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A generalized Cartan matrix A of size n is an n x n-matrix 4 with integer
coefficients A; ; such that the following conditions are satisfied for all i j

Ai=2, A,;50, and A ;40 4;+0

(see e.g. [K]). We consider the n-dimensional real vectorspace R" with its
canonical basis e(1),...,e(n). Given a generalized Cartan matrix 4 of size n,
let R; be the reflection on R” defined by

e( j)R; =e( J) "Ajie(i)

for all i, j. The product C = C(4, ) = Ry(1) . .- Reny Where 7 is a permutation
of I ={1,2,...,n}, is called a Coxeter transformation for A.

The eigenvalues of the Coxeter transformations for a generalized Cartan
Matrix are of interest in many branches of mathematics: let us just mention
Lie theory [C), the study of singularities [A], and the representation theory of
associative algebras [PT, Z].

The spectral radius p(L) of a linear transformation L of R” is the maximum
of the absolute values of the eigenvalues of L; the multiplicity of an eigenvalue
Aof L is by definition its multiplicity as a root of the characteristic polynomial.

Theorem. Let 4 be a generalized Cartan matrix which is connected and
neither of finite nor of affine type. Let C be a Coxeter transformation for A.
Then p(C) > 1, and p(C) is an eigenvalue of multiplicity one, whereas any
other eigenvalue of C satisfies |4 < p(C).

Partial results have been known before. Let m be a permutation of / with
C = C(4,7). The quiver Q(4,7) of 4 has I as set of vertices, and there is an
arow i — j provided n(i) < m( j) and 4, ;+0. The result is known [A, 58] in
Case the quiver (4, ) is bipartite (i.e. any vertex is a sink or a source), thus
IN particular in case it is a tree (with some orientation). For 4 symmetrizable,
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it has been shown in [DR] that p(C) is an eigenvalue of C and that any other
eigenvalue 4 of C satisfies |1] <p(C). Recently, Takane [T] has considered
this case in more detail; in particular, she has shown that the eigenspace for
the eigenvalue p(C) is one-dimensional.

For the proof, we may assume that O(4, n) is not a tree, and our aim will
be to apply the Perron-Frobenius theorem: we will exhibit a basis b(1),...,5(n)

of R” such that C expressed in this basis becomes a primitive non-negative
matrix.

Quivers

Recall that a quiver Q = (Qy, Q1) (without multiple arrows) is just given by
a set () and a subset Q; C Oy x Oy, the elements of Qo are called vertices,
those of O, arrows, given an element (x,y) € Q), where x, y € Qp, one usually
writes x — y, and calls it an arrow starting in x and ending in y.

Let O be a quiver. For any vertex y of O, we denote by y* the set of all
vertices z with y — z, and by y~ the set of vertices x with x — y. A vertex y
with ¥y~ = (¥ is called a source, a vertex y with yt* = ¢F is called a sink. A
sequence (i, ..., in) of vertices in Q is called a path of length m starting in i
and ending in i,, or a path from iy to iy, provided ir—y — i, forany 1Sr=<m.
The quiver Q is said to be directed provided there does not exist a path of
length at least 1 starting and ending in the same vertex. Vertices x,y with
X = yory—x are called neighbours. The quiver Q is said to be connected
provided for any partition Oy = Q) U Q with nonempty subsets O, Oy, there
exist x € 0y, y € Q¢ which are neighbours. We also will need the notion of
a cycle: A sequence (iy,...,i,) of pairwise different vertices in Q is called a
cycle, provided m>3, and for any 1<r<m, there is an arrow i,_; — i, Of
Ir — i,y (with iy = im).

Let O =(Q0,01) be a quiver, and fix some source x of Q. The quiver
6,0 has the same set (0x0) = Qp of vertices, and the set of arrows (6:0) 18
obtained from Q; by replacing any element (x, y) € Oy by ( y,x). Note that the
vertex x 1s a sink for 6,0. A sequence (xi,...,x,) is called a sowrce sequence
provided x,; is a source for O, and for 1 < i<m, the vertex x; is a source for
Ox,_y -0, Q. If (x1,...,x,) is a source sequence for (, and J is a subset of
Qo with x; ¢ J for all 1<i<m, we say that w =g, ...y, is an admissible
change of orientation outside of .J.

