(828725) (o (zun) " ay oty ) Ala) (@) r(@n(w).
Introducing the new variable b = o(x o) 'zay ! o(y ), one obtains

ab A (5" aly vo)) Ty wolu(z)d (u 'ty b)) (6°4721) )
H/D

- (A”?é‘l/?) (z o (zvo)bo(y vo) ') T (a7 o Yo) baly vo) y) n(y)

= AV2 (y o () A2 (x oz v)) 672 (v oy %)) 67 (7 o(z ¥0))
Ty Yo)u(z vo)r (2 o (xwn)) 7(£) [ (o(yvo) ') ()] -
Therefore, defining the map I' = I'; from G into $; by

(518)  T(y) = (A7) (v o(yun)) ly o) 7 (oly o) 'w) ()

we may write

[ daA(ya) Fo (wa~ty ™ yvo) n(ya) 6(a) " Al
(5.19)  JH/D

= (A1/26‘1/2) (z7'o(z o)) u(z o) T (50—10’(1'%)) T(f) T(y).
One readily verifies that
[(ya) = [(y)8(a) Ala)™!

for all (y,a) € G x H.
Hence ¢, IH is applicable to I'. Carrying out the integration over y in the

integral (5.17) defining (m(g)n)(z) one deduces from (5.19) that
(nlg)m)(z) = (8126772 (& o @) ulavo)
7@ otew) 70§, BTH).

From this description of m(g)n one sees that m(g) is an operator of rank
one. Actually it is an orthogonal projection of rank one. If w is a unit vector

(5.20)

/H
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in the space 7(f)($,) then ™ € $- defined by
m(z) = (AI’,Q‘S«I"Q) (r lo(s vo)) u(ryg) 7 (r la(r o)) w

1S a unit vector in 5. This follows from the normalization (5.4) mmposed on
u.

Using the description (5.20) of n(g) one verifies that m(g)ny = (n.m)my for
all n € H,. The easy proof for this is omitted.

Of course, the only reason why we assumed in Ind) that kerpoqy, s of
infinite codimension was that we wanted to apply the induction hypothesis. If
kerpi iy 7 is of finite codimension and the theorem is stil] true for H, the above
considerations work as well and are even much easier. This is formulated as a
remark which is also a good transition to the next section.

Remark 5.21. Let 1 be an abelian ideal in the nilradical n of the Lie
algebra m, invariant under the adjoint representation of (5. Suppose that the
kernel of 7 in LY(W) is of finite codimension in L'(W'). Then ker; iy, = k(D)

P

with some finite G-orbit 2 in W say B = Gxo. Let H be the stabilizer of X0
in G. Then H is in the class [MB] and there exists a continuous irreducible
unitary representation 7 of H such that = — ind% 7. 7[;y = xoIdand r(C*(H))
contains the compact operators. Suppose finally that the theorem is true for
(H,7); i.e., there exists a C>-function f on H such that Sy lf (@) r(z)|dr < x
for all representative functions r on H/D and that 7(f ) is an orthogonal
projection of rank 1. Then choose a test function t on W such that the Fourier
integral [, dw tw)x(w), x € ,W, is equal to one for y = Xo and vanishes on
the finite set 9\ {xo}. Extend f in the most obvious way to a function f on
G, and define g on G by

oly) = /W dwt(w) f (yw).

It is easy to check (the proof is omitted) that g is integrable against each

representative function of G and that m(g) is an orthogonal projection of rank
one.

6. Zero- and one-dimensional nilradicals

After these preparations we now consider systematically possible abelian
ideals in the nilradical n of m in the traditional manner. There are four cases
(see p. 143 in [12)).

(0) n=0;

(1) nis one-dimensional;

(2) there exists a characteristic abelian ideal in n of dimension > 2;
(3) n is isomorphic to a Heisenberg algebra of dimension > 3.



UNITARY REPRESENTATIONS OF LIE GROUPS 535

The case (0) includes m = 0. which is the basis for the induction.

First we consider case (2). Let m be an abelian characteristic ideal in n
of dimension > 2. By means of T) and Ind) we may assume that 7 is locally
faithful on W' = expr and that ker;i,y- 7 is of finite codimension in LY(W).
As in the final Remark 5.21 of the last section let kerpi iy 7 = k(9)), where
P = Gy is a finite G-orbit In W.H = Stab(yp). ™ = indg T and 7|y = yold.
In view of this remark it is sufficient to show that the theorem is true for
(H.7.D). But since (kerT N1}y = (ker xp)y is non-trivial for dimensional
reasons case T) applies to (H. 7).

In case (). m is a direct sum of a semisimple algebra s, the commutator
algebra of m. and the center v of m. The Lie group S = (exps) corresponding
to s is closed because Afy allows a locally faithful representation v Since the
image 1(S) = [¢(5).v(S)] is closed one gets y(S) = ¥(8) = ¥(S)~ whence
S is contained in Skerv.. As kerv: is countable this gives § = S. Moreover
S = [My. My] is normal in G. and it consists of B-fixed points by (v) of
Definition 2.2. Choose a subgroup L of M according to (Z) of 2.2. Since expt
commutes with M, it is contained in the center Z(L) which implies L = SZ(L).
Let K = Bx Z(L). By (iv) of 2.2, K is nilpotent of step one or two. Moreover,
K is the centralizer of § in B L. and B x L is the product of the two normal
subgroups S and K.

At this point we interrupt the discussion of case (0) and pass to case (1)
because it turns out that there we will find a similar structure. Then both
cases will be treated jointly.

In case (1) we may assume in addition, using T) and Ind), that 7 is non-
trivial on expn and that n is central in m. Let ¢ be the radical of m, let s be any
Levi factor of m, and let v be any s-invariant vector space complement of nin
t,t = v&n. By definition of the nilradical, [s, t] is contained in n, in particular
s, 0] is contained in n which gives [s,0] = 0. As n is central in m (or because
n is one-dimensional), also [s,n] = 0, hence [s, t] = 0. Therefore, n = [t.t], vis
two step nilpotent, and s is the Levi factor, namely it coincides with the second
derived algebra of m. As in case (0) one can conclude that S = (exps) is a
closed normal subgroup of G consisting of B-fixed points. Asin case (0) choose
a subgroup L of M according to (Z) of 2.2. The group exp(t)Z(L) is precisely
the centralizer of S in L, and K := B x (exp(t)Z(L)) is the centralizer of S in
Bx L. Again Bx L is the product of the two normal subgroups § and K. Also
in this case K is nilpotent of step two: In view of (iv) of 2.2 it is enough to show
that the commutators [exp(t)Z(L),exp(t)Z(L)] = [exp(r).exp(r)] = exp(n)
are central in K. Since n is central in m, exp(n) commutes with exp(t); by (v)
of 2.2, expn is fixed by conjugation with elements in B.

