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For any infinite valued quiver 4 with only finitely many points of valency more
than two and satisfying appropriate necessary conditions, we construct an algebra
whose Auslander—Reiten quiver has a regular component of shape Z4. € 1992
Academic Press, Inc.

A theorem of Zhang [9] states that a regular component of the
Auslander—Reiten quiver of an artin algebra is either a tube ZA _/n or is
of the form ZA4 with 4 a valued quiver. Any finite wild quiver 4 with at
least three points actually does occur [8], but up to now the only infinite
4 known to occur were the quivers A, A% B_, C,,and D_, and since
rather a lot of examples had been considered, one was tempted to suppose
that these were the only possibilities. This is not so. Before stating our
result we recall the valued versions of some standard definitions [5].

A valued quiver Q =(Q,, @, a) consists of a quiver (Qo, Q,) with no
loops or multiple edges, where Q, is the set of vertices and Q, the set of
arrows, and function a: @, - N; x N, where N, = {1,2,..}. If i x - p is
an arrow one writes (a,,a,) for a(a). A valued translation quiver
(I'y, I'y, 7, a) consists of a valued quiver (7 0- {1, a) and an injective func-
tion 7: I'g — I’y defined on a subset Iy of Iy, such that for all xe I', and
ye I, there is an arrow a: 7x — y if and only if there is an arrow §: y — x,
and if these exist then a,=a} and a, = ag.

The Auslander—Reiten quiver I ; of an artin algebra A is the valued trans-
lation quiver (I, I}, 1, @) with I, the set of isomorphism classes [M] of
indecomposable finitely generated 4-modules M, an arrow a: [M] — [N]
if there is an irreducible map M — N, with t defined by t1[M]=[D Tr M]
on the vertices [M] with M non-projective, and with a, (respectively a’,)
equal to the length of Irr(M, N) as an End(N)-module (respectively as
an End(M)-module), where Irr(M, N)=Rad(M, N)/Rad*(M, N) is the
bimodule of irreducible maps.
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If 4= (4,, 4,, a) is a valued quiver then Z4 = (I, I',, 1, a) is the valued
translation quiver defined by I'y,=2Zx4,, t(k,qg)=(k+1,4q) for all
(k, g)e I'y, and for each arrow x: x — y in 4, and each k € Z there are two
arrows

(k, 2): (k, x) = (k, ») and alk, x): (k+1, y)—> (k, x)

in Z4, with ay ,,=a,=a,; ,, and @y = a5, = Ay -

For ZA4 to occur as a connected component of an Auslander—Reiten
quiver I, it is necessary that 4 be locally finite, connected and have no
oriented cycles. Moreover, the valuation must be symmetrizable, that is,
there must be a function d:4,— N, such that a,d(y)=d(x)a, for all
arrows a: x = y in 4,. If xe 4,, the valency of x is the sum

2 a,+2, aj,
x B

where a ranges over all arrows starting at x and f over all arrows
terminating at x.

THEOREM. Let A be an infinite, locally finite, connected, valued quiver
with no oriented cycles and symmetrizable valuation. If A has only finitely
many vertices of valency =3 then there is a finite dimensional algebra over
some field k with a regular component of shape ZA in its Auslander—Reiten
quiver.

This is proved in Section 6.

In our construction the field k is a prime field F, or Q. However, if the
valuation of A4 is symmetric, that is if a, = a, for all arrows «, then k can
be taken to be any field.

It is perhaps worthwhile to describe the evolution of the construction we
use. In discussions between S. Brenner, M. C. R. Butler and the first author,
algebras similar to

! Je—y > e »e e ‘5171=52?2=53)’3

were considered. It is easy to see that there is an Auslander—Reiten
sequence

1 1 0 0 1 1
0 — 00110 — 00000 @ 00100 ® 00000 01110 - 01100 —» 0 (*)
1 0 0 1 1 1



496 CRAWLEY-BOEVEY AND RINGEL

and since this cannot be in the preprojective or preinjective component,
and the algebra is not tilted, there was some hope that it was in a regular
component of type ZQ, with Q the quiver

P e — > > @ > ® R

Unfortunately, no way has been found to verify this. We modify this
algebra in two ways. The first way is to add the relations y,0=0=¢d,;
(1 <i<3), in which case many of the modules in the component contain-
ing the Auslander—Reiten sequence (x) behave like modules for the
domestic special biserial algebra

¥ é £

A= o_‘;"“’,o > ;l—__c_,—'O ya-—-0=85,

and this fact makes it possible to prove that the component does now have
shape ZQ. We formalize this in Section 1 with the notion of “Kronecker
biextensions”: our algebra is a Kronecker biextension of the algebra

N
B= N O T 0171 =202y,=037;

In order to realize the full range of ZA4 mentioned above, we make
our second modification, replacing B with a tilted QF-3 algebra. As
preliminaries we need a little more information about slices for tilted
algebras, which is included in Section 2, and about QF-3 algebras, which is
given in Section 3.

We deal with algebras 4 (associative, with 1) which are finite dimen-
sional over a field &, and by an A-module mean a finite dimensional left
A-module. We denote by 4-mod the category of A-modules, and write
maps on the left. By a module class we mean a full subcategory of 4-mod
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closed under direct sums, summands, and isomorphisms. If M is an
A-module we denote by P (M) or P(M) the projective cover of M, and by
I (M) or I(M) the injective envelope of M. If S is a simple module then
[M : S] denotes the multiplicity of S in M, and M is said to be sincere if
[M:S5]+#0 for all S. The modules N orthogonal to M are those with
Hom (M, N)=Hom (N, M)=0. We denote by D the duality Hom,(-, k),
by 1, and 1 the Auslander-Reiten translations D Tr and Tr D, and by v,
the Nakayama functor D Hom ,(—, A). Other unexplained notation can be
found in [7].

If D is a division algebra and Q is a quiver we denote by DQ the path
algebra of Q over D, so DQ=D®,kQ. If a;:x; ,—x;, (1<i<n) are
arrows in Q, we adopt the convention that the path from x, to x, is the
product «,a, ,---%,, so that DQ-modules correspond to representations
of Q by means of left D-vector spaces.

