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Spin resolved photoelectron spectroscopy with Ir(lll) was performed 
in normal incidence of circularly polarized VUV radiation and normal 
electron emission. Using the spin information the spectra were separated 
with regard to the symmetry of the initial states. Besides the dominant 
transitions into the free electron like parts of the unoccupied bands, 
transitions into a secondary unoccupied band were unambiguously 
identified. Transitions into this secondary band cannot be evidenced 
without spin analysis. The data are in excellent agreement with a fully 
relativistic first-principles band structure calculation of Noffke and 
Fritsche, except for an overall shift of AE = 0.8 eV ±0.3 eV for the 
energy of the unoccupied final bands. 

I. Introduction 

In electronic transitions caused by circu- 
larly polarized photons the electron spins 
are commonly aligned. This is also true for 
unpolarized targets (1-7). This alignment 
arises from the spin-orbit interaction. For 
direct transitions the resulting electron 
spin polarization (ESP) is determined by the 
symmetry of the states involved, and is de- 
scribed by the corresponding (relativistic) 
selection rules for optical dipole transitions. 

The detectability of the spin effects 
depends on the magnitude of the resulting 
spin-orbit energy splitting in comparison 
to both the lifetime broadening of the excited 
electronic states and the experimental resolu- 
tion. For medium- and high-Z materials the 
spin-orbit coupling is strong, and compared 
to the detectability limits the electronic 
states are split and/or modified considerably. 
Correspondingly, the nonrelativistic selection 
rules, which only account for the spatial 
symmetry, break down while the relativistic 
ones (which include spin) persist (8). With 
solids, a spin resolved photoemission experi- 
ment thus yields information not obtainable 
without accounting for spin effects, namely 
about the symmetry and the hybridization of 
the states involved [5,6,9-12). 

In photoemission from solids via non 
hybridized final states with normally incident 
circularly polarized light and normal emission 
along a high symmetry line (i.e. in cubic 
crystals along A or ~), electrons arising 
from one distinct direct transition are totally 
polarized parallel or antiparallel to the 
photon polarization. The sign of the spin 
polarization (13) depends only on the symmetry 
of the initial state involved and the helicity 
of the incident light (9,10), as the final 
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states must be totally symmetric for the case 
of normal emission (141 . 

The resulting photoelectron intensity 
spectra should thus consist of two partial 
spectra correlated to transitions characterized 
by P = +i or P = -i. These partial spectra 
I and I are related to the measured total + 
intensity I and the measured spin polarization 
P by 

I+ = ~I(l+P) and I = I(I-P) (i). 

Structures which are superimposed in the total 
intensity I may then be separated in the par- 
tial intensities I and I thus giving an + 
improved identification and- localization of 
peaks. This procedure separates the spin-orbit 
split initial states. The separation is not 
attainable by using linearly polarized light, 

since the spin dependent effects occur only 
due to the definite phase relations in the 
coupling of the x- and y-component of circular- 
ly polarized light (9,10). Using linearly 
polarized light it is only possible to separate 
initial states of different spatial symmetry 
as long as they are not mixed by spin-orbit 
coupling (14,8). The intensity separation 
given in eq. (I) has been successfully applied 
before in photoemission from magnetized ma- 
terials to distinguish transitions originating 
from majority and minority spin bands (15,16), 
and in a previous spin resolved photoemission 
study of Pt(lll) (ll) as well as in spin polar- 
ized LEED (17). 

In this paper we use partial intensities 
obtained in a spin-resolved photoemission 
experiment to investigate details of the Ir 
band structure along FAL, and to perform a 
cross comparison with the relativistic band 
structure calculation of Ir given by Noffke 
and Fritsche (18) (NF, see Fig. i). 
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Fig. I. Bandstructure of Ir along FL calculated 
by Noffke and Fritsche (NF) I18). In the 
occupied bands the line types, characterize 
the symmetry of the states: A~ "'" , A~ --, 
A3 + A3___ The solid arrows are transitions 
~4 5 " 
assigned by NF (A,B,C,D,F,G,H); transition E 
is drawn for completion. The signs inserted 
into the arrows indicate the sign of the spin 
polarization of electrons excited by O + light. 
They follow from the relativistic dipole selec- 
tion rules given by W6hlecke and Borstel [91 . 
The parts of bands 7 and 8 marked by heavy 
lines are "free electron like". 