To finish the cases (0) and (1) we first have to study the groups Bx L =
SK whose structure we know very well and then we have to jump to the finite
step from B x L up to G = Bx M. Let me mention that at this point one does
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not need anymore the central group D and representative functions. We are
going to show that there exists a continuous (smooth) function g on G such
that [, |g(z)lw(z)dz is finite for each positive continuous submultiplicative
function w on G (called a weight function for short) and that 7(g) is an
orthogonal projection of rank one. In view of 1.5 this is a stronger information
than claimed in 3.1.

Let us for short denote by [BD] the class of groups with the above prop-
erty, i.e.:

(6.1) A locally compact group P belongs to the class [BD] if for each
continuous irreducible unitary representation p of P such p(C*(P)) contains
the compact operators there exists a continuous function f on P such that

p [f(@)|w(z)dz < oo for each weight function w on P and that 7(f) is an
orthogonal projection of rank one.

Before proving that groups of the form SK as above (i.e., S is a connected
semisimple Lie group, K is a locally compact nilpotent group of step < 2, and
K centralizes S) belong to [BD] we show the following:

(6.2) The primitive ideal spaces of their group C*-algebras satisfy the
Ti-axiom; i.e., each such primitive ideal is maximal.

To see this it is clearly sufficient to consider a direct product P = S x K
of a connected semisimple Lie group and a locally compact two step nilpotent
group K. Let p be a continuous irreducible unitary representation of P. We
have to show that p(C*(P)) is a simple C*-algebra. Since S is a type I group,
p decomposes as a tensor product P = ps & pr where p, and p; are continuous
irreducible unitary representations of § and K, respectively. Since p,(C*(S))
is precisely the algebra £ of compact operators on £, it follows that p(C*(P))
is the tensor product of & and Pe(C*(K)). But pe(C*(K)) is simple; see e.g.,

[38], [31] for more precise informatiop. Hence p(C*(P)) = & ® py(C*(K)) is
simple, too.

To see that

(6.3) groups of the form SK are in [BD), one may again reduce to the case
of a direct product P = § x K| As above a given representation p decomposes
45 P = ps ® px. Since we now assume that p(C*(P)) contains the compact
operators we can conclude also that Pe(C*(K)) equals the algebra of compact
operators. From [31, Theorem 2.9], it follows that there exists a continuous
function h on K such that j, Is integrable against each weight function of K
and that py(h) is an orthogonal projection of rank one. Concerning the S-part
we apply the results of Harish-Chandra, [20]. Let L be the Ad-preimage of
a maximal compact subgroup of the adjoint group of S. The center Z () 1s
contained in L; on Z () the representation Ps equals a unitary character, say
n. The restriction of Ps to L decomposes into g direct sum of finite-dimensional
irreducible representations with finite multiplicity. Let 4 be one of those, and
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let x be the product of the character of ¢ with dim. Then x(zz) = x(z)n(2)
for z € L and z € Z(S), and the operator p,(¥) = fL/Z(S) x(z)ps(z)dz is an
orthogonal projection of finite rank.

Let b be a (smooth) Bruhat function on L with respect to Z(S); i.e., b
is a nonnegative test function (observe that L/Z(S) is compact) on L such

that
/ b(zz)dz =1
Z(8)

for all x € L. The pointwise product Xb is a test function on L with the
property that p,(xb) is an orthogonal projection of finite rank. Then (%b)* *
D(S) * (xb), where the convolution has to be performed in the measure algebra
of S, is an involutive subalgebra of D(S), whose image under p; is a finite-
dimensional algebra. From the irreducibility of p, it follows that there exists
a g € (xb)* *x D(S) x (xb) C D(S) such that p,(g) is an orthogonal projection
of rank one. Forming f = g ® h one obtains a function on S x K with the
desired properties.

With this information at hand the proof in the cases (0) and (1) is finished
by means of the following lemma.

LEMMA 6.4. Let Q be a locally compact group, and let P be an open
subgroup of finite index. Suppose that the primitive ideal space of C*(P) has
the Ty property, and that P belongs to [BD]. Then Q belongs to [BD], too.

Proof.  First we notice that by a result in {36] the primitive ideal space
of C*(Q) satisfies the T3-axiom as well. Let p be a continuous irreducible uni-
tary representation of @ such that p(C*(Q)) contains the algebra of compact
operators, which means by the T'-property, that p(C*(Q)) equals this algebra.
According to [35] the restriction of p to P decomposes into a finite sum of
continuous irreducible unitary representations of P,

plp=m @& D1y,

where the 7; operate in $;, say.

For each j, 1 < j < m, and each f € L!(P) the operator ;(f) is compact.
Let .4 be the set of all measurable functions on P which are integrable against
each weight function of P. The set A is an involutive (as the weight functions

are stable under w + 1\1/;) subalgebra of L!(P) containing C,(P). For1 < j < m
let a; be the set of all f € A such that 7;(f) is an operator of finite rank. The
a;’s are two-sided ideals in A, invariant under left and right translations with
elements in the group P. Since P belongs to [BD)] the ideal a; is not annihilated
by Tj, by the irreducibility of 7; and the translation-invariance of the a; the
sets 7;(a;)(9;) are total in H;. Put a:= ﬂ;”zl a;. We claim that there exists
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an index j, 1 < j < m, such that 7i(a) # 0. Suppose to the contrary that
7j(a) = 0 for all j. Then take a minimal set I of indices in {1,...,m} such
that (Ve  a; = a; i.e., for proper subsets I’ of J one has a C ;. a;. From our

assumptions it follows that the cardinality of I is at least two. Without loss
of generality one may suppose that I = {1,... n}. Since (a2 M- Nay)xay is
contained in a we conclude that 7i{a2 N+~ Nay)7y(a;) = 0. But as T1(a1)(H1)
is total in $; this implies that 7y (ayN---N a,) =0. In particular, aaN---Na,
is contained in a; whence a=aNaN--Na,=ayN---N an contradicting
the minimality of ],

Hence we know the existence of an f € A such that 7;(f) is an operator
of finite rank for all j and that at least one of the 7;(f)’s is not zero. The
function f may also be considered as a function on Q, f(Q\P) =0. Then fis
integrable against each weight function of Q, and p(f) is a nonzero operator of
finite rank. Denote by B the convolution algebra of all measurable functions
on @ which are integrable against each weight function of Q. Then f*xBx f is
an involutive subalgebra. The image p(f* + B f ) is finite-dimensional, hence
p(f**«Bx f) = P(f* * Co(Q) * f). From the irreducibility of p it follows that
there exists a g € Ce(Q) such that P(f**gx f)isan orthogonal projection of
rank one (compare also 3.2). The function J**gx f has the claimed properties.