1. KRONECKER BIEXTENSIONS

(1.1) Let B be a finite dimensional k-algebra, and X an indecomposable
projective-injective B-module. We suppose that soc X is projective. X/rad X

is injective and X has length >3.
Let E = End z(X)°?, so that X is an B-E-bimodule. Since soc X and rad X
are fully invariant submodules of X, the simple modules

S=socX and T=X/rad X

are naturally B — E-bimodules. Now vg(S)= X and vg(X)= T so
End ;z(S) = End z(X) = End 4(7).
In particular, E is a division ring.
DEerFINITION. The Kronecker biextension C of B with respect to X is the

algebra

E Hom (X®S,E) E
c=|o0 B TOX
0 0 E

defined using the evaluation map

Hom;(X®S, E)@3 (T®X)~E,  f®(t,x)—f(x0)
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Any B-module is naturally a C-module, and there are two additional
simple C-modules: a simple projective S’ given by the first column, and a
simple injective T’ whose projective cover is given by the third column.
One can immediately write down a number of exact sequences relating
various C-modules,

0-T®P(TY->P(T)>T -0 0S8 ->I(5)>S5®I(S)>0
05S8?-P(S)>S—0 O0-T-KT)->T?-0
0-8->PT)-»X->0 0-X->IS)-»T" -0

(1.2) Let M=@>_, M,, where

M,=P(T’), M,=P(T), M;=rad P(T), M,=P(S), M;=P(S)=75,

and set 4=End (M)°® so that M is a C— A-bimodule. Let O be the
quiver

]

Q=1—_—>__,;2 ’ 53 > 4——3 5,

LEMMA. A= EQ/{ya, €6 >.

Proof. Each M, has endomorphism ring E°P, for example M, has
simple socle S’, and [M,:S']=1, which implies that any non-zero
endomorphism of M, is an automorphism, and hence that End(M,) =
End(S")= E°r.

We define maps a, ..., { between the M ; 1n the scheme

My == My e My M, =, +)

Namely, « is the projection of P(T) onto the summand T of rad P(T") x~
T'® P(T); B is the inclusion of P(T ) as the other summand of rad P(T’);
v 1s the inclusion of rad P(T) into P(T); é is the natural map P(S)—
rad P(T) coming from the inclusion of S as the socle of rad X; ¢ is the
inclusion of S’ as the summand of rad P(8)= S’? which is killed by ; and
¢ 1s the inclusion of $” as a complementary summand of rad P(S).

Now the maps «, ..., { commute with the action of E°P on M., and in fact
any map between the M, is an E°P-linear combination of products of these
maps. Passing to the opposite this gives a surjection EQ — End - (M)°P
which sends the trivial path e, at vertex i in Q to the projection of M onto
M;. One can now check that the kernel is generated by ya and &.
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(1.3) LEMMA. M is projective as a right A-module.

Proof. Equivalently Hom (P, M) is a projective right 4A-module for
each indecomposable projective C-module 2. If P=P(T"), P(T), P(S), or
P(S’), then P is a summand of M, so that Hom (P, M) is a summand of
Hom (M, M) = A°", and the assertion follows. Otherwise Hom (P, M,)=
Hom(P, M;)=0 and any map from P to M, (respectively M,) factors
through the mono g (respectively y), so that as a right A-module
Hom (P, M) can be displayed as the representation of Q°P given by

Hom (P, M)) ‘iﬁ._,._:"*_O: Hom (P, M,) + 122 Hom (P, M;) —— 0 &0,

and this is projective.

(1.4) We denote the projective, injective, and simple left 4-modules
corresponding to vertex i by P(i) = Ae;, (i), S(i).

Lemma. M®, P(i)) =M, M®,S(1)=T', M®,52)~T, M® , S(3)
=rad X/soc X, M®, S(4)=S, and M® , S(5)= §".

Proof. The first isomorphism is clear and the other isomorphisms
foliow from the presentations of the simple C-modules.

(1.5) LEMMA. There is a natural transformation ¢: M ® , v ,(-) —
Ve (M ® 4 —) of functors A-mod — C-mod. If P is a projective A-module with
ho summand P(3) then ¢p: M® (v (P) > v (M ® P) is an isomorphism.

Proof. Recall that v, (Z)=D Hom ,(Z, 4), and v (M®,Z)x
DHom . (M® ,Z,C). We define Pz MO v (Z)>ve(M®,Z) by
sending m ® f with me M and f- Hom ,(Z, A) — k to the map

¢ (m ® f): Hom (M®,Z, C)-k

which sends ge Hom (M ® , Z, C) to f(g,), where g,, e Hom ((Z, 4) is
defined by letting g,,(z)e A = Hom (M, M)°" be the map which sends
neM to g(n® z) me M. Tedious calculation shows that ¢~ is well defined
and that ¢ is a natural transformation.

We show next that if P=P(1)® P(2)® P(4)® P(5) then ¢, is epi. Let
€=e;+er+e,+es5 50 that P= Ae. The dual of ¢, is the map

D¢p: Hom(Me, C)» DM ® , D(ed)) = Hom (M, ed),
which after identifying e4 with Hom . (Me, M) sends ge Hom~(Me, C) to
the map taking me M to the map taking x € Me to g(x)me M. Now
Me=P(T"Y® P(T)® P(S)D P(S')=Cf
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for some idempotent fe C, and
DfCy=ve (CAY=HTYSUT)D I(S)DIS')

so D(fC)/rad D(fC) is a direct sum of copies of 7' and S, and hence
D(fC)/rad D(fC) is cogenerated by D(fC). Thus, as nght C-modules,
soc fC is generated by fC, and hence Hom( JC, U)y#0 for all non-
zero submodules U of fC. Taking U=uC it follows that uCf =
Hom(fC, uC)#0 for all non-zero ue fC. Now SJC=Hom (C[,C)=
Hom (Me, C), and it follows that giMe)Me #0 for all non-zero
g€ Hom (Me, C). Thus Dé,. is mono, so ¢, is epi.