The following lemma is essentially due to [BGP].

1

Lemma 1 Let Q be a connected finite directed quiver. Let x € Qp, and let
J be the set of vertices y such that there exists a path from x to y. Then

there exists an admissible change of orientation w outside of J so that x is
the unique source of wQ.

Proof. If y is a source of Q different from x, then y cannot belong to J. If
a source y different from x exists, we define inductively a source sequence
(¥ =¥1,92..., ) using only vertices y; ¢ J. We claim that this process has
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to stop after a finite number of steps. Let J, = J, and for m € N, define J,, as
the set of vertices z of Q which either belong to J,,..;, or else there exists an
arrow z — y or y — z with y € J,_. Then Qo = | J,, Jm. By induction, one
shows that a vertex y € J, can occur at most m times in a source sequence
outside of J. If ( y,,..., y,) is a source sequence outside of J with ¢ maximal,
then 6, ..., O cannot have a source different from x. On the other hand,
0y, ... 6y, Q still is directed, thus it has to have a source. This shows that x is
a source, and the only one, of g,,...0y,0.

Conventions

Later, it will be convenient to relabel the elements of I Thus, from now on
1 will just be a set of cardinality n. We use it as index set for the rows and
columns of 4; always, A = (4; ;) will be a generalized Cartan matrix indexed
by I In this way, the reflections R,, where x € I, are linear transformations
on R/,

We will work with a fixed bijection n:{1,2,...,n} — 1. Using n, we de-
fine the Coxeter transformation C = C(4,7) = Ry1). .. Ree). Note that 7 also
defines a quiver O = Q(4, n) with vertex set / and with arrows x — y pro-
vided n7'(x) < n7!(y) and 4,, 0. It is not difficult to see that the Coxeter
transformation C(4, ) only depends on Q = (4, ) and not on = itself, thus
we may write C(4,Q) = C(4,n). We should mention that for any admissible
change of orientation w, the Coxeter transformations C(4,Q) and C(4,wQ)
are similar,

In order to avoid an abundance of minus signs, we denote by a = («; ;) the
negative of A4, thus o j=—Aij forall i, je€L

Given an element ¢ € R!, we denote by ¢; (i € I) its coordinates. For any
subset J of I, and x € R/, we denote by x|J the vector with (x}/); = x; for
J€J, and (x}J); = 0 otherwise.

Grips

Let O = O(4,n). A grip for (4,Q) will be a path (ip,...,i;) in O such that
the following conditions are satisfied:

(1) iy is the only source of Q,

(2) Exél axig ; 1:

(3) Either % i, =2, and a;,_,;, =2, or else there exists a path (ip = xo,x1,...,
Xs~1,Xs = i;) from iy to i, with x; %4, and x,_| Fi,_1.

(4) For 0 < r < t, there is only one path starting in ip and ending in i, and
only one path starting in i, and ending in i,.

Proposition 1 A4ssume that Q is connected and contains a cycle. Then either
A is of type A or else there exists an admissible change of orientation w so
that (4,wQ) has a grip.

o
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Proof. Let (ig,...,im—1) be a cycle and let i, =i+ provided r =r' mod m.
At least one of the vertices z on the cycle must satisfy > . .21, since
otherwise the connected component containing the cycle has to be of type A.
We can assume z = iy. Using an admissible change of orentation, we can
assume that iy is the unique source of (. There exists a maximal u such that
(io,11,-..,0,) is a path, since Q is directed. Thus, i, is the endpoint of the two
arrows i,_; — i, and f,41 — i,. Take 1<¢<wu minimal such that there are at
least two arrows ending in i, say i,_; — i, and i, — i,. Since iy is the unique
source, there is a path starting in iy and ending in /. By construction, there is
only one path starting in iy and ending in i,, where 0 < r < 1.