7. Nilradicals isomorphic to a Heisenberg algebra

Finally suppose that n is a Heisenberg algebra of dimension > 3. If 3(n)
denotes the center of n in view of T) we may assume that 7 is locally faithful
on Z(N) = exp3(n), in view of Ind); we may assume that 3(n) is central in m.
From (Z) and (v) of 2.2 it follows that G operates as a finite group on 3(n);
actually there is at most one nontrivial automorphism in Ad(G)|n)- Using
5.21 again we may readily reduce to the case that Ad(G) operates trivially
on 3(n); hence Z(N) is central in G. From (ii) of 2.2 it follows that Z (N) is
closed in G and that it is isomorphic to R. Since 7 is irreducible there is a
(non-trivial) character X on Z(N) such that n(z) = X(2)1d for z € Z(N). A
basis vector Z of 3(n) is determined by

(7.1) x(exp(tZ)) = e~ 2mit
for all t € R.

Choose an arbitrary vector space complement v to 3(n) innn =06
3(n), and denote by Sp(vb) the group of automorphisms of the Lie algebra
n which leave v invariant and fix 3(n) pointwise. The group Sp(v) is the
symplectic group in dimension dimn/3(n). Denote by Mp(v) the corresponding
metaplectic group and by & : Mp(v) — Sp(b) the canonical two-fold covering;
see e.g., [14], [27], [44]. The crucial property of Mp(v) to be used below is that
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the unique continuous irreducible representation of N = expn which equals y
on Z(N) can be extended to a continuous unitary representation of Mp(v) x N
where the action of Mp(v) on N is given via x by the canonical action of Sp(v)
on N.

Let P denote the group of all elements x € G such that the restriction
Ad,(z) of Ad(z) to n transforms v into itself. It is easy to see that every Lie
algebra automorphism of n leaving 3(n) pointwise fixed is a (unique) product
of an element in Sp(b) and an inner automorphism. Hence G = PN and the
intersection P N N equals Z(N). Moreover, since B leaves n pointwise fixed,
P is a semidirect product of B and K := PN M. Clearly, the given central
subgroup D is contained in K. Let K be the pullback of Ad,: K — Sp(v)
and k: Mp(p) — Sp(v); ie., Ks = {(z,h) € K x Mp(v); Adn(z) = s(h)}
considered as a (closed) subgroup of the direct product K x Mp(v). Using
the fact that B acts trivially on n we check easily that the group B acts
homomorphically on K, by b(z, h)b~' = (bzb~!,h) for b € B, (z,h) € K,.
Hence we may form the semidirect product B x K; =: Ps.

There are canonical homomorphisms p: P; — Mp(v) and A: P, — P
given by u(b(z,h)) = h and A(b(z,h)) = bz for b € B, (z,h) € K;. The
homomorphism A has a two element kernel, and the diagram

P, £ Mp(v)
(72) ,\l ln
P A4 Sp(v)

commutes. We claim that the group P; belongs to the class [MB].

Property (i) is clear as B is unchanged (as always). Concerning (ii) we
note that A induces a covering from (K)o onto Ky of degree 1 or 2. Since
My allows a locally faithful representation this is also true for (K,)o. The
group Ky equals K N My because the homogeneous space My/K N My is
homeomorphic to the simply connected space N/Z(N), which implies that
K N M) is connected. Since (iii) of 2.2 is a local property, it is enough to
show that Adg(Ky) is the connected component of an algebraic subgroup of
GL(¥). The group Adm(Ko) = Adm(K N Mp) is the intersection of Adwm(Mo)
and {a € GL(m);a(v) = v}; it is the connected component of an algebraic
subgroup of GL(m). Since Ady(Kj) is obtained from Adm(Kp) by restricting
the linear transformations to ¢, it has the claimed property (ii).

Concerning (iv) one computes that the commutators in [B, K| are of the
form (bzb~lz711) € K x Mp(b) where b € B, z € K. They are central in
Ps = B x K, because (iv) holds true for the original group. Property (v)
is equally easy. To verify (R) we take, of course, the given central group D
and form D, := /\‘1(D). It is easy to check that D, is central in Ps. But
Py/D; is canonically isomorphic to P/D which is a closed subgroup of G/D,
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and hence isomorphic to a closed subgroup of some GL,(R). Let L = MyZ(L)
be a subgroup of M as in (Z). Then Z(L) is contained in K, and L N K is
of finite index in K. From Z(L) C K and Ky = K N M, one deduces that
LNK = Z(L)Ky. It is easy to check that L, := A1 (ZL)(K;)o = A"{(LN K)
has the required properties with respect to ;.

Of course, we plan to apply the induction hypothesis to P;. To this end
we need a representation 7 of P, suitably related to m. This is obtained as
follows. We view the representation 7t as a representation of F; x N where the
action of @ € P, on = € N is given by aza™ = Aa)x(a)™!. Explicitly, the
representation m, of P; x N is defined by 7s(a, x) = m(A(a)z). The convolution
algebra L1(P, x N) is*-isomorphic to the covariance algebra L!(P;,L!(N))
where the action of a € P; on ¢ € L}(N) is defined by

(7.3) ¢*(2) = p(Ma)zA(a) ™).

For the notion of covariance algebras see [29] where these algebras were
called “Verallgemeinerte L!-Algebren”. The multiplication in L!( Py, L'(N)) is
given by

(f *g)(a) = /P db £ (ab)®”" % g(b™").

Since 7| z(ny = X Id the representation m, factors through L' (P, LY(N)) —
L!(P;,L}(N)y) where L'(N), denotes the convolution algebra of all measur-
able functions ¢ on N such that ¢(zz) = x(z) '¢(z) forallz € N, z € Z(N)
and | N/ZN l¢(z)]dz < 0o. The action of Py on L!(N), is formally the same as
on L'(N). The assumption on 7 implies that the 7 -image of the C*-hull of
L!(Py,L}(N)y), which is the C*-covariance algebra C*(P,,C*(L!(N),)), con-
tains the compact operators on $),. By the way, the C*-hull C*(N), of L1(N),
is precisely the algebra of compact operators.