To complete the proof of the lemma it suffices to observe that for
i=1,2,4,5 the modules M ®, () =M® ,v,P(i)) have the same multi-
plicities of each simple as the injective C-modules IT’), (T), I(S), and
I(S"), respectively. This is possible since these injectives have a known
structure and M ® , — is exact.

(1.6) Let S(3)* be the module class in 4-mod defined by
S(3)*=<{U|Hom (U, S(3))=Ext (U, S(3))=0)>.

LEMMA. If U, V are A-modules and Ue S(3)* then the Junctor M® , -
induces an isomorphism Hom (U, V) - Hom (M ® , U M ® V) and a
monomorphism Ext (U, V) - ExtL.(M® , U, M®, V).

Proof. Suppose first that U is projective, so the condition Ue S(3)* is
precisely that U has no summand P(3), and hence M ® 4 U 1s projective, If
P is a projective C-module, then Hom (P, M ® 4 V)2Hom (P, MR,V
as follows from reducing to the case P= C, and therefore

Hom (M@ , U M® , V)
=Hom ( M®,U M)®,V
=~ Hom (U, Hom (M, M))® , V
=Hom (U, A)® , V

since End (M) = A4°P. Since U is projective this reduces to Hom AU, V), as
required.

In the general case U has a projective presentation Pr>P,-U—-0
with Py, P, e S(3)*. Tensoring with M gives a projective presentation
M P~ MR, P, - MR, U0 of M®, U. Now in the morphism

0 ——s Hom ,(P,, V) —_— Hom (P, V)

| J

0—— Hom (M®, P, M@, V)——> Hom (M® P, M®,6 V)
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of complexes. the vertical maps are isomorphisms, so the induced
maps  Hom (U, V) >Hom (M® , U M®,V) and Ext (U, V)—
Ext,.(M®, U M®,V) on homology are an isomorphism and a
monomorphism. respectively.

(1.7) LemMa.  If &0t UG- U—=0 is an Auslander-Reiten
sequence in A-mod and UeS(3)* then M®, (0 - MR, t U
M®,6G-M®,U—0is an Auslander-Reiten sequence in C-mod.

Proof. U has local endomorphism ring, and by (1.6) so also does
M®, U, so M® , U is indecomposable. If P, — Py— U—-0is a minimal
projective presentation of U then M ® , P, — M@, P, M®,U-0is a
projective presentation of M® , U, and it is in fact minimal, as follows
using the categorical formulation of minimality and (1.6). The commutative
diagram

0—— M@A TA(U)_“—“‘““’ M®A VA(PI)_"“_’ M®A VA(PO)

l | J

0—— 1 (M®, U)—— VoM@ P))—— ve (M® , Py)

has exact rows, and the second two vertical maps are isomorphisms by
(1.5), so M®,t, Uzt (M®,U) By [1], the End ,(U)-module
Ext) (U, t,U) has a simple socle generated by &, and by (1.6) there is an
embedding

Ext' (U, 1 ,U)GExt: M®, U M® ,1,U)

After identifying End ,(U) with End-(M® , U), this is an End (U)-
module map. Now Ext;(M®, U, M® ,t,U) has a simple socle, which
must therefore be generated by the image M ® , & of & Thus M ® 1 E1s an
Auslander-Reiten sequence.

(1.8) We now come to the main result of this section.

THEOREM. There are C-modules, denoted by X[p, q] (p, q=0), with the
Joliowing properties.

(1) X[1,1]=X, X[1,0]= X/soc X, X[0, 1] ~rad X and X[0,0]=
rad X/soc X.

(2) For p>O0 there are Auslander-Reiten sequences

O-X[p—1,9g+11->X[p—1Lql®X[p, g+ 11— X[p,q] —O0.
(3) [X[p, q): T'1=max(0, p—1) and [X[p, q]: $'] = max(0, g — 1).



502 CRAWLEY-BOEVEY AND RINGEL

~ 7 ~ N s ~ ~ ~ ~ 7
- - 44100 - - -~ - 33000 - - - -- 33111 - ge1o2 11133 - - pOO3Y - - - - - 00144 - - - -
~ 7 N N S e N SN SN
44110 - - - - - 35106 - --- - 22000 - - - - - 22111 - - - - 11122 - - 00022-- - - - 00133 01144 -
S N S N N N U ol N
————— 33110 -- - - - 22100 - 11000 11111 DOGTY - - - - 00122 0113% - -
N S N SN S ~ 7 NN S N
33121 - - - - - 22110 - - 11100 00111 - 01122 12133 -
N N ~ N SN
----- 22121 - - - - - $111Q 0TIV - - - - - 42122 - - - - -
~ SN\ S ~N SN s
- 22132 - - - - - 11121 12111 - - - .. 23122
<N S T~ _—" N N
- 1132 - - - - . LT 00010 - - - - - 00100 01000 23111 - -
NS T T N e N N
11143 e --- e -~ T 00021--- - - 00110 - - - - - Q1100 12000 34111
ST SN N e N N
-------000%2 ---- - 00121 - - - -- 01110----—12‘,100 ----- 23000 - - - - - - - - - - - -
/ \ /"Yoz\ /Y”\ /zo\ / \ /
------- 00043-<---00132-v---01}121--.--12110----v231oo---~34000-------

— /" \ /Ym\ /’ 11\ /Yn \ / Yso\ / \

- - --00054-----0014%~ - - . . 01132 - - - - . 12121. - - - . 23110- - - - - 34100 - - - - - 00054 - - -

N /Yu\ A YN PR LN PR TR A Yo VN

FiGURrE 1

Remark. The modules X[ p, g] with (p, ¢) # (0, 0) are indecomposable
since they occur as end terms of Auslander-Reiten sequences, but X[0,0]
may well decompose—indeed we shall see later that this is the whole point.