To interpret the structures apparent 
in photoemission spectra measured by van der 
Veen et al. [191 (VHE) NF have considered 
not only the transitions into the free electron 
like segments of the unoccupied bands 7 and 

8 between L6+ and F 6- (see Fig. i, transitions 
A, B, C, and D) but also transitions to the 
remaining parts of the bands 7 and 8 (Fig. I, 
transitions (E), F and G/H). These transitions 
to secondary bands (secondary cones (201) 
should be negligible due to the finite lifetime 
of the excited electronic states [211. Further- 
more, the corresponding structure measured 
by VHE is only a shoulder between E and the 
peak arising from transition A. AS VHE have 
used partly p-polarized light this shoulder 
could also be explained by surface state 
emission. 

One purpose of this paper is to identify 
the transitions E, F and G/H by means of spin- 
dependent partial intensities. A second is 
to prove the energetic position of the un- 
occupied bands 7 and 8. While the calculation 
of NF reproduced most values for the positions 
of critical points measured by VHE within 
the experimental uncertainties, the L - point 

6 
of band 8 was calculated to be 0.5 eV lower 
in energy. Further discrepancies in critical 
point energies were observed by Mack et al. 
(22). They have found secondary electron 
emission structures correlated with L 6- and 
a resonant photoemission peak related to the 
flat band region near F 6- lying about 0.7 eV 
higher in energy than calculated by NF. 

2. Experimental 

The measurements were performed at the electron 
storage ring BESSY using the circularly polar- 
ized off-plane radiation monochromatized by 
a 6.5 m normal incidence monochromator (23). 

The bandwidth of the light was 0.5 nm, 
the degree of circular polarization (88 ±3)% 
I24). The direction of light incidence co- 
incided with the Ir(lll) surface normal within 
0.3 ° . Photoelectrons emitted in an acceptance 
half angle of 3 ° around the surface normal 
were collected by a simulated hemispherical 
energy analyzer [25) followed by an UHV 
Mott-detector for ESP analysis. The energy 
analyzer was operated with constant pass energy 
resulting in an energy resolution < 150 meV 
independent of the initial energy. Apparatus 
asymmetries of the Mott-detector are eliminated 
by changing the helicity of the light. 

The Ir(lll) crystal surface was aligned 
within 0.i ° using an x-ray diffractometer, 
ground on SiC (mesh 600 - 800) and polished 
with diamond paste in successive steps from 
50 U to 0.25 U- The crystal was held by Ir 
wires lying in spark-cut grooves and was 
mounted on top of a liquid He cooled target 
manipulator. Heating was performed by electron 
bombardment using an Ir/ThO low temperature 

filament. The heating temperature was con- 
trolled by a W/Ir thermocouple [26). 

Characterization of the Ir(lll) surface 
was done in situ by Auger spectroscopy and 
LEED. The clean surface was prepared by Ne + 
bombardment and by repeated cycles of heating 
in oxygen at about Ii00 K and by flashing 
to about 1400 K. The oxygen was admitted using 
a doser giving a partial pressure of about 
10 -6 mbar in front of the crystal. To minimize 

phonon effects (271 during the measurements 
the crystal temperature was held at about 
60 K which is about 14% of the Ir Debye-tem- 

perature G D = 420 K [28). 

3. Results and Discussion 

A typical set of data obtained by spin resolved 
photoemission is presented in Fig. 2. From 
the total intensity I (upper panel) and the 
corresponding polarization P (middle panel) 
measured for an excitation energy h~ = 16 eV 
the partial intensities I+ and I were obtained 
using equation (i) (lower panel). I+ and I 

illustrate the improved distinction of the 
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peaks in the spin-resolved photoemission 
spectra compared to the total intensity I. 

Four dominant peaks labelled A, B, C, 

and D are resolved in the total intensity 
I as well as in the partial intensities I + 
and I . I and I demonstrate that as in the + 
case of Pt(lll) A, B, C, and D are correlated 
to transitions yielding totally polarized 
electrons; the sign of P serves to assign 
these transitions doubtlessly to the occupied 
bands 6, 5, 4, and 2 (see Fig. i). It is worth 
noting that the degree of polarization JPJ 
of up to 80% (as shown in the middle panel 
of Fig. 2) exceeds all data previously measured 
for nonmagnetic 3D crystals. 