To write down a representation 7 of C*(P;) explicitly we are going to con-
struct a very concrete orthogonal projection g of rank one in C*(N),. Actually,
q will be a very nice function in L*(V),. The metaplectic representation will
allow us to identify g% C*(P;, C*(N),)) *q with C*(P,), and this identification
will be used to define 7.

Choose any continuous irreducible unitary representation a of N such
that alz vy = xId: a is uniquely determined by this equation up to unitary
equivalence. There exists a continuous unitary representation U of Mp(b) in
a such that

(7.4) a(exp(k(h)(X))) = U(h)a(exp X)U (h)™"
for all h € Mp(v). X € n, and hence

a(Ma)zA(a) ") = Ulp(a))a(z)U(u(a)) ™
forallae P, xr € N.



UNITARY REPRESENTATIONS OF LIE GROUPS 541

In order to define g we choose a basis Xi,..., X, Y1,..., Y, of v such
that the [X;,Y;] = Z for 1 < j < n are, up to skew-symmetry, the only
nonvanishing brackets in n. Recall (7.1) that the basis vector Z of 3(n) is
determined by x(exp(tZ)) = e~*". The chosen basis can be used to identify
L(R2) = L!(v) with L}(N),: if p € L!(R?*) then define ¢’ on N by

n n
(7.5) ¢’ (exp(z a:ij+Z yij) exp(tZ)) = e?™ (21, ..y Tny YLy -+ Yn)-
j=1 j=1

This identification defines by transport of structure a multiplication (and
an involution) on L!(R?") which is denoted by § and is given by the formula

16)  (p)e) = [ [dsdrpte. e’ —my —p)en e

RQn

where £ = (z1,...,%n), ¥ = (Y1,---1¥n), I = (—E)I é), and I = the unit ma-
trix in 7 dimensions. The involution is as usual given by ¢*(z,y) = B(—z, —y).

The operation § is called twisted convolution. The identification of L1 (N )y,
with L'(R?") was chosen that way to obtain exactly the multiplication law
studied in [27] because we want to apply some formulas derived there. Clearly,
also, the action of the group P; is transformed under the above identification.
An element a € P; acts on ¢ € L}(R*™) via

(7.7) o (wh) = p((o(a)w)")

where w is a column vector of length 2n and o is a certain continuous ho-
momorphism from P, into Sps,(R), namely o(a) is Ad(A(a))[, written as a
matrix using the chosen basis of v.

According to [27), for a symmetric complex 2n X 2n matrix 2 with positive
definite real part, the associated Gaussian function is denoted by vq,

—rw! Aw

yy(w') =e

for w € R?*. The 4y's form a semigroup under twisted convolution, the oscil-
lator semigroup, namely

(7.8) Yo, frya, = det(2Ay + 912)-%7213
where _
1 B z
Az = Ay — (A2 + —2-3)(211 + %) (A — §:1).

In [27)], one finds some other useful descriptions of 3. In the following
we shall work with q = Tie where € denotes the 2n x 2n unit matrix, and the

corresponding, cf.(7.5), function ¢' € L}(N),. The function q is so to speak
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an orthogonal projection of rank one in L!(R?); one has

(7.9) ghg =g, ¢* =g, giL'(R*")g = Cq

and the corresponding formulas for ¢ in L!'(N),. The first two equations are
obvious. The last one is a little more delicate, but still the computation is
omitted. It can be done by direct verification or by applying the semigroup
law and using the fact that the ~o's are total in L!(R?"). A similar claim can
be found in [37], with slightly different normalizations.

The above equations imply that a(g’) is an orthogonal projection of rank
one, say

Ot(q,) = ('—550)50
with some unit vector & € fa. For a € P, we then define w(a) € L'(R?") by
requiring that
(7.10) a(w(a)) = (-, &)U (u(a)) ' éo-

Since a is faithful there exists at most such an w(a). Soon we will see that
w(a) actually exists. The w(a)’s will be used to identify ¢’ * L!(Py, L' (N)y) *¢'
with an algebra of functions on P;. For a € P the element ¢%, compare (7.7),
is also a Gaussian function, namely

(7.11) ¢ = Vi Where B =B, = o(a)To(a).

Hence the twisted convolution product ¢*lg is a nonzero multiple of the
Gaussian function gers where

. -1 .
(7.12) %mz %e— (%m%s) (%93+%e) (%e-%s).
From (7.4) one easily derives a(q?) = a((g®)) = U(u(a)) 'a(d)U(x(a))
for all a € P,. Hence a(q®)a(q’) = a((¢%4q)’) is the rank one operator
(= €0) (U (1(a))o, &)U (u(a)) " éo.

Since q%hq is different from zero the scalar product (U(u(a))éo, o) does
not vanish; hence

w(a) = (U(u(a))éo,é0) " ¢"ta.
From this description of w it follows that w(a) exists, that a — w(a) is
a continuous function from Py into L!(R?") and that w(a) is proportional to
Tiy:
(7.13) w(a) = e(a)'yég
with some continuous complex-valued function £ on P;. We shall compute
|e(a)| and the real part of 9 explicitly. This is good enough to control the
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growth of w(a), for instance in the norm of L!(R*"). From the definition of w(a)
it follows that w(a)*fw(a) = ¢ = 7e- Since w(a)* = e(a)'y%@ the semigroup
law implies

-1/2
(@)l det (éw +®) -1

Recall (7.12) that
Y= ¢ —(€+i)(B+€) 7 (€-iT);
hence Re(9)) = € — (B + €)™ — I(B + €)~'7. Using J-1 = —7J one obtains
IB+€)I=TB+€) 77 =(IBI- ¢) L.
Since B is symmetric and symplectic, IBJ equals —B~!, hence
Re(P) = €~ (B+€)7 + (B +€)7 =2B(¢+ B)"!

(14) = 20(a)To(a) (€ + a(a)Ta(a))‘l,

and
le(a)] = det(?d(a)TJ(a)(@ 1+ g(a)TU(a))—l)I/zl

= det(2(€ + o(@)Ta(a))H4.