Assume that we have chosen z on our given cycle so that 1 = #(z) is min-
imal. Then we claim that for 0 < r < ¢, there is also only one path starting
in i, and ending in i,. For, assume there exists some 0 < r < t and a path
(Yo, Y1 .--» ) from i, to i, different from (i,i,+y,...,i;_1,i;). Take r maxi-
mal, thus y; #4,.,. Then i, has at least three neighbours, namely i), i, and
¥1. Let J be the set of vertices y such that there exists a path from i, to ).
There exists an admissible change of orientation w outside of J which makes
i, into the only source. All paths starting at i, remain untouched; in particular,
the paths (i, ir11,...,0) and (i, = yo, Y| ..., vm = i) still do exist in wQ. This
shows that i, still is the endpoint of two arrows. Since #(i,)<t —r < t, W€
obtain a contradiction to the minimality of &.

The cone

Let us assume now that (4,Q) has a grip G = (i, iy,...,i;). To simplify our
notation, we change the notation for the vertices of (, the vertex i, with
0<r<t will just be denoted by r.

Here is the basis we want to consider: For i not in G, let b(i) = e(i),
whereas for / in G, let b(i) = Z'j:ie( /). Let K be the set of linear combina-
tions ) .., 4;b(i) with Z; =0, we call it the cone generated by the vectors &(i),
it is a closed subset of IR’. Since b(i), i € I is a basis of IR/, the interior K£°
of K is the set of linear combinations 3_,,4;5(i) with A; > 0. The cone K
may be described alternatively as follows: A vector ¢ € R! belongs to K if and
only if ¢; =20 for all i, and, in addition, cy<c; £ ... Z¢,. Similarly ¢ belongs
to K° if and only if ¢; > 0 for all i, and, in addition, ¢y < ¢; < ... < Cr-

Given ¢,d € R, we will write ¢ < d provided d — ¢ € K.

We will need several other vectors in K. First of all, let m(/) = }:;ge(" )2
of course, m(I) is the sum of 5(0) and the basis vectors e(i), with i not
belonging to the grip, thus m(/) € K.

If w=(ip,....im) is a path, we set a, = o;; %, ... _in» note that for a
path (i} of length 0, we have a;, = 1. For any vertex i € I, we define p(i) a8
the vector with components p(i); = 3 a,, where the sum ranges over all paths
starting in { and ending in j. For any arrow x — y in I, we have p(i)s < pi)y,
therefore p(i) € K, for any i € I.
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The operation of C on K

We note the following: Let i be a vertex with 0 < i < t. Since the only arrow
ending in i is the arrow i — 1 — i, we can write C = Sp5) 5,1 C18,C,, where
C) is a suitable product of the reflections S,, with x not belonging to the grip,
but with a path from x to , whereas C; is a suitable product of the remaining
reflections (those of the form S,, with no path from x to ).

Lemma 2 If x does not belong to G, then b(x)C belongs to K.

Proof. Note that for any Coxeter transformation C' = C(4,n’) and y a vertex
of Q' = O(4,n'), the vector e( ¥)C’ is non-negative except in case y is a
source in (. Since the only source of Q belongs to G, we see that b(x)C has
to be non-negative.

Let ¢ = b(x)C. For 0<i<t, let G(7) = {0,1,...,i}. By induction we see
that for 0< j<t— 1, we have

J
B(x)S0Si...S; = b(x) + Y o p()IG(J)
i=0

therefore cy<c < ... <c,—;. The value ¢, is the sum of the various non-

negative summands c,x,, where y — . In particular, one of the summands
will be Cro1%—1y thus ¢, 2 ¢ 1014 Z €1

Lemma 3 For all 0<i<t, we have b(i)C € K. If 1<i<t, then b(i - 1) <
b(iYC. We have b(0) < b(0)C if and only if either a;p22, or else ajg = 1 and
0 — 1. In case B(0) £ b(0)C, there exists an arrow x — t with b(x) X &(0)C.

Proof. Let ¢ = b(i)C. First, we show that coS1 =< ... ¢
In case 1<i<t, we have ¢; = 29 p(0); for 0 j<i—1, and ¢ =
% p(0);—1 + a;;_1; for i< j < t, we have

C; =Cj—1%j—1,j + Xy, I,

thus cj=cj_;. In this way, we see that co=c1= ... <c¢,_1, that ¢;—) > ci2,
for i>2, and that ¢y > 0, for i = 1.

