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This is an extension of the work of Goodman-de la Harpe—Jones on pairs of
multi-matrix algebras and the corresponding index. In particular, it is shown that
the basic invariant of a pair of finite-dimensional semi-simple algebras is a
bimodule together with an integral n-tuple, and that the entire theory is equivalent
to the theory of finite-dimensional hereditary algebras whose square of the radical
equals zero. € 1991 Academic Press, Inc.

The present note provides an algebraic approach to the theory of pairs
of semi-simple algebras, the Jones fundamental construction of a tower,
and its index. It underlines the fundamental role of a bimodule and a
vector space which are attached to every tower, and which provide the
ingredients for the corresponding weighted valued graph. The Jones index
is expressed in terms of the largest real part of the eigenvalues of a Coxeter
transformation associated with this graph. In this way, the “mysteries” of
a “discrete” nature of the set of all possible values for this index are
clarified.

Chains of finite-dimensional semi-simple algebréﬁ

AgS A, G- SA,S -

and their inductive limits have been the subject of a number of studies in

the theory of C*-algebras, in particular in the language of 4F-algebras (see,

e.g., [Br, C, D, E, G, J1]). The methods and results are well recorded in

the recent book of Goodman, de la Harpe, and Jones [GHIJ]. A significant
35
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part of the theory is purely algebraic, including the study of multi-matrix
algebras and their Bratteli diagrams, the Jones fundamental construction of
the towers, and the corresponding index.

In this brief account, we wish to provide a general approach to these
concepts and clarify the links to existing algebraic theories. This will anable
us to consider general pairs and towers of finite-dimensional semi-simple
algebras; the respective invariants are a bimodule (together with a vector
space), its (weighted) valued graph, the corresponding (weighted) prepro-
jective component, and the largest real part of the eigenvalues of the
corresponding Coxeter transformation. Throughout the paper, k£ is some
fixed field. We may formulate the main results as follows (for explanations
concerning the terminology see Section |).

THEOREM 1. There is a one-to-one correspondence between the pairs
A < B of finite-dimensional semi-simple k-algebras and the pairs (M, X ;)
of finite-dimensional F-G-bimodules and finite-dimensional F-vector spaces

over basic semi-simple k-algebras F and G. Given {; M, X)), the corre-
sponding pair is

End(X;) S End(X, . ® M)

An explicit description of this correspondence is given in Proposition 1.
The following theorem underlines the central role of these bimodules (note
that in terms of the representation theory of associative algebras, we deal
with k-species) for the towers defined by the fundamental construction of
V.F.R. Jones [J1,J2]. In particular, one recognizes the concept of a
bimodule over basic semi-simple k-algebras as an important link in the full
understanding of the interrelations between the existing theories of the

pairs A < B on the one hand and those of the associated matrix algebra
(A, B)= (¢ 3) on the other.

THEOREM 2. Given a pair A< B, let C=End(B,), so that there is a pair
B C. If (|M¢, X)) defines A< B, then

(Homg( Mg, cGg), X ® M)
defines B< C.

Thus, in particular, the valued graph of B< C is obtained from the
valued graph of 4 < B by reversing the arrows. A successive application of
Theorem 2 leads to the tower defined by 4 < B, whose valued graph is just
that of the preprojective component of the Auslander-Reiten graph of the
hereditary algebra .&/(A, B) (see Remark in Section 2).
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THEOREM 3. Let A< B be a (connected) pair of finite-dimensional semi-
simple k-algebras and c the Coxeter transformation defined by its valued
graph. If the graph is Dynkin, then the Jones index of A< B is

[B:A)=2r+1),

where r is the largest value of the real parts of the eigenvalues of c.
Otherwise,

[B:A)=2+i+4",

where i is the largest real eigenvalue of ¢. Thus, [B: A]=4 if and only if
the graph of A< B is Euclidean (extended Dynkin) and [B: A]> 4.026 in

all other cases.