Of course, in the preceding equations the definition (7.11) of B was used.
Recall that if F € L1(P,, L}(N),) and ¢ € L'(N)y then o x F and F * ¢
are given by
(p* F)(a) = ¢" * (F(a))
and
(Fx¢)(a)=F(a)xp forachs

In particular, for a function F € L!(P,, L}(N),) to be contained in q *
L!(P,,L!(N),) * ¢’ means that for a € P, the value F(a) has to lie in the
space ¢ @ x LI(N), * ¢'. The latter space is one-dimensional as can be seen by
applying the faithful representation . Actually, q®* L}(N), * ¢ is spanned

-~

by w(a)'. If one defines for, say, f € C(P,) the function f: Ps — LY(N), by
(7.15) f(a) = f(a)w(a)

one can verify by direct computation that the assignment f +— f is an injective
+-morphism from the convolution algebra C(Ps) into g * L(Ps, L1 (N)y) * ¢

Indeed, this map extends to an isometric *-isomorphism from the Beur-
ling algebra Lb(Ps), whose weight 8 is given by B(a) = |w(a)]1, onto ¢’ *
LY(P, LY(N )x) * ¢'. More precise ‘nformation on this weight will be needed
later. Here we only observe that 8 is symmetric, B(a~!) = PBla). The
straightforward verification of this fact is omitted. When taking the C*-
hulls the weight disappears, we get a C*-isomorphism from C*(Ps) onto q *
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C*(Ps,C*(N)y) x¢'. Clearly, the function ¢’ may also be viewed as a multi-
plier on C*(F,, C*(N),). In particular. we can form m,(q'); 7,(q’) is a certain
orthogonal projection in ..

The algebra ¢’ x C*(P,,C*(N),) * ¢ operates via 7, in 7,(¢')($,) and
annihilates the orthogonal complement 7,(¢’)($,)*. This means that we may
consider the restriction of 7, to ¢’ * C*(P,,C*(N),)) * ¢ as a representa-
tion in 7,(¢')($x). And this representation contains the compact operators
in its image in view of our assumptions on m. Using our identification of
¢ * C*(P,,C*(N)y) * ¢ with C*(P,) we obtain a representation 7 of C*(P,)
in 74(¢’)($Hz). The induction hypothesis applied to (P,. T, D) delivers a C*
function f on P; such that
(7.16) e f is integrable against each representative function of P,/D,,

e 7(f) is an orthogonal projection of rank one.

Moreover, we choose any test function ¢ in D(Z(N)) such that fZ(.\a’) @(t)-

x(t)dt = 1. Then define F: P, x N — C by

Fla,exp(z: X1+ -+ 2o Xn + yi V1 + - + Y )t)

(7.17)
= f(a)w(a)(xla ces Loy Yy ’yn)‘p(t)

forae Py, z;,y; € Rand t € Z(N).

Provided that F € L!(P, x N) (as will be shown soon) the image of F
under the canonical quotient map L'(P,,L}(N)) — L!(P,,L'(N),) is just f
(cf. (7.15)). Denote by v the above introduced surjective homomorphism P, x
N — G, v(a,z) = A(a)z. The kernel of v equals {(z,A(2)7}); 2 € A\"1(Z(N))}.
Then define g: G > Cfora € P,, ue€ N by

o) = [ daF((aw)- (52))
(7.18) AHZ(N))

= / dz Flaz,uX(z)™!)
AHZ(N))

as Z(N) is central in G.

Again under the assumption that F is integrable it follows that g € L! (G),
hence 7(g) exists, and it is pretty obvious from the construction that 7(g)
annihilates 75(¢')(Hx)* = 7(¢')(Hx)* and on 7(¢')($) it coincides with T(f).

We are left to show that F is integrable and that g is integrable against
each representative function r of G/D. Both claims will readily follow if the
integral

L,, da/NdulF(a, w)| |r(v(a, u))|

is finite.
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Once more 1.5 is used and r may be assumed to be positive and submul-
tiplicative. Then we are reduced to showing that

/P’ da /\ du |F(a.u)| r(A(a))r{u)

1s finite or that

[a [ deas [ anis@lt@te el i)
: T((‘Xp(11.¥1 + -+ ann))T(t)

is finite.

The integral over Z(N) causes no problem, it just gives a certain number.
Moreover. the function a — r(A(a)) is a representative function on Py /Ds. I
we can show that the integral

(7.19) / drdy |lw(a)(z.y)|r(exp(z X1 + -+ + Yn¥n))
R'Zn

is dominated by a representative function p on P,/Ds, we are done by the
properties (7.16) of f.

To this end, one observes that the function w = (z;) — r(exp(z1 X1+---+
¥.Y,)) is a polynomial in w. as n is the nilradical of m. Since each polynomial
is dominated by p(}:g'_ﬂ‘_, 'wf-) for an appropriate polynomial p in one variable
(with positive coefficients) we are left to compute and to estimate

n
/ dwp Zw? det (B(€ + ‘B)“l)l/4 o mu B(E+B) W
R?n

j=1

where B = ¢(a)To(a); see (7.11) and (7.14).

This is done by diagonalizing the positive definite matrix B(¢ +B)"L
Let t,,... .1y, be the eigenvalues of B(€ + B)~', certain numbers between 0
and 1. Then det B(¢ + B)~' = det(€ + B)™' = [T2, t;. Hence the integral
In question equals

2n

2n n \
e [ awp (Sut ) oo
2 -
j=1 R% j=1
2n 2n
1 2
_ -3 -1,2 | o~ T X0 Y
—Htj /mduP th uj | € ’ )
j=1 kR =1
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The expression p (Z;"Zl t;lu}?) may be viewed as a polynomial in tr Lo

t5) whose coefficients are polynomials in u..... uzn. Carrying out the in-
tegration one ends up with the product of I—IJQZ1 tJ-_I/ *and a polynomial in
tl“l,...,tgnl with real coeflicients. Since tj'l/ s dominated by tj”1 (as 0 <

tj < 1) we are left to show that each tj—l is dominated by a representative
function p of P,/D,. Each tj‘I is an eigenvalue of B~1(¢ + B)=B1lie=
€+o(aNo(a™)T. By means of the standard scalar product on R?" we in-

troduce norms on R?* and on the real 2n x 2n matrices viewed as operators
on R®*. Then

G <€ +o(a )o@ ) fop < 14 flo(a) 2,

Since [lo(a™!) ng is dominated by Z?’Ll oik(a~1)? where the oik(a) denote
the matrix entries of o(a) we can finish this section and the proof of 3.1 with

the remark that the o, and hence the o). are representative functions of
P s/ D,. O

8. Connected Lie groups

In order not to interrupt the later discussion we start with the following
lemma, which is probably known but I could not find it explicitly stated in
the literature.