Proof. The algebra A=~ EQ/{yx, 5> has an Auslander- Reiten compo-
nent displayed in Fig. 1, where the numbers indicate the multiplicities of
the S(i). This can be seen by applying the results of [3] to the string
algebra kQ/{ya, £6 ), and then using the tensor product functor E®, —, or
it can be checked directly. Set X[p, ¢g]=M® 4 Y,y where the Y, are
indicated in the diagram. Now (1) is clear, (2) follows from (1.7) and the
fact that Y, € S(3)* for p >0, and (3) follows from (1.4).

(1.9) We shall also need the

ProPoOSITION. If &:0— L -+ M — N — 0 is an Auslander-Reiten sequence
in B-mod and [N :8]1=[L:T]=0, then ¢ is an Auslander-Reiten sequence
in C-mod.

The algebra C can be obtained from B by taking a one-point extension
o '©%) followed by a one-point coextension. The proposition thus follows
by using both parts of the next lemma. Let G and H be k-algebras, let V
be a G— H-bimodule and let R be the matrix algebra (S }). Clearly
G-modules and H-modules can be regarded as R-modules.

LeMMA. (1) If g:0— L - M —> N0 is an Auslander—Reiten sequence
in G-mod and Hom(V, L)=0, then g is an Auslander—Reiten Sequence
in R-mod.
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(2) If O L—-SM->N-0 is an Auslander-Reiten sequence in
H-mod and Hom (N, DV)=0, then h is an Auslander—Reiten sequence in
R-mod.

Proof. The pair (G-mod, H-mod) is a torsion theory in R-mod, say
with idempotent functor ¢, and if X e G-mod and Y e H-mod then

Extp(Y, X)=Hom,(V®, Y, X) = Hom (Y, Hom.(V, X)).

To prove (1) it suffices to prove that the map 0: L — M is still a source
map in R-mod. Let ¢: L - M’ be a map in R-mod. If 1¢: L - M’ is split
mono, then M’ has a summand isomorphic to L, and since Ext(Y, L)=0
for all Y€ H-mod, this summand splits off as a summand of M’, so that ¢
is split mono. Otherwise, 14, and hence ¢ itself, factors through 6, as
required. The proof of (2} is dual.

(1.10) We need to iterate the construction of Kronecker biextensions.

DerFiniTiON.  If B is a fd. algebra with orthogonal projective-injectives
X, ... X,, each having projective socle, injective top and length >3, then
the multiple Kronecker biextension C of B with respect to X, .., X, is
defined by setting B, = B, letting B, be the Kronecker biextension of B,_,
with respect to X, for 1 <i<n, and taking C= B,.

This makes sense because the orthogonality of the X, ensures that when
regarded as a B, ;-module, X; is still a projective-injective with projective
socle and injective top. Let S;=soc X, and T,= X,/rad X,, and denote by
T; and §; the two simple modules introduced by the Kronecker biexten-
sion with respect to X,. Now C is a Kronecker biextension of B, _, with
respect to X, so there are C-modules X,[p, ¢] given by (1.8). In fact, up
to isomorphism, C is unchanged if the X, are permuted, so any result for
X, applies equally for the other X,. Thus we obtain

THEOREM. There are C-modules X[ p, q] (1 <i<n, p, q > 0) satisfying

(1) X,[1,1] = X, X,[1,0] = X,/socX,, X,[0,1] = rad X, and
X, [0,0] =rad X,/soc X,.

(2) For p>0 there are Auslander—Reiten sequences
0->Xi[p—1Lg+11->X.[p-1,91®X,[p,g+1]1->X.[p.q]1-0.

(3) [X.[p,ql:T;] = d,max(0, p—1) and [X,[p,q]:S]]=
6, max(0,g—1).

And by induction from (1.9).
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PROPOSITION. If &0 L —+ M -5 N—0 is an Auslander—Reiten sequence
in B-mod and [N :S,]=[L:T.]=0 for all i, then ¢ Is an Auslander-Reiten
sequence in C-mod.

2. PARTIAL SLICE MODULES

(2.1) Let B be a finite dimensional algebra. If X and Y are B-modules,
the notation X=<Y means that there are indecomposable modules
Z,, .., Z, and non-zero maps

X->Z,-2Z,— ... - Z,—>Y.
Note that this relation is only transitive when restricted to indecomposable
modules, which is the case considered in [7]. Allowing X and Y to be
arbitrary, however, simplifies our notation. Note in particular that for all
X one has 0 % X and X € 0.
We define another relation by X< Y if there is an indecomposable

module Z with X<t;Z and ZX Y, (Loosely, X © Y when there is a mesh
between X and Y.)

DEFINITION. A sincere module X is a partial slice module if X ¢ X.

LEMMA. A partial slice module is Sfaithful.

Proof. The same argument as [7, 24.7"].

(22) LeMMA. If X is a partial slice module and M is a module, then
XOMe X<t ,M

MOXes1, M X
Proof.  We prove the first relation. The second is dual. If X< 1tzM then
M has an indecomposable summand Z with X <X13Z and Z<M so
X M. Conversely, if X O M there is some indecomposable Z with
X=<15Z and Z< M. Taking a path Z=27,-27, > ... 5 Z, with Z, an
indecomposable summand of M, if there is a non-zero map Z, —» P with P
indecomposable projective, then

A<1t,7Z and £XZ,XPxXX
since X is sincere, but this contradicts X ¢ X. Thus
Hom(1,Z,, T2 )2Homg(Z,, Z, +1)=HomyZ,, Z, +1)#0

so Homy(1,Z,, 152, ,,)#0, and hence X=<13Z2<14M, as required.
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(2.3) If X is a module we define module classes via

S(— X) = (M indecomposable | M<Xand M ¢ X)
S{X—)= (M indecomposable | X < M and X & M>.

Recall [8] that a slice is a module class & satisfying (x) % contains a
sincere module; (f) % is convex, that is, if So. 81, M are indecomposable,
S0, S1€.% and S, X M=<S, then Me ¥, (v) if M is indecomposable and
not projective then at most one of M and T3 M belongs to &; and (§) if
M, S are indecomposable, M not projective, Se.¥, and if there is an
irreducible map S — M, then M or 1, M belongs to .&.