In case i = 0, we have cp = ayo + 0 — 1, thus co=0 (and ¢o > 0 if and
only if ey + a9 =2). For 1< j < t, we have

Cj =Cj-1%j—1,;f + Ljvl,j— 1,

thUS ngcj__l_

Note that if x does not belong to the grip, and if there is a path from x
0 ¢, then ¢, >0 (more precisely, ¢, is the sum of two kinds of non-negative
Summands; one of the summands is cp p(0)y, the others occur in case there are
arrows x — ¢ and then they are of the form ay ).

In order to see that ¢, =c,_, we consider two cases: In case ¢ is endpoint
of an additional arrow x — ¢, where x#¢ — 1, we have
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¢ = (B(i)SoS1 ... 8- 1C1 )y 22, 21,
and therefore
Q=%M”&&-m$4aaﬁgﬂ—ﬂwu+Cﬂn*1204-

Otherwise, condition (3) asserts that x,0=>2 and a1, =2. The first condi-
tion shows that for i = 0, we have ¢y =1, thus c—1= 1. For 1 £i<t, we have
seen before that ¢,_; 2¢;_, = %;—1=1. Since for all 0 <i<¢, we have ¢,_1 21,
it follows that

Ctéczwlar—l,r -12c_.

Altogether, we have shown that ¢;=>0 for all i € / and that csc=...50
thus ¢ € K.

Note that for ¢ € X, we have 5(0) < ¢ if and only if ¢ > 0. On the
one hand, this shows that b(0) < b(1)C, since we have shown before that
(A(1)C) > 0. Similarly, we see that 5(0) < b(0)C if and only if a;p + a0 22,
if and only if o;4=2 or else t — 0. Also, for i =2, we have shown that ¢;_2 >
¢i-1, and since ¢ € K, it follows that b(; — 1) < b(i)C.

Finally, assume that a)y + a9 = 1, thus a0 =1 and a0 = 0. Since ay9 = 1,
there exists an arrow x — ¢ with x %7 — 1, since a9 =0, we see that x+0,
thus x does not belong to the grip, and therefore b(x) = e(x). On the other
hand, (6(0)C), > 0, thus b(x) < b(0)C. This completes the proof.

As a consequence we see:

Proposition 2 The Coxeter transformation C maps K into itself.

The primitivity

We have seen that with respect to the basis b(i), i € I, the Coxeter transforma-

tion is non-negative. It remains to be shown that some power of C is actually
positive with respect to this basis.

Lemma 4 We have m(I) + e(t) = m(I)C.

Proof. Let ¢ =m(I)C. Then ¢y = —1 + Y c10%022. We claim that for any
i € I which is not a sink, we have ¢i 2cp. We show this by induction: let i 0,
and assume that { is not a sink. We have

Gi=-14 3 cjuu+ ¥ oy
jei= jEi+

Since i is neither a sink nor a source, none of the sets i—,i" is empty, Il
particular, the last summand is greater or equal to 1. On the other hand, fOf
J €17, we have by induction ¢ j Z¢o. Thus, ¢;2¢,. Similarly, given a sink i
there is an arrow j — i, and by the previous considerations, ¢ jZco. It follows
that ¢;=> — 1 +c;2 ~1+¢o=1. This shows that m(I) < m(I)C.
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In order to see that m(/) + e(t) < ¢, we have to show that ¢,y < ¢ In
case there is only one arrow ending in ¢, we have a,_;,=2, thus

o=—Vte 1%+ 222 —-1+2-¢1 >0
jert

In case there are at least two arrows ending in ¢, say {—1 — t and x — £, we
get in the same way

oz —l+e_1+cee > C-1-

The height of O is by definition the length of the longest path in Q. Let A
be the height of Q.

Lemma § For any i € I, we have m(I) < b(i)C"*2.

Proof. By Lemma 4 we know that m(/) = m({)C, thus we only have to show
that m(/) < b(i)C"" for some 0<r; Sh + 2.