LEMMA 8.1. Let V be q finite-dimensional real vector space, and let b be

a Lie subalgebra of End (V). Denote by t the radical and by n = (b,t] = [h,b)Ne
the nilradical of §y. Let g be the Lie algebra of the smallest algebraic subgroup
of GL(V) containing exph. Then there exists an abelian subalgebra a of g
such that:

(1) g is the direct sum of a and b,

(2) [a,b] C [,6], [a,t] C n.

(3) a+t is the radical of g.

Proof.  Let p be a Cartan subalgebra of ¢, and let q be the Lie algebra of
the smallest algebraic subgroup of GL(V) containing exp(p). Of course, q is
contained in g. Actually, by the results of 7] (in particular, Prop. 21, Chap. VI,
§ 4, p. 403), g+t is the Lie algebra of the smallest algebraic subgroup containing
expt. If s is any Levi factor in hthen h =5+t andg =5+ (q+t)=q+h.
From [g, g] = [h, ] and [q + t,q +t] = [r, 1] (compare e.g., [22, Chap. 13)), it
follows that [q,b] C [, ] and [q, t] C [r, 1.

The above considerations reduce the problem of constructing a4 more or
less to the case of a nilpotent algebra. Of course, in general “many” of the
members of the nilpotent algebra q (which is a Cartan subalgebra of the radical
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g+t of g) will be semisimple linear transformations on V. The nilpotency of q
is used as follows. Let X be a semisimple element in q. Then ad(X): q — g
1s semisimple. too. On the other hand. ad(X) is nilpotent. Hence X is central
in g, i.e.. the set ¢ of all semisimple elements in q is a central subalgebra of q.

For Y € End(V) the semisimple and the nilpotent part in the additive
Jordan decomposition are denoted by Y; and Y, respectively. Since each
element in [p.p] (= [q.q] by the above mentioned theorem) is nilpotent we
conclude that finite — dimensional := {Y,: Y €p} is an ideal in q. As
finite—dimensional consists of nilpotent transformations it is an algebraic Lie
algebra. But also ¢ is an algebraic Lie algebra, hence ¢ + finite — dimensional
is an algebraic Lie algebra. Applying the Jordan decomposition to elements in
p one concludes that p is contained in ¢+ finite — dimensional and, therefore,
q = ¢+ finite —dimensional. Hence each Q) € q may be written as QQ = C+Y,,
withC' ecandY € p. or Q = (C - Y;)+Y, and, consequently, ¢ = ¢c+p. The
algebra ¢ satisfies the requirements imposed on a except for (1). Choosing any
subspace a in ¢ such that ¢ + t is a direct sum of a and t one finds the desired
algebra.

THEOREM 8.2. Let H be a connected Lie group and let m be a continu-
ous irreducible unitary representation of H such that m(C*(H)) contains the
compact operators. Then there exists a smooth function f on H such that

(a) [ |f(x) r(x)|dx < o for all representative functions r of H,
(b) ©(f) is an orthogonal projection of rank one,

(€) sup,epy | f(x) r(x)| < o0 for all representative functions r of H,
(d) all derivatives X * f x Y, where X,Y € Ub, satisfy (a) and (c).

Proof. 1t is not hard to reduce the theorem to the simply connected case.
So let us assume from the beginning that H is simply connected. According
to Ado’s theorem, we may choose any faithful representation of h. By means
of Lemma 8.1 there exists an abelian Lie algebra a acting by derivations on b
such that

(8.3) [a,h] C [h, b, [a,t] Cn, axt is the radical of a x b,

where again t denotes the radical and n the nilradical of b.

Moreover, each connected Lie group with algebra a x h has an almost
algebraic adjoint group. In particular, this applies to the simply connected
group A x H where A is a simply connected group with algebra a, i.e., A is
a vector group. Taking the direct product of A x H and the one-dimensional
torus T one obtains a group M which still satisfies (iii) of Definition 2.2.

Let B be the Pontrjagin dual of A. The group B may also be viewed as
the set of characters of A x H vanishing on H. This shows that B does not
really depend on the chosen complement A of H in A x H, but rather on the
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whole group A x H and on H. On the manifold B x (A4 x HyxT=BxXM
define a multiplication by

(b,z,t) (b, 2',t') = (b, 22/, t1'¥ ().

The obtained group G is a connected Lie group which is in an obvious
sense a semidirect product of B and M = (Ax H) x T. The following observa-
tion might be illuminating in view of the eminent role played by the nilradical
in the proof of the main Theorem 3.1.

Observation 8.4. The nilradical of the Lie algebram = (a x k) xR of M
coincides with the nilradical of .

This observation follows immediately from the properties (8.3) of the act-
ing algebra a. Next we claim that the group G = B x M belongs to [MB.
Property (i) of 2.2 is obvious and also (Z ) is trivial as M is connected. Prop-
erty (iii) was already discussed. Concerning (ii) it is enough to observe that by
construction A x H allows a locally faithful representation. Concerning (iv)
and (v) one notices that [B, M] = T and [M, M ] C H. Evidently, T is central
in G, and H is fixed by B.

It remains to consider (R). To this end, let K = Ky be the representa-
tion kernel of H, i.e., the intersection of the kernels of all continuous finite-
dimensional representations of H.

(8.5) The subgroup D := K x T is the representation kernel of G.

Take any continuous finite-dimensional representation p of G. Restricting
p to B x (A x T) which is nothing but the Heisenberg group with compact
center, one concludes that p is trivial on T. Restricting p to H, one sees that
p is trivial on K. This shows that the representation kernel K¢ contains D.

For the reverse inclusion we first observe that any continuous finite-
dimensional representation ' of H in V, say, can be extended to a representa-
tion of A x H (see [21, Th. 2.2, p. 215)), i.e., there exist a finite-dimensional
real vector space W containing V and a continuous representation pof Ax H
in W such that p(H)(V) =V and p(z)|, = Y(z) forallz € H,

To apply this theorem one has to verify that if R and N, respectively,
denote the groups corresponding to the radical v of h and the nilradical n of b,
then the commutators [A x H, R} are contained in N. But this is more or less
equivalent to 8.4. Since B x T is normal in G and @ /(B x T) is canonically
isomorphic to A x H the constructed representation p may also be viewed as
a representation of G.