Besides the peaks A, B, C, and D in the 
total intensity a weak shoulder exists near 
E F. This shoulder is correlated with a pro- 
nounced structure in the spin polarization 
and appears as a clearly resolved peak in 
the I_-spectrum. This peak (shoulder) 
originates from a transition F between bands 
5 and 8, as postulated by NF. To verify the 
assignment of transition F more extensively, 
and to look for a transition E from band 6 
to band 8 as well as for the transitions 
G/H from 5/6 to 7 near F, we have taken 
spectra at several photon energies hV between 
14.8 eV and 17.8 eV and obtained the spin- 
resolved results presented in Fig. 3. 

While the total intensities, which are 
again dominated by the peaks A, B, C, and 
D, do not reveal well defined transitions 
E, F and their expected dispersion, the partial 
intensities I+ and I_ do so. Thus the existence 
of the transitions E and F going from band 
6 and 5 (symmetry A~ + A~ and symmetry A~) to 
band 8 (symmetry A~) is ~emonstrated by ~dent- 
ifying the corresponding peaks in the partial 
intensities I+ and I_, respectively. The thre- 
sholds for the appearance of the peaks E and 
F are hV = 16.4 eV ±0.i eV and hV = 15.1 eV 
±0.i eV, respectively. They are deduced from 
the data using the constant initial state 
method given by Knapp et al. 129). With these 
thresholds found for E and F two points of 
the final state band 8 can be fixed in the 
band structure E(k) using the fermi level 
crossing method 129). As there are no de Haas 
- van Alphen data for the fermi level crossing 
points of bands 5, 6 along FAL in Ir, we use 
the level crossings given by NF and perform 
thus a check of the calculated band structure. 
The result is presented in Fig. 4: band 8 
has to be shifted by 0.8 eV ±0.3 eV towards 
higher energies. The uncertainty of ±0.3 eV 
is estimated taking into account the uncertain- 
ty of the monochromator calibration (~0.15 eV) 
and the error of the threshold determination. 
This energy shift may be due to an essential 
difference between measurement and calculation: 
The measured energies are excitation energies 

(real parts of the quasi-particle energies), 
the calculated energies are ground-state one 

g (30). The difference ~-g particle energies 
f % 

has to be zero at E [31J The value of +0 8 eV 
F " ~ 

is reasonable for metals at E-E= =15 eV (30,32). 
The shift of band 8 to ~igher energies 

is supported by structure J (see Fig. 3): 
Starting at about h~ = 17 eV at the low energy 
side of peak C a shoulder J is growing. At 
h9 = 17.6 eV it forms a double peak together 
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Fig. 2. Total intensity I (upper panel), 
electron spin polarization P (middle panel) 
and partial intensities I+, I (lower panel) 
measured at a photon energy hV=(16.0 ±0.15) eV. 
For P, the error bars give the statistical 
uncertainty (i x O due to particle counting). 
There is an additional scaling error of ±10% due 
to calibration uncertainties of the light polar- 
ization and of the Mott-detector. For I+, I 

the hight of the symbols gives the statistical 
error. The additional uncertainty due to the 
scaling of P is omitted, it has no effect on 
the results. The total intensity has been 
measured independently of the polarization. 

with peak C, the separation of C and J being 
about 0.5 eV. The peak J is present only in 
the partial intensity I_, as for peak C. Thus 

both J and C are due to a direct transition 
A 3 + A~ with P = -I. Hence J must be assigned 
t~ be the onset of a transition from band 
3 to band 8 near L (see Fig. 4). It cannot 
be assigned to a secondary electron structure 
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Fig. 3. Total intensity (first panel), partial 
intensity I+ (second panel), and partial 
intensity I (third panel) measured at various 
photon energies from 14.8 eV to 17.8 eV. The 
given points are larger than the statistical 
errors (see. Fig. 2). The structures discussed 
in the text and the thresholds for transitions 
E and F are marked. 

correlated with the critical point L 6- of 
band 8, as a secondary electron structure 
would show P ~ 0. Transition J results in an 
energetic position of L 6- at 14.2 eV ±0.3 eV, 
compared to the value of 13.54 eV calculated 
by NF. This difference is in accordance with 
the energetic shift of 0.8 eV ±0.3 eV given 
above. It is remarkable that the peaks J and 
C are of comparable intensity. On the basis 
of intensity calculations for normal photo- 

emission from Ag(lll) (33) and Au(lll) [34), 
the transition J should not be measurable due 
to a vanishing surface transmission factor. 