PROPOSITION.  If X is a partial slice module then S(—X) and S(X—-) are
slices.

Proof. We prove that S(X—) is a slice, the proof for S(—X) is dual.
Each indecomposable summand of X lies in S(X—), so the sincere module
X belongs to S(X—), which is («). Now (B) and (y) are clear. For (8), if
X & M then Me S(X—) since X< M. On the other hand, if X © M, then
X=<15M by Lemma (2.2), and so TpMeS(X—) since if X O 1,M then
also X< 8.

Remark. The arguments above are adaptations of the proof given in [7,
Addendum to 4.2] that S(X—) and S(—X) are slices when X is a sincere
directing module. In fact, it is shown there that if moreover Ye S(X—) is
indecomposable, then S(—7Y) is a slice. The proposition generalizes that
fact since Y@ X is a partial slice module and S(—-Y)=S(-»Y@® X).

COROLLARY. A sincere module is a partial slice module if and only if it
belongs to some slice.

3. QF-3 ALGEBRAS

Recall that a finite dimensional algebra B is said to be QF-3 provided
that it has a faithful projective-injective module. An equivalent condition is
that B has a faithful module X which is isomorphic to a summand of any
other faithful module. The module X , called the minimal faithful module, is
unique up to isomorphism, and is in fact just the direct sum of one copy
of each indecomposable projective-injective.

(3.1) LEMMA. If B is a tilted algebra and X is a sincere projective-
injective, then X is faithful. In particular B is QF-3.

481/153/2-16
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Proof. Since B is tilted, it has a slice . Now any indecomposable pro-
jective-injective must occur in any slice, so the indecomposable summands
of X, and hence X itself, belongs to &. Thus X is a partial slice module,
so faithful by Lemma (2.1).

Note that the non-tilted QF-3 algebra given by quiver with relations
. 2 e L > » L > ® yﬁzﬂa=0.

has a sincere projective-injective module which is not faithful.

(3.2) An algebra B is said to be socle-projective if soc g B 1s projective,
or equivalently, if the socle of any projective module is projective. For
QF-3 algebras this notion is symmetric.

PROPOSITION. If B is a QF-3 algebra with minimal Jaithful module X,
then the following conditions are equivalent

(1) B is socle-projective.

(1*)  B°P is socle-projective, or what is the same, I/rad I is injective for
all injective B-modules I.

(2)  Endg(X) is semisimple.

Proof. (1)=(2). The Nakayama functor induces an equivalence
Vg: B-proj — B-inj, X =vy(soc X) and soc X is projective, so End z(X) =
End g(soc X) is semisimple.

(2)=(1). Since X is faithful, B embeds in a direct sum of copies of
X, so it suffices to prove that soc X is projective. Suppose for a contradic-
tion that S is a non-projective simple submodule of X. Again P(S) embeds
in a direct sum of copies of X, and since P(S) is not simple, it follows that
X/socX has S as a composition factor. This gives a non-zero map
X/soc X - I(S)s X. However, since End s(X) is semisimple, the nilpotent
ideal {¢ € End 4(X)|4(soc X} = 0} is zero.

(1)<>(1*). The algebra B°" is QF-3 with minimal faithful module
DX, and End goo( DX) = End 4(X)°P, so statement (2) is self dual.

(3.3) PROPOSITION. Iet Bbe a socle-projective, connected, QF-3 algebra,
and let X be an indecomposable projective-injective module. If soc X or
X/rad X belongs 10 a slice, or if X has length <2, then B is hereditary.

Proof. If X/rad X belongs to a slice &, then any submodule Y of X is
projective, for if Y#0, X then X< X/Y=< X/rad X and since slices are
convex, X/Ye&. Thus X/Y has projective dimension <1, and so Y is
projective. The same assertion holds if X has length <2 since socy B is
projective.
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Continuing with these two cases, since X has simple socle, all non-zero
submodules of X are indecomposable projectives. We show that these
projectives form a connected component of 8. Thus let ¥ be a submodule
of X and let P be another indecomposable projective.

If there is a non-zero map a: P — Y, then Im(a) is projective so that «
must be an embedding. Thus P embeds in X.

Suppose, on the other hand, that there is a non-zero map f: Y — P. Let
S be a simple submodule of Im(f). Since B is socle-projective the module
S is projective, and since f '(S) is indecomposable projective and maps
onto S, it follows that g '(S)=S. Thus X = /(S) so there is a non-zero
map P — X. As before, this is an embedding.

Thus the submodules of X do form a connected component of B. Since
B is connected, these are all indecomposable projectives, and therefore
every submodule of an indecomposable projective is projective. Thus B is
hereditary.

The case when soc X is in a slice is dual. This time one must use the fact
that B is QF-3 to ensure that B°P is socle-projective.

(3.4) Remark. Much more can be deduced in (3.3), since the only
connected hereditary algebras with a non-zero projective-injective module
are of type A, with linear orientation.

4. A COMBINATORIAL LEMMA

In this section we give a simple but rather useful combinatorial lemma.
Recall that if I is a valued translation quiver, then a function f: I'y — N is
said to be subadditive if

JX)+fx ')z Y a.f(y)

ax — y

for all non-projective xer, o, where the summation is over all arrows
@: x — y starting at x. We say that f respects injectives if

fxy= Y a,f(y)

for all injective vertices x.

(4.1) DeFINITION. A point xe T, is successor-monotone if there is a
sequence of points and arrows

@ 7] #3
X > X, > X, >

in I, with strict inequalities f(x) < f(x,) < f(x;) < ---
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LEMMA. Let I be a valued translation quiver and let | be a subadditive
function which respects injectives.

(1) A successor-monotone point xel o IS not injective, and
ft7'x)>0.

(2) Any successor of a successor-monotone point is successor-
monotone.