Next we note that K¢ is contained in H x T because ¢ J(H x T) is the
direct product of B and A which clearly allows faithful representations. Now
if D = K x T were a proper subgroup of K¢, there would exist z € H N Kq,
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r € K. If one chose a continuous finite-dimensional representation v of H
with 1(r) # 1 the above extension procedure would lead to a contradiction.

Thlh procedure, from ¢ to p. also shows the following.

(8.6) For each representative function r of H there exists a representative
function s of G such that s|y = r. Indeed. one may even choose s as a
representative function of G/(B x T).

For formal reasons we remark that D = K x T = K¢ is contained in
M. As K¢ is contained in the kernel of Adg: G — GL(g), which is in the
center of (7. it follows that D is central in G. Moreover, it is a general fact of
connected Lie groups that G/R¢ allows a faithful representation (see [17] or
[24]). In addition. such a representation may be chosen with closed image; see
Chap. XVIII in [21]. Now it is verified that G belongs to [MB].

Next we have to deal with the given representation 7 of H in §. To apply
3.1 we must have an associated representation p of G. This representation is
given by Takai duality. [43]. But we need the explicit form.

First the representation 7 is extended to a representation 7 of HxT
by n'(h.t) = w(h)i. Then n' is induced up to A x H x T and delivers a
representation of Ax H x T in L2(A. $). This representation can be canonically
extended to a representation of G: explicitly

(8.7) (p(b.a.h,1)E)(a') = bla" )t n (a"laha‘la') (¢ (a”'d))

fora,a' € A, be B, he H.te€Tand ¢ € L(A,$). Here the abelian groups
A, B, T are written multiplicatively.
Let x: T — T be defined by x(t) = t~1 and denote by L}(G), the
convolution algebra of all measurable functions f: G — C such that f(xt) =
x(t) 'f(z)forallz € G, t €T and fG/T |f(z)|dz < co. Accordingly one may
form C*(G), as the C*-completion of the involutive algebra L!(G), as well as
LI(B x A x T), and C*(B x A x T)y. In the case at hand one may even view
(G)X as a subset of L!(G), indeed as an ideal. The same applies to C*(G)y.
The Takai duality says that C*(G)y is isomorphic to the tensor product
of C*(H) and C*(B x A x T),, the latter being canonically isomorphic to
the algebra of compact operators on L.2(A). Hence there is a bijective corre-
spondence between the representations of C*(H) and the representations of
C*(G)y, which can be identified with the continuous unitary representations
7 of G such that 7|p = xId. Of course, the representation p of G written
above is nothing but the representation corresponding to . In particular,
p is irreducible and p (C*(G)y) = p(C*(G)) contains the algebra of compact
Operators.
As in case Ind) in Section 5 our task will be to apply the above isomor-
phism of C*-algebras to particularly chosen functions and to show that one
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obtains functions with the desired properties. With some additional minor
effort the following computations could be used to produce a proof without
applying Takai’s theorem explicitly.

For any u € L'(A) and b € B = 4 define u’ ¢ LY(A) by

(8.8) u’(a) = b(a) u(a).

Fix any test function u on A with llulla = 1. Then define g: BxAxT —s
C by

(8.9) g(b,a,t) =t (ub * u*) (a) = t/A da’u(ad')b(ad’) " u(a).

It is not hard to show that g is an Ll-function. Actually, (b,a) —
(ub * u*) (a) is a Schwartz function on B x A as can be seen by taking Fourier
transforms. One readily verifies that q¢* = q. Our next goal is to compute
p(q). It turns out that p(q) is an orthogonal projection if the Lebesgue mea-
sure on B is suitably normalized (the Lebesgue measure on A is considered
fixed already; this was used in the normalization [|u|l; = 1). For ¢ € L%(4,9)
and " € A one has

w@owwaﬂﬁlfaﬁmwf%ﬂwwfwmwaw.

Carrying out the integration over a and b one obtains
(8.10) / db / dab(aa) u(a"a " a)u(a) = u(a"ju(d).
B A

This can for instance be seen by taking the Fourier transform with respect
to the variable o’. Hence

(8.11) (M@OMW=uM”L@deMWl

Using ||ufla = 1 one easily deduces that p(g) is the orthogonal projection onto
p(q)L%(4,5) = {u(~)€; & € $H} which can be identified with §.

For & ¢ LI(G)X We are going to compute the operator p(g) p(®)p(q). We
know that this operator Inaps a vector of the form u(-)& onto a vector of the

form u(-)ny. We shall compute 7 in terms of ® and &,. If n = p(®)¢ and
a’ € A then

n(a’) ='/Bdb‘/[;da/Hdhb(a')u(a‘la') ®(b,a,h,1)m (a"laha"la') &
=deb/Ada/Hdh<I>(b,a’a*l,h, 1) b(a') u(a)r (a"lha) §o.



UNITARY REPRESENTATIONS OF LIE GROUPS 551

Observe that the product of the Haar measures on B, A,H, T delivers a
Haar measure on G. The substitution k£ = a~1ha leads to

n(a') = / db ] da / dka(a) b(a')u(a) @ (b,a'a !, aka™,1) n(k)&,
where the homomorphism a: A — R, is, by definition, given by
(8.12) dlaka™!) = o(a)dk.

The desired vector 7y € § is obtained as

= / dd' (') n(d)

(8.13) /da/db/da/ dku(a’) afa) b(a') u(a)

P (b,da” Vaka™! l)
Hence define p: H — C by

(8.14) (k) /da/db/dau ) a(a) b(a") u(a) ® (b,a'a” ,aka'l,l).

It is not hard to see that ¢ € L1(H) for each ® € L}(G)y. Equation (8.13)
now reads as

0 = 7()bo-

Without proof we remark that restricting the assignment ® — ¢ to ®’s
in ¢ x L'(G), * ¢ one obtains a bounded *-morphism from g *LY(G), = ¢ into
L'(H). This *-morphism extends to an isomorphism from g * C*(G),, * q onto
C*(H). Observe that ¢ is contained in the multiplier algebra of C*(G)y as
well. From these facts one could also deduce that p is irreducible and that

p(C*(G)) contains the compact operators (these are the only consequences of
the Takai duality theorem to be used).