The transitions G and H from bands 5 and 
6 to band 7 near F (see Fig. i) cannot be iden- 
tified in the total intensity spectra. The 
I_-spectrum shows up a structure K close to the 
expected position for G/H, but K also exists 
below the threshold for G/H (15.6 eV). The dis- 
persion of K is equivalent to the dispersion of 
peak A which in addition is inconsistent with 
the existence of G/H. The I+-spectrum also 
shows up a peak L, which disperses like peak B. 
Both peaks K and L are significant and cannot 
be removed by considering systematic uncertain- 
ties of the measurements. These peaks may be 
due to the weak hybridization resulting from a 
mixing of band 7 with bands of the same double 
group symmetry A 6 lying higher in energy, e.g. 
band 9 (see Fig. I). Besides the spatial parts 
of the spinors transforming like A 1 the wave- 
functions of band 7 (and 8) contain a few per- 
cent of spatial parts transforming like A 3 (35 I. 
Assuming appropriate matrix elements the struc- 
tures K and L then must exist, and be strongly 
related to the structures A and B. 

Our measurements given in Fig. 3 allow 
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Fig. 4. Bandstructure of Ir along FL and results 
of our measurements. The solid and dotted lines 
represent the band structure calculated by 
Noffke and Fritsche (NF) [18). The broken lines 
give the unoccupied bands shifted to higher 
energies by ~E = (0.8 ±0.3) eV. The mapping 
points marked by circles (Q,O) correspond to 
transitions into band 8, the points marked 

by rhombs (0, ~ ) to transitions into band 7. 
The mapping points near F marked by rectangles 
(i,~) are taken from measurements at h~=19 eV 
and h~=20 eV not presented in Fig. 3. Filled 
symbols represent P > 0, open symbols P < 0. 
Transitions starting at the dotted bands 

(symmetry A~) are not allowed for the geometry 
used in this work. 

a further test of the band structure calcula- 
tion by NF. AS the calculation gives small 
energy differences between neighbouring bands 
much more accurately than large bandgaps (the 
quasi-particle correction varies slowly with 
energy), it is reasonable to shift band 7 
also towards higher energies by 0.8 eV as 
experimentally found for band 8. Taking into 
account this shift the use of the final state 
band structure calculation in connection with 
the spin-resolved partial intensity spectra 
allows a symmetry resolved mapping of the 
occupied bands. The mapping points resulting 
from the transitions A, B, C, and D to band 
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7 are included in Fig. 4 together with those 
from the transitions E and F to band 8. They 
agree with the calculated bands within the 
experimental uncertainties. (The systematic 
calibration error of the photon energy is 
cancelled in this procedure). Some systematic 
shifts of 0.i to 0.2 eV to lower energies 
are, however, found for bands 2 and 4. These 
shifts may also be due to quasi-particle 
corrections. But ground state one particle 
calculations are exact only within the limits 
given by the observed shift (30). 

4. Conclusions 

Transitions into a secondary unoccupied band 
have been identified and symmetry characterized 
by spin-polarization measurements. This is 
not easily possible by use of the photoelec- 
tron intensity alone (36). The spin resolved 
band mapping procedure yields excellent agree- 
ment with the NF bandstructure calculation 
in the occupied d-bands as well as in the 
unoccupied final bands if the latter are 
shifted in energy by 0.8 eV compared with 
theory. 

Several properties of Ir(lll) have facili- 
tated the derivation of the results presented. 
The high Debye temperature of 420 K (28) yields 
a small broadening of photoemission peaks 
due to thermal vibrations. Also, the (occupied) 
d-bands energetically lie close to E F resulting 
in a weak hole lifetime broadening. This is 
especially true for the two upper d-bands 
(5 and 6), see Figs. 1,4) which cross the 

Fermi level. Compared to other crystals (e.g. 
Pt(lll) (5,37)) it is a further advantage 
of Ir(lll) that the emission of these bands 
cannot be superimposed by surface emission 
from other directions with high density of 
states (i.e. the Q- or Z-direction) because 
the corresponding flat bands lie above E 
(18). It should also be noted that Ir(lll~ 
constitutes one of the rare examples of a 

non-reconstructed surface and that the pre- 
paration of the clean surface is possible 
without complications (partly a consequence 
of the high melting point T M = 2410°C). Ir(lll) 
can thus serve as a mode~ target for photo- 
emission from high-Z materials, especially 
under the aspect of spin resolved photoelectron 
spectroscopy. 
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