This explains the rather “discrete” nature of the set of all possible values
for the Jones index [J3]. In particular, we get the well-known values
4 cos’(n/n) for n>3 in the case of a Dynkin graph (#A4,) when
r=cos(2n/n). Also, if the graph is neither Dynkin nor Euclidean, then
the values of the Jones index are always greater than or equal to
po=4.0264179491869598599..., the largest real root of the polynomial

X —=O9x* 4+ 273 = 31x2 4+ 12x— 1

corresponding to the (Bratteli) graphs

and

(The corresponding eigenvalue of the Coxeter transformation is the largest
root of the irreducible polynomial

x4’ —xT—x =X —x*—xX*4+x+1)

Let us point out that the previous theorem answers a question of V. F. R.
Jones in [J2] by clarifying the link between small values of [B: 4] and the
finite representation type of .&/(A, B). Let us formulate this relationship

explicitly.
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THEOREM 4. Let A< B be a (connected) pair of finite-dimensional semi-
simple k-algebras, let [B: A] be its Jones-index, and let (A, B y=(a %)
Then

(i) [B:A]<4if and only if o/ (A, B) is of finite representation type,
and, in this case,

n
[B:A]=4fcoszr—l Jor some n>3.

(it) [B:A]=4if and only if </(A, B) is of tame representation type.

(i) [B:A]>4if and only if «/(A, B) is of wild representation type,
and, in this case, [B: A] = p,.

1. PAIRS AND THEIR GRAPHS

Throughout the paper, 4 < B denotes a k-pair, i.e,, a pair of finite-dimen-
sional semi-simple k-algebras with unital embedding. Two such pairs 4 < B
and A'< B’ are said to be equivalent if there is a k-algebra isomorphism
¢: B— B’ such that ¢p(A4)= A’. Recall that semi-simple k-algebras are finite
products of full matrix rings over division k-algebras; those which are
products of division k-algebras are called basic.

We shall associate every k-pair 4 < B with the hereditary k-algebra of

2 x 2 matrices
A B a c
.SJA, = =
(4, B) (0 B) {(0 b)

LEMMA 1. The k-pairs A< B and A'< B' are equivalent if and only if
(A, B) and s/(A', B') are isomorphic k-algebras.

aeA;b,ceB}.

Proof. 1f ¢ is an equivalence of 4 < B and (A’, B'), then & given by

o ((a 6)) _ ((p(a) w(C))
0 b 0 o(b)
defines obviously a k-algebra isomorphism of 2/(A, B) and o (4, B").

Conversely, if ¥ is an isomorphism of (A, B) and o/(A', B'), then ¥

induces an isomorphism of their maximal semi-simple quotients and thus
isomorphisms

YVi:AdA- A and ¥Y,.B-> B

In view of the fact that the restriction ¥, of ¥ to the radicals of the
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algebras is a bimodule isomorphism and thus Yilach)=¥,(a)
¥i(c) ¥,(h), we infer that the homomorphism ¥: B — B defined by

W(b)=¥i(lg) ¥s(h) ¥s(lg) !

is an isomorphism such that ¥(a)= ¥ ,(a) for all ae A. This completes the
proof of Lemma 1.

Now, .@/(A4, B) is Morita equivalent (ie., the respective module
categories are equivalent) to a k-algebra of 2 x 2 matrices

F M f m
(0 G)—{(O g)
where .M is an F-G-bimodule (with k acting centrally) and F and G are
basic semi-simple k-algebras. This provides a clue to the proofs of
Theorems | and 2 on the one hand and, following the techniques of the
theory of representations, to the definition of a (weighted) valued (bipar-
tite) graph of a pair on the other.