Proof. (1) 1If x is injective then since f respects injectives,

f(x)Za, f(x,)=f(x,),

contrary to the assumption. The second assertion follows in the same way
from the subadditivity of /.

(2) It suffices to prove that if x is successor-monotone, then any
immediate successor y of x is successor-monotone. If ¥y =x,, the assertion

is clear, so suppose that y # x,. The X; are successor-monotone, so not
injective and therefore there is a sequence of arrows

yo1rlxos o x ot x, s

By subadditivity

)+ =2 ¥ a,f(2)= flx,)+ f(y),

XX —>Z

s0 f(t7'x)— f(¥) = f(x,)— f(x)>0. Similarly, for i > 0,

f(x,-)+f(‘r‘1x,-)2 Z aﬁf(w)>f(xi+1)+f(T_lxi~l)9

Bix,—-w
where xo=x. Thus f(t " 'x,) — f(t 'x,_,) 2 f(x;,)—f(x,)>0, and so

f()’)<f(‘f_1x)<f(‘f—lx,) <f(r7'x,)< --.

as required.

5. CONSTRUCTION OF A COMPONENT

In this section B is a non-hereditary, socle-projective, connected, tilted,
QF-3 algebra and % is a slice in B-mod.

(5.1) Let X,,.., X, be the indecomposable projective-injective modules,
so that X=X, @® .- @ X, is the minimal faithful module.
By Proposition (3.2) the X, are orthogonal, have projective socles S, and
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injective tops 7', and by Proposition (3.3) the X, have length >3. Thus
one can form the multiple Kronecker biextension C of B with respect to
Xy, ..., X,. Each Kronecker biextension introduces two new simple
modules, and we denote by §/ and 7 the two arising from the biextension
by X,.

In what follows we shall need to work with both algebras B and C, so
some care is required. We point out here that the notation related to tilting
theory: =<{, S(X'—), etc. will only be used for the algebra B.

(5.2) As in Lemma (2.1) the module X is a partial slice module which
occurs in every slice, so in addition to the slice & there are two canonical
slices S(—X) and S(X—). Now if Se & is indecomposable, then there are
non-negative integers p= ps and ¢=qg uniquely determined by requiring
that 0# 15Se S(->X) and 0#£1;9Se S(X—). Of course if = X;, then
P2=4¢=0. On the other hand,

LEMMA. If S€ & is indecomposable and not an X i then ps>0 or g¢>0.

Proof. Otherwise Se S(X—) and SeS(—=X), so X;<S<X, for some
I, . Since slices are convex and the endomorphism ring of a slice module
is hereditary, there are non-zero maps x: X, — S and B: S — X, with Ba #0,
Now the X, are orthogonal so i = J» and Endg(X;) is a division ring, so «
is a split monomorphism. Since S is indecomposable, S= X,, contrary to
the assumption.

(5.3) Recall that the valued quiver 4(%) of & is the full subquiver of
the Auslander-Reiten quiver I~ s on the vertices [S] with S an indecom-
posable module belonging to .%.

For 1 <i<n, let 4’ be the valued quiver

P D A ()
Zl '22 ‘723 —r e

and let 4 be the connected union of 4(.%) and the A4', in which the point
z} is identified with the point [X,] in 4(%).

Recall that (Z4)y=Z x4, and t(k,d)=(k + 1, d) so that (k,d)=
7%(0, d). To each point x in Z4 we associate a C-module M(x) by setting

M(k,zj)=‘C'EX,-[j,l] for keZ,1<i<n, j>1,
M(k, [S])=1¢S for keZ, [S]e(4(5)),,

where the modules X[ p, ¢] are as in Theorem ( 1.10). The identification
) = [X,] makes sense here since X,[1,1]xX..
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(5.4) We define 2n points r,, s, (1<i<n) in Z4. The module X, is in
&, and we have an exact sequence

0—»radX,-—->radX,-/socX,-@X,eX,/socX,-—»O (*)

which is an Auslander-Reiten sequence in both B-mod and C-mod, for it
is the sequence terminating at X[ 1, 0]. It follows from the definition of a
slice that exactly one of rad X, and X,/soc X ;15 in % In the first case there
is a point [rad X,] in 4(%), and we set

ri=(0, [rad X,]) and s;=(—1,[rad X,]);
in the second case there is a point [X;/soc X,;] in 4(%) and we set
ri=(1, [X;/soc X,]) and 5;=(0, [X,/soc X,]).

Since () is an Auslander—Reiten sequence in C-mod, in both cases we have
M(r;)=rad X; and M(s,)= X,/soc X..

(5.5) We divide Z4 into three regions. The predecessor region R pred
consists of the points x with a path to some tr,, the successor region R, ..
consists of the points x which are successors of some © - 's;, and the middle
region A4 consists of the remaining points.

Since each 7, is of the form (k, d) with k=1 or 2 and each 1~ 's; is of
the form (k, d) with k= —1 or —2. It follows that there is no path from
any t ~'s; to 1r,. Thus

LEMMA. (ZA), is the disjoint union Rpread R iy O R,... The set Rprea IS
closed under predecessors in Z 4, Risuce Is closed under successors, and R, is
convex.

(5.6) The middle region #,_, can be determined explicitly.

LemMa. (1) (k,z))e R, if and only if —1 <k <J, and if this holds
then M(k, ') = X,[j—k, 1+ k].

(2) If Se % is indecomposable and not an X i then (k, [S]))eR,... if
and only if —qs<k < pg, and if this holds then M(k, [ST) =4S,

Proof. (1) The first assertion is clear. Now X[ p, g]l=
Xilp—1,9+1] for p>1 by Theorem (1.10), and the second assertion
follows.

(2) Let € be the component in B-mod containing . By tilting
theory one knows that if M, Ne % are indecomposable, then M < N if and
only if there is a path in I'¢ from [M] to [N]. By [7,4.2.4] there is an
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embedding 1: I'6 s ZA(). Let H be the set of points in ZA(Y) such that
there is a path from [ S,] to x and from x to 1[ S,] with So€ S(—=X) and
S, €S5(X—) indecomposable. Since S(—X) and S(X—) give rise to
complete sectional subgraphs of I'¢, it follows that every point in H is
in the image of 1.