First, consider the case where either 2;90=2, or else a0 =1 and 0 — ¢,
thus 5(0) < 5(0)C according to Lemma 3. Given any vertex i € I, let ¢ be
the smallest length of a path from O to i. Then clearly (b(i)C%) 21, thus
b(0) < b(i)C", since b(i)C" belongs to K. On the other hand, we claim that
m(I) < b(0)C. By assumption, b(0) < »(0)C. If x — y in ], and y does not
belong to the grip, then clearly (A(0)C):<(H0)C),, and therefore m(l) <
K0)C. Altogether, we see that m(I) < b(i)C"*', and t; + 1=h + 1.

Thus, we can assume that ;o = | and that ¢ is not a neighbour of 0. Let
¥ be a neighbour of 0. We claim that for any i € 1 there exists 0<¢ <h such
that e( y) < b(i)C*.

First, assume that there exists a path from y to #, say of length #;, with &
being minimal. Then clearly ;<h — 1, and e( y) = b(i)C".

Second, assume that i=+0, and that there does not exist a path from y
to i Let ; be the minimal length of a path from O to i. Then 4 <h, and
e( y) < b(i)CH.

Finally, consider the case of i = 0. According to Lemma 3, there exists
some x — ¢ with b(x) < 5(0)C. Since 0 is not a neighbour of t, we have x+0.
Let I, be the smallest length of a path from 0 to x, thus /,<h— 1. Using
the previous considerations, A( y) = b(x)C'. Thus b( y) < b(0)C x where t, =
i+ 1<k,

Consider the case that a, = 1 for all arrows 0 — x. Then, there is a path
Xo = x| — ... — x, from 0 = xg to ¢ = x, different from the grip. Also, besides
I and x, there has to be an additional neighbour y of 0. In this case

b(0) + e(x1) + ... e(x) X e(¥)C

and
m(l) < (b(0) +e(xy) + ...e(x))C
thus m(Z) < e( y)C2. Altogether, we see that m(/) < b(i)Cit? for all i € L
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Finally, we have to consider the case where a,9=2, for some y+1 (and
19 = 1). Then m(I) < e( )C, and therefore m(/) < b(i)C%*! for all i € I.

Proposition 3 The transformation C**'*2 maps K into K°.

Proof. According to Lemma 5, m(l) < b(i)C**?. Using Lemma 4 and

Lemma 3, we see by induction that m(/)+ Y\, _,, ,b(j) = m(I)C". Alto-
gether,

Yob(i) X m(I)C' .

el

This completes the proof.

Proof of the theorem

Let 4 be a generalized Cartan matrix which is connected and neither of finite
nor of affine type. According to [A, SS] we only have to consider the case
where Q4 contains a cycle. By Proposition 1, there exists an admissible change
of orientation ® so that (4, wQ) has a grip. Since the Coxeter transformations
C(4, Q) and C(4, wQ) are similar, we may replace Q by Q. Let C = C(4,0)-
We have constructed a basis b(i), i € /, such that the cone X = K(b(i)| i €])
is mapped under C into itself, and under some power of C into its interior. The
Perron-Frobenius theorem [G, S] shows that there exists a unique eigenvector
v inside K°, that the corresponding eigenvalue is just the spectral radius p =
p(C), that the multiplicity of this eigenvalue is 1, and that any other eigenvalue
/ satisfies [4] < p. It follows from m(/) < m(J)C that p = 1. On the other hand,
it is well-known [BMW] that there exists an eigenvector with non-negative

coordinates and with eigenvalue 1 only in case 4 is of affine type, thus p > 1.
This completes the proof.

Remarks. 1. In order to present a proof of the theorem for generalized Cartan
matrices with cycles, one only has to consider grips (iy,...,i,) such that there
is an additional path from iy to i,. In this case, some of our considerations can
be deleted. We have dealt with the more general situation in order to outline
that corresponding cones also do exist for certain generalized Cartan matrices
A without cycles.

2. We may delete the last condition in the definition of a grip and will obtain
similar properties for the corresponding cone. This condition was introduced
only in order to facilitate the proof.
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