Recall that an (oriented, symmetrizable) valued graph is defined by a
pair of non-negative integral nxn matrices (U= (u,), V'=(v;)) such that
there is a positive integral invertible diagonal nxn matrix D satisfying
UD = DV. The index set {1, 2, .., n} is the set of vertices of the graph, and
if u; #0 (and thus v;#0), we say that there is an arrow from i to j with
valuation (u;, v;).

f€F, geG,meM},

ProrosiTiON 1. Let AS B be a k-pair and
a b
A=]] Mat(x,, F),  B=][] Mat(y,, G)).
i=1 Jj=1

Then there are ( finite-dimensional) F-spaces X; and F ~G -bimodules (.M e,
such that

A~End X, and B~End(X;® M),

where X p=@{_, X, and ;Ms=®D7., ®°_ | M, with canonical operations
by the basic k-algebras

F=F, xF,x ---xF, and G=0G,xGyx -+ xGy.

Furthermore,

End B, ~End(X,® ;M;® cMF),

Where GMF* == HOmG(FMGa GGG)'
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ADDENDUM. Write dim(,M 1o, =u; and dim g (;M )= v,;; then

dim(X,).=x;, and Y xiu;=y,

i=1

Furthermore, End B, =TT1¢_, Mat(z,, F,), where

Proof. The k-algebra .o/(A, B) assigned to the pair A< B is Morita
equivalent to an algebra o = (5 ) with basic semi-simple k-algebras F
and G. Now F=F xF,x --- xF,and G=G, X G, % --- x G, with division
algebras F, (1<i<a) and G; (1 <j<b). Accordingly, the F-G-bimodule
FM ¢ is a (unique) direct sum of the F-G bimodules .M, = F,MG,. Conse-
quently, 4 ~ End X where X=@?_, X, with F ~Spaces X; of dimension x;
(Isi<a)and B~End(X,® M) Indeed, o/(A, B) is the endomorphism
algebra of the direct sum of the (projective right) .o (A, B)-modules consist-
ing of x; copies of (§ ‘%), where ,M is the F, G-bimodule @, M, for
each 1<i<a

Observe that

b a
B~ End (@ X® ,.M,.) with M,=@ M,
j=1 i=1

Furthermore,

End B, = End[End( X, ® ,M,)],

~ End[Hom (X, Homg(,M¢, X, ® ;Mg))],

~ Hom ,[Hom( X,, X, ® :M;® ;M¥),
Homp(Xp, Xr® M;® cM¥)]

~Hom[Homr(, Xp, X;® ;M;® ;M ® X,
Xr® rMs® cMX]

>End(X,® M;Q M}),,

as required.
In order to complete the proof, we note that dim(G,M*F,),. =v,; and

dimg (G;M*F,)=u,. In this way, we get the two formulae for y; and z, of
the addendum, respectively.



TOWERS OF SEMI-SIMPLE ALGEBRAS 41

Now, both Theorems 1 and 2 follow easily from Proposition 1; indeed,
one takes into account only the fact that the k-algebras

(EndX,. End(XF®FMG)) ind (F M)
0  End(X,® M) 0 G

are Morita equivalent.

In order to clarify the relationship between various k-pairs, we shall call
two pairs A < B and A’ = B’ Morita equivalent if the respective k-algebras
s/(A, B) and o/(A’, B') are Morita equivalent.

PROPOSITION 2. Two pairs AS B and A'< B' are Morita equivalent if
and only if there is a finite-dimensional bimodule M and there are finite-
dimensional vector spaces X . and Y over basic semi-simple k-algebras F and
G such that A is Morita equivalent to A" via X® (Y (A~End X, and
A'~End Y}* with Y*=Homg Y, zFy)) and B is Morita equivalent to B’
via (Xr® ;M) R (cMER® pY)B~End(Xr® (M), B ~End(Y @ M)
where ;M} =Hom (Mg, ;Gs)

Proof. Referring to Proposition 1, we have
A = End(XF), B= End(XF® FMG)

and
A" =End(XY%), B’ =End(X:® M)

Thus, writing ;Y =Hom.(X%, Fr), the equivalences of the module
categories of the semi-simple algebras A4, F, 4’ are given by

ZioZ® X 2R XrQrY 4.