Let p=ps; and g=gqg, the smallest integers such that 28X, and
X;X1,5%S for some i, j. Since S is not an X, one actually has that

15S=<rad X, and X;/s0¢c X; 1,95,

and since these paths in B-mod give rise to paths in /¢ and hence in ZA,
it follows that

(P+ 1L [S]eR, 4 and (—q—1,[S]))e A,,..

On the other hand, 14~ 'S < rad X, and X,/soc X, % 1,9 VS for all i, so
there are no paths between these points in /'¢, and hence also in ZA()
by the remark above. Thus (p, [S]) and (—q, [S]) € A,iq- This proves the
first assertion.

For —g<j<p—1, consider the Auslander—Reiten sequence

0-14"' S E>1,85-0 (*)

in B-mod. Since 145 X X, onc has [t}S:S5,]=0 for all i Similarly
[t3"'S:T.1=0, so by Proposition (1.10) the sequence (%) is an
Auslander-Reiten sequence in C-mod. It follows that M(k, [S]) =4S for
—qg<k<p.

(5.7) Now that &, is known, many other facts can be determined.

LEMMA. (1) The modules M(x) with x€ R,,;, are not projective, injec-
tive, summands of the radical of a projective or summands of Il/soc I with I
injective.

(2) R4 contains at least two points in each t-orbit in ZA.
(3) Ifz,t"'zeR,,, there is an Auslander—Reiten sequence of the form

0> M(z)» @ a,M(w)- M(r~'z) >0,

AL Z =W

where the summation is over all arrows a:z — w starting at w.

(4) If there is an arrow x = y in Z4 between two points in R,..,, then
there is an irreducible map M (x)— M(y).
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Proof. (1) We divide into cases and use Lemma (5.6). These asser-
tions are clearly true for the modules X.[p.q]1 (p or g+#0). For (k, [S])
with Se %, observe that the modules 155 do not involve any S/ or T/, so
there are only two possibilities

(a) t3S is the simple summand T, of rad P(T;).
(b). %S is the simple summand S, of 1(S])/soc I(S)).

In case (a), 4,5 is an injective B-module, so k= —g and therefore T,
belongs to the slice S(X—), which is impossible by Lemma (3.3). Case (b)
is excluded similarly.

(2) This follows from (5.2) and (5.6).

(3) In (5.6) we have observed that the Auslander-Reiten sequence
starting at M(z) can be obtained from (1.10), so it has the required form.

(4) Since x € Hy,q, 50 also is T~ 'x or 7x. In the first case the assertion
follows from & ; in the second case Ty € g and the assertion follows
from ¢_,. '

(5.8) Lemma. (1) If XER,, .. then M(x) is not injective and
[M(x):T/]+#0 for some i.

(2) If xeR,., then M(x) is not projective and [M(x):S;]#0 for
some |.

Proof. (1) Consider the Auslander—Reiten quiver I' of C, and let f,
be the function (I'.), — N sending an indecomposable C-module M to
[M : T/]. Clearly this is subadditive (even additive) and respects injectives.
By Theorem (1.10) the module X i/soc X; = X,;[1, 0] is successor-monotone.

Let y € #,,,4 be a point with T 'Y€ Ryyeer 50 T 1y is a successor of some
t~'s; and hence y is a successor of s,. By Lemma (5.6), 5;,€ Riq, SO
Lemma (5.7) shows that M(y) is a successor of M(s;))=X,/soc X; in I',.
Applying Lemma (4.1) with the function Ji it follows that M(y) is not
injective and [t -'M(y) : T/]#0. Now observe that 12 'M(y) is also a suc-
cessor of X,/soc X;, so t-'M(y) is not injective and [tc*M(y): T)]#0.
Repeating in this way one finds for all m > 0 that M(t~"y)=tz"M(y) is
not injective and [M(z ~"y): T/1+#0.

Varying y and m, the points T~ ™y range over all elements of L7 A

(2) This is dual, using the opposite of Lemma (4.1).

(5.9) THEOREM. The modules M(x} with xe(ZA4), form a connected

component of the Auslander-Reiten quiver of C, and this component has
shape 7 A.
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Proof. We begin by showing that if xe #_,, U, then there is an
Auslander-Reiten sequence of the form

s 0 Mix)=» D a,M(y)— Mt 'x)-0.

ANy

Suppose first that TXE Mg A, and there is an Auslander—Reiten
sequence of form &,

Cor: 0> M(tx) > @ a,M(z) - M{x)—0.

Xy —» =

Now the - which arise also lie in Heig U K, 50 by Lemmas (5.7) and (5.8)
the modules M(x) and M(z) are not injective. Thus by [2, Proposition 2.3]
there is an Auslander--Reiten sequence of the form

O M@rx)> PO D a,t . Mz)o1.Mx)-0

xXITX =2

with P projective. If P is non-zero, then M(x)=1t; . M(zx) is a summand of
rad P. This is impossible, for either X € Apg in which case Lemma (5.7)
applies, or xe ®,,.., so [M(x): T/]#0 for some i by Lemma (5.8). Now
this sequence can be rewritten as E..

This inductive step implies our assertion since every xe R4 R, is of
the form t =™y (m>0) with y, ¢ 'ye R, .., and by Lemma (5.7) there is an
Auslander-Reiten sequence of form ¢& e

Dually, whenever 7~ 'xe®#, . . U, there is an Auslander-Rejten
sequence ¢, . Thus there is an Auslander—Reiten sequence of the form ¢ for
all xe (Z4),.

Since B is connected, so is 4(&’), and hence so also is ZA. Thus the
modules M(x) form a connected component of I'.