According to the main Theorem 3.1 let & be a C®-function on G such
that

/ |h(z)s(x)|dz < oo
G

for all representative functions s of G and that p(h) is an orthogonal projection
of rank one. It may happen that p(q) p(h) p(q) is zero. This could be overcome
by varying ¢, i.e., varying u. But it can also be overcome by varying h. From
the irreducibility of p it follows that there exists a test function ¢ on G such
that

p(q)p (V" * h* x hx ) p(q)

is an orthogonal projection of rank one. The function

(8.15) g:=yY " xh* xhxq

g‘} i

R
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also satisfies

/ lg(z)s(z)|dz < oo
G

for all representative functions s of G (g s is also uniformly bounded in view
of 3.2).

Then define F: G — C by F(z) = [;g(zt)t"'dt and apply the above
map ® — ¢ to F. The resulting functlon f on H is given by

- /da/db/da/dtu(a (au(a)tg(b,a’a™t, aya™t, 1)

forye H.

From the construction it is clear that f is a smooth L!-function and that
m(f) is an orthogonal projection of rank one. Next we claim that |fr| is inte-
grable for each representative function r of H. In (8.6) we have seen that there
exists a representative function s of G/(B x T) such that s|g = r. Without
loss of generality we may assume that s is positive and submultiplicative.

The integral [, |f(y)|s(y)dy is dominated by

/dy/da/dbfda/dts )[@(a)a(a)b(a )u(a)t 1g(b,a’a™, aya™", t)|
=/Hd:v/Ada /IaddeaAdts(a" za)|u(a’)u(a)g(b,a’'a™, z,t)|.

Introducing the new variable a” = a’a™! instead of a one obtains that

Ji 1f(y)Is(y)dy is dominated by

/Hd:l:/Ada'Lddea"Adts(a'a_la”xa/ L) a(a)u(d'a 1)g(b,d", z,t)|
< /Hda:/Ada’/Bdb/AdaAdts(a"l)s(a—la')s(ax)|ﬁ(a')u(a’a_1)g(b,a,:r,t)].

Since u is compactly supported there exists a constant C such that

/Ada's(a'"l)s(a_ia’)m(a')u(a'a_l)| <C

for all @ € A. Hence the integral in question is dominated by

C/Hd:c/Bdb/Ada/Tdts(a:r)|g(b,a,a:,t)| =C/Gdys(y)lg(y)

which is finite.

From 3.2 it follows that there exists a smooth function on H satisfying (a)
through (d) of the theorem. We just remark that the constructed f already
satisfies (a) through (d). O
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Concluding remarks

The following remarks are of a different nature, some are more technical,
others indicate possible further investigations.

(I) Revisiting the whole proof one may say, simplifying somewhat, that
there are essentially two sources for finite-rank operators. One is the “large-
ness” of compact subgroups in semisimple Lie groups with finite center. The
other one is the structure of (idempotents in) the covariance algebra L!(G,U)
where G is a locally compact group and U is an appropriate involutive sub-
algebra of Co,(G) endowed with its own Banach algebra norm. These algebras
were used in several papers of Leptin and myself. For further details concern-
ing these algebras see for instance [30], in particular Theorem 4.

(I) In (5.1) the parametrization & of the G-orbit 2) and the cross section
o: 9 — G were chosen independently. Of course, both could be derived from
a common source, namely from a fixed vector space complement of b in g
and the exponential map. It did not seem wise to me to relate o and « that
way — and not to use the relation. For other purposes it is possibly more
appropriate, for instance if one wishes to follow the action of the universal
enveloping algebras through the various inductive constructions.

(III) Apparently, concerning the existence of finite-rank operators, finite
extensions H < G are more difficult than I expected at first glance. Above,
I dealt twice with such a situation, first in the case where H is the stabilizer
of a character in an abelian normal subgroup (compare (5.21)), and secondly
in 6.4 where further properties of H were assumed. I do not know in general
whether the existence of finite rank operators is stable under finite extensions.
To be specific, I do not know if 8.2 remains true when H is only supposed to
have finitely many connected components.

(IV) It was shown by Moore and Rosenberg, [33], that the primitive ideal
space of the group C*-algebra of a connected Lie group has the property
that one-point sets are open in their closure. Moreover, the structure of the
corresponding simple subquotients can be determined, [38]. Possibly, similar
results hold true for groups in the class [MB] - and are perhaps even faster to
prove when using the methods of this paper.

(V) My original purpose was (see (VI) below) for a given representation
7 to find an f in L! such that m(f) is a projection of rank 1. But it turned out
that the inductive proof goes through when demanding sharper properties of
the function to be constructed. Again simplifying, the reason is that Schwartz
functions behave well when taking Fourier transforms. Indeed we constructed
an f in something like a Schwartz space, namely in the Fréchet algebra of all
C*®-functions g satisfying

/I(X*g*Y)(z)r(z)|dz<oo
G

i
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for all X,Y € {lg and all representative functions r, endowed with the obvious
seminorms. We used this algebra more or less explicitly at several places, for
instance in Section 3. Of course, even in the case of G = R this algebra
does not coincide with the usual Schwartz space because the exponentials
are representative functions. This could be “repaired” by allowing only a
distinguished algebra of representative functions in the above definition, for
instance coefficients of rational representations in the case of algebraic groups
as in [13]. In other words, variations of the theme are possible (we used in § 3
coefficients, which were constant on cosets of a given central subgroup).

Instead of just constructing a particular function, as we did, one might
ask more ambitiously for a description of the image of such Fréchet algebras on
general Lie groups under irreducible unitary representations as is available in
the case of nilpotent groups, [26), and partly in the case of exponential groups,
[32]. In this regard I am not too optimistic for the near future. But I have
the feeling that such algebras might be of some use in other aspects of har-
monic analysis, for instance in order to obtain information on the asymptotic
behaviour of matrix coefficients as in [28].

(VI) Let m be a continuous irreducible unitary representation of a con-
nected Lie group H such that x(C*(H)) contains the compact operators on
the representation space $. Arguing as in [9] one can easily deduce from 8.2
that § contains a unique algebraically irreducible L!(H)-submodule. In par-
ticular, kerp gy is a primitive ideal in the sense of algebra. A couple of
years ago I could prove (still unpublished) that for solvable H and any con-
tinuous irreducible unitary representation = of H the annihilator kerpigy ™
is always a primitive ideal. Moreover, the map kerc.(gym — kerpiym =
kercery m N L(H) is injective in this case. To avoid misunderstandings: I
do not claim that kery, () T is C*-dense in kerc- gy T, even though I do not
know of any counterexample. Presumably similar results are true for arbitrary
connected Lie groups. I hope to return to this circle of questions soon.
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