Moreover, the corresponding equivalences of the module categories of
B, G, B are

Zp o Zy® pg(4Xr® pMg)g
S Zp® g Xr® ;M) ® G(cME® ;Y 4)p.

Now, we are prepared to introduce the definition of the weighted valued
graph of a k-pair.

DerINITION. Let A< B be a k-pair as in Proposition 1. Then its (bipar-
tite) valued graph is defined by the (a+ b) x (a + b) matrices

((Oaxu UO ) (Oaxa VO ))
Ohxa Ohxb ’ Obxa Obxb ’
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where U, = (u,), Vo= (v,) are axb matrices exhibiting the dimensions
u,, v, given by the pair. Moreover. the weighting of the graph is achieved
by attaching the dimensions x, and y, to the vertices | <i<a and
a+1<a+j<a+b, respectively.

Note that y’s are determined uniguely by the x’s. Observe also that in
the case of the pairs of multi-matrix algebras (ie., the pairs for which all
F,=G,=k) this notion coincides with that of the weighted Bratteli
diagrams [Br). However, in contrast to the case of multi-matrix algebras
where the weighted Bratteli diagrams provide a full characterization of the
pairs, in general, one has to consider the respective bimodules ,M, (and not
only their dimensions, i.e., the valuation of the graph) in order to charac-
terize the k-pairs fully. As a simple illustration of the situation, consider the

central em beddmg
CH (f? )
0 ¢

of the R-algebra C into Mat(2, C) and the non-central one

c=a+ bir— ]
b a

The respective R-pairs are clearly non-equivalent. However, the weighted
valued graph is

(2.2)

O ——
(1) (2)

in either case. An easy calculation shows that the C-C-bimodule is C ®
<C¢ with canonical operations in the first case, and C.® C; with the
bimodule operation on (Cz given by ¢, -a-¢,=r¢,ac; in the second case.

2. TOWERS OF PAIRS AND THEIR INDICES

Given a k-pair A € B, the fundamental construction of V.F.R. Jones
[J1] defines the tower of finite-dimensional semi-simple k-algebras

b

Ay A4, S 4,€--S4,€4,,,& -

where 4y=4,4,=B,and 4,,, =End(4,),  forp=1.

Let M; be the F-G-bimodule associated with the k-pair
Ao=A<B=A, as in Proposition 1. Then, in view of Theorem 2, the
bimodule associated with the k-pair 4, 4, , | is either .M if p is even or
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cMPE=Hom (M. ,G;) if pis odd. Consequently, the valued graph of
the k-pair A, = A4,,, is the valued graph given by ((5 ) (5 'P)) as for
A< B if p is even, and by (( ;", M - o)) if p is odd. The weighting (x, y)
with x=(x,),.,., and y= XL0~—(1 )¥</<h of the graph as described in
Proposition 1 determines the wenghtmg of the graph of the entire tower by
successive application of the k-linear transformation of the real (a+ b)-

dimensional space R“*" given by

(X, ¥) (X »U"Vg 0 )
¥ Y0 vru)

Let us attach to the k-pair A< B the tower transformation t,5; of the
a-dimensional real space R'“’ defined by

IAB(X)=XUO V(r)r

and recall [GHIJ] that the Jones index of A< B is

[B:A1=lim sup &/]0%4(x)],

n—

where the norm |.-.| denotes the sum of the (positive) coordinates of
1% p(X).

Thus, the Perron—-Frobenius theory yields that [ B: A] is the largest real
eigenvalue of 7, (and equal to lim, , . (|45 ' (x)|/]1%4(x)).