Finally suppose that M(x) = M(y) for x, ye(Z4),. We show that x = y.
By applying ™ for suitable m e Z and possibly exchanging the two points
We may assume that xe #,,, TX € Rpreq and y ¢ R, 4. Thus M(x) is either
an X, [0,q] (g=1) or it belongs to S(— X). In both cases [M(x): T/1=0
for all j, so ye ®,,, by Lemma (5.8). Now the modules M(z) for ze ®_,,
are known, and different z give different M(z), so x =y as required. Thus
the component has shape Z4.

6. REALIZING ANY COMPONENT

We prove the theorem stated in the introduction. First we need some
lemmas.
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(6.1) LEMMA. If A is a connected, locally finite, valued quiver, and
almost all vertices x € 4, have valency <2, then 4 can be written as the
connected union of a finite valued quiver H and quivers G, (1 <i<n) of the
form

(1.1} {1.1) (1. 1)
i0 i1 2

in which the orientation is unspecified, and 8.0 Is identified with some point
h,in H.

Proof. Since 4 is connected, we can define the distance d(x, y)eN
between two points x, y € 4, as the length of the shortest walk from x to
y. Choose any point pe 4,,, and me N such that d(p, x) < m for all points
x with valency >3. As a first approximation, let H to be the full valued
subquiver with H,= {q|d(p, q)<m}. This is finite since 4 is locally finite.
One readily sees that any point x ¢ H, lies in a full valued subquiver of 4
of one of the forms

(a) g . (L, 1) o {1,1) . (1.1)

1,1 | . ’
(b) q - ( ) . (1,1) .. (1, 1) . q
(C) g . (1,1} L)) . .

in which ¢, ¢’ € H,, the other points are not in H, and have no arrows con-
nected to them other than those marked, the orientations of the arrows are
unspecified and the valuations of unmarked arrows are unspecified. Since
4 is locally finite, there are only finitely many configurations of these forms.
Now by enlarging m we can eliminate cases (b) and (c) and ensure that the
first arrow in case (a) has valuation (1, 1).

(6.2) LeMMA. If F is a finite valued quiver without oriented cycles and
with symmetrizable valuation and if k is a prime field then there is an
hereditary k-algebra with A with A(A-inj)= F,

Proof. One can choose extensions k,/k of degree n for all n> 1, in such
a way that if n|m then k,< k,,. If the function 4- Fy — N, symmetrizes the
valuation, let 4 be the tensor algebra of the species with quiver F, in which
the vertex x is assigned the field kax) and an arrow a: x — y in F with
m=a,d(y}=d(x) a, is assigned the field k,, regarded as a Ky = Ka
bimodule. See [4].

(6.3) LEMMA. Let A be an hereditary algebra and let B be the iterated
one-point extension of A with respect to the indecomposable injective
A-modules 1, ..., I, with projective socle. If X, denotes the indecomposable
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projective B-module with radical 1,. then B is a socle-projective, tilted, QF-3
algebra with minimal faithful module X, @ - ® X o

S =A-injv (X,,..X,)D
is a slice. and A(/) is obtained from A(A-inj) by atraching new vertices [X.]

and arrows (1] — [ X,] with valuation (1, 1).

Proof.  Since the /, are orthogonal, recall that B is the matrix algebra

A1, - 1
B= .0 El -. 0
0 0 E,

where E, = End ,(/,)". The X, are injective by [7, 2.5.5]. The fact that &
is a slice, and the form of 4(.#), follows from the usual iterative construc-
tion of the component of B-mod containing .. Since X = X,@ ---®X,is
sincere, Lemma (3.1) shows that B is QF-3 and X is the minimal faithful
module. The fact that B is socle-projective is obvious.

(6.4) Proof of the Theorem. If A has underlying valued graph A _ the
assertion is known—one can take any wild hereditary algebra [6]—so
suppose otherwise. Write 4 as the connected union of valued quivers H
and G, (1<i<n)as in Lemma (6.1). Since 4 is infinite, n > 1.

If f: 4, Z is a function with the property

S(x)— f(y)e {0, 1} whenever there is an arrow a: x — y in 4, (*)

then Z4 = ZA4(f), where A(f) is the full valued subquiver of Z4 on the .
points

A(fo={(—f(d), d)|de d,}.

The classical case is a reflection: if ze 4, is a source and f(x)=26., then
(=1, z) is a sink in 4(f).

Using this construction we reduce to the case when the sources in A are
precisely the vertices g,, (1<i<n). First we consider ZH and define a
sequence of functions f,: H,— Z, setting fo(h)=0 for all he H,, and
iteratively, if there is a source (—f,(z), z)# (0, h)) in H(f,), we set
Ji v 1(x)= fi(x) + 8... These functions satisfy (*) and f,(h,)=0. Since H is
finite, 3, . ;1, fi(x) is bounded, but as this sum increases in each step, the
Séquence must terminate, say with f= f,. Since H, and hence the H(f})
have no oriented cycles this means that (0, A,) i1s the unique source in
H(f). We extend fto 4 by setting

fth)—1 (if gio— gi1)

f(g”)z{f(h,) (if gi0 < g:1)
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and

f(gy) (ifgfj_’gi.j+i)
Sflg)+1 (if g g,,:1)

for j= 1. Now the g, are the sources in A(f) and ZA=ZA(f).

Let 4 be an hereditary algebra with A(A-1nj) isomorphic to the full
valued subquiver F of 4 on Hyu {g,,, .., g, 1 - Such an algebra exists by
Lemma (6.2). Let B be the iterated one-point extension constructed in
Lemma (6.3). If & is the corresponding slice, then A(¥) is isomorphic to
the full valued subquiver of 4 on the points H,u {gyl1<ign, j=1,2}.
Since 4 is connected so is F, and therefore B is connected.

If B is hereditary then the indecomposable injective 4-modules with pro-
jective socle must be projective. As remarked in (3.4), the only connected
hereditary algebras with a non-zero projective-injective are of type A, with
linear orientation. In this case 4 has graph A .., which has been excluded.

Thus B is a non-hereditary, socle-projective, connected, tilted, QF-3
algebra with slice . Applying Theorem (5.9), the corresponding multiple
Kronecker biextension C has a component of shape ZA4, as required.

f(gi,j+l)={
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