Now, recall the concept of a Coxeter transformation defined by a valued
graph (U, V). First, for each vertex | <g< n, one defines an involution s,

of the n-dimensional real space R by

s(z)=12,
where z. =2z, for 1<r<nr+#g, aqd z,= —z,4+37_,zu,,. Then, a
product s, s,,---s, of all these involutions (taken in some order) defines a

Coxeter transformation [Bo].
We attach, to a given k-pair A < B, the Coxeter transformation c ,, given

by the product

Cap=3S182"""8,5,41 """ Sa4p

of involutions s,, | <i<a,ands,, ;, 1 €< b. Thus ¢ ,5is the transformation
of the real space

R+ = {(x, y)lxeR“”, yER(b)}
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given by the matrix

—1I - U, )_(——1 0)(1 UO)
(Vg VeU,—1) \VvI 1No —1)
Now, the cigenvalues of c¢,, and ¢ 4.5 are closely related as follows (cf.
[A,DRI1, SS, V, Z]).

LEMMA 2. If A # 1 is an eigenvalue of ¢ ,p, then i+2+ 4 ' is an eigen-
value of t 45, and all eigenvalues of 1,45 are obtained this way.

Proof. 1t is easy to verify the following identities for i=p?
(P’+1)p=kK, 150, —1:

A0\ (=1 o\/I U,
t _
de [(0 u) (V:; 1)(0 —1)]
/Al 0 I oI U, I_UOH
= det
de _(0 /'J)+(—V(’; 1)(0 1)}16{(0 I
(A — iU, I 0
‘de‘v(o i )+(—Va' 1)]

a+b Kl _pUO
= — 5 det det(’z)l P(jo)
—~Vy kI *
p
a+bdet(K21 0
T _a+b 0 K.2[_ VgU()
(A+1)3 ]
Gl 6 )
1+4 0 (/‘.+I)2] 0 ViU, |
_ A i

Taking into account that the non-zero eigenvalues of VU, and of U,V "
coincide, the lemma follows.

Now, we also get a proof of Theorem 3 easily. Indeed, the largest real

part of the eigenvalues of ¢ ,, leads to the largest (real) eigenvalue of ¢ 5.
In the case of a Dynkin graph,

2n . 2n
lxcos—-i-tsm——,
n n
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and thus 2+ A+ 1/4=2(cos(2n/n) + 1) = 4 cos*(n/n). Furthermore, Xi [X]
has shown that the Coxeter transformations of the graph

L 4 b > b b g - *

attain the least possible value of a maximal (real) eigenvalue 4, greater
than 1. In fact,

4o =1.1762808182599175065...

is the largest real root of the irreducible polynomial

x10+x9_x7_x6__‘x5_x4_x3+x+1

(cf. [Z]). Thus the corresponding minimal value

po = 4.0264179491869598599...

of an index greater than 4 is attained for the valued graph with

1 000 0
1 110 0
Up=Vo={0 0 1 1 0
000 1 1
000 0 1

Theorem 4 follows from the basic properties of the eigenvalues of
Coxeter transformations and the theorem characterizing the representation
type of a hereditary tensor algebra [DR2].

Remark (cf. [DR2]). In this connection, let us point out that the
valued graph of a tower of semi-simple algebras defined by a k-pair A< B
also represents the so-called preprojective component of the algebra
/{4, B). Moreover, while the weighting of the graph obtained from
the weighting (x, y) of the k-pair 4 < B is determined by the successive
applications of the tower transformation r,,, we note that (x, ¥) can be
interpreted as the so-called dimension type of the direct sum of x; indecom-
posable projective left of(A, B)-modules defined at the vertex ; for all
1 €i<a and the values chie(X, ¥), p=1,2 ... obtained by the successive
application of the Coxeter transformation as the dimension types of the
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corresponding direct sums of preprojective indecomposable representations.
Of course, in the case of a Dynkin graph, the preprojective component is
finite, since the positive values of ¢’ ,(x,y) will terminate after a finite
number of steps.

[A]

[Bo]
[Br]

[C]
(D]

[DR1]

[DR2]
[E]

[G]
[GHI}]
[HHSV]

[J1]
(J2]
[J3]

[Ss]

[V]
[X]
(2]
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