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Part [

Let A be an artin algebra, and A-mod the category of (finitely generated left)
A-modules. Maps will be written on the opposite side of the scalars, thus the
composition of two maps a: M, > M,, f: M, >M; in A-mod is denoted by

ap.

1 The main theorem

We recall some definitions from [AS]. Let 2 be a full subcategory of A-mod.
Let M be an A-module. A right ¥-approximation of M is a map y: X - M
with XeZ such that for any map y: X' > M with X'eZ there exists a map
& X' — X satisfying y'=¢&y. A left Z-approximation of M is a map f: M - X
with X eZ such that for any map f: M — X' with X'e# there exists a map
&: X - X' satisfying ' = B¢ The subcategory & is closed under direct summands
provided for every module X €%, any direct summand of X belongs to %, and
& is closed under extensions provided for every exact sequence 0— X, > M
=X, -0 with X,, X,€%, also MeZ. A full subcategory 4 is said to be functor-
ially finite in A-mod provided every A-module M has both a right A -approxima-
tion and a left Z-approximation. In contrast to [AS], we do not assume that
I is closed under direct summands.

Let ®={0(1), ..., ©(n)} be a finite set of A-modules with ExtL(@()), @) =0
for j>i. We denote by #(0) the full subcategory of A-mod of modules having
a filtration with factors in @. Thus, M belongs to 7 (©) if and only if M has
submodules 0=M,=M,<...cM,=M such that M/M, | is isomorphic to
a module in 6.

Theorem 1 The subcategory .7 (@) is functorially finite in A-mod.

The reader should observe that in this way we obtain a large variety of
functorially finite subcategories of A-mod which usually will not be closed under
submodules or factor modules. '

Auslander and Smale ([AS, Theorem to 2.4]) have shown that a functorially
finite subcategory which is closed under extensions and direct summands has
(relative) almost split sequences. Let 7' (@) be the full subcategory of P A-mod
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of all modules which are direct summands of modules in #(©). Then Z(0)
is closed under extensions and direct summands, and with #(0) also Z(0)
is functorially finite in A-mod. Therefore we obtain the following consequence:

Corollary 1 The category Z (@) has almost split sequences.

We recall the definitions from [AS], see also [R]. Let 2 be a full subcategory
of A-mod closed under direct summands. Let X be in £ A map y: Y- X is
said to be a sink map for X (or to be right almost split) provided 7 is not
a split epimorphism, and given a map 7’: Y’ — X which is not a split epimorph-
ism, there exists n: Y’ = Y with y=n7. A map : X - Y is said to be a source
map for X (or to be left almost split) provided S is not a split monomorphism,
and given a map f: X » Y’ which is not a split monomorphism, there exists
n: Y= Y' with B’ = fn. A (relative) almost split sequence in Z is an exact sequence
0-X2sY2Z50in A-mod with X, Y, Z in 4 such that f is a source map,
and 7 a sink map. An object XeZ is said to be Ext-injective in provided
ExtL{(M, X)=0 for all MeZ; an object ZeZ is said to be Ext-projective in
& provided Ext'(Z, M)=0 for all MeZ. We say that Z has (relative) almost
split sequences provided the following three conditions are satisfied: first, every
indecomposable object Xe4 has a sink map and a source map; second, if
X is indecomposable in # and not Ext-injective in #, then there exists an
almost split sequence 0 > X - Y- Z - 0in &, and third, if Z is indecomposabl¢
in Z and not Ext-projective in %, then there exists an almost split sequence
0-X->Y>Z->0inZ.

Once the % (@)-approximations of the A-modules are known, it is rather
easy to construct the sink maps and the source maps in (). Namely, given
an indecomposable module X in 2(@), let ¥: U — X be its sink map in A-mod,
and @: X -V its source map in A-mod; let y: X' — U be a right Z-approxima-
tion of U and f: V- X" a left Z-approximation of V. Then a right minimal
version of yy: X' > X is a sink map for X in (@), a left minimal version
of : X —» X" is a source map for X in (&)

Remarks concerning the definition of #(8) and Z(€): The reader should
be aware that categories of modules with prescribed filtrations usually will not
be closed under direct summands even if @ consists of indecomposable modules.

k k k

A typical example is given by A=|0 k 0[, where k is a field, @(2) the simple
0 0 &k

projective A-module, ©(1) its injective hull; here the indecomposable modules of

length 2 belong to 2'(©), but not to # (O). - On the other hand, an A-module M

belongs to # (@) if and only if M hasa filtration0=M, , , = M,<...c M, =M with

M i/M_ i1 1sqmorphic to a direct sum of copies of @(i), for all 1<ign This

18 an immediate consequence of our assumption Ext} (6 (j), 6(i))=0?0r jzi

2 Proof of the main theorem

We start with an arbitrary full subcategory ¥ of 4-mod, and we denote by

¥ the full subcategory of A-mod of all 1 S , _0
for all Xe ., modules Y satisfying Ext}(X, Y)
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Lemmal Let 0— Y= X M 0 be exact, with Xe& and YeZ and Ye%.
Then ;' is a right X-approximation of M.

This is the (trivial) converse of Wakamatsu’s lemma as stated in [AR].

Proof. Let 7": X’> M be a map with X'eZ. Since Ye#, the sequence induced
from the given one by 3’ splits, thus we obtain &: X' — X with y'=¢y.

Lemma 2 Assume that A is closed under extensions, and that for every A-module
N there exists an exact sequence 0N — Y 5 XV 0 with X¥eZ and Y"e%.
Then every A-module M has a right Z-approximation.

Proof. Let M be an A-module. First, we assume that there is an epimorphism
n: X =M with Xed; let K=Kern. The exact sequence 0 —» K — Y¥— X¥ 0
gives rise to a commutative diagram with exact rows and columns

0 0
0 -+ K > YK » XX 0
]
0 — X » 7 » XK 0
n y
“Mm‘M
W l
0 0

Since X, X* belong to 4 and & is closed under extensions, ZeZ. Since Yew,
we use Lemma 1 for the exact sequence which appears as middle column and
conclude that y: Z — M is a right Z-approximation.

In general, let M’ be the submodule of M generated by the images of maps
X' - M with X'e&. There is a finite set of maps n;: X;— M, with X;eZ such
that the images of n; generate M. Since & is closed under direct sums, X = DX,

belongs to %, and there is an epimorphism zn: X — M'. The previous considera-
tions yield a right &-approximation y": Z — M'. We denote by u: M’ — M the
inclusion map; clearly, y’ u is a right Z-approximation of M.

Now, let 2 =% (@). Then % =% (0) may be characterized alternatively as

the full subcategory of A-mod of all modules Y satisfying Ext!(@(i), Y)=0 for
1<ign.

Lemma 3 Let 1 St<n. Let N be an A-module with ExtX(©(j), N)=0 for all j>1t.
Then there exists an exact sequence 0— N —N'—Q—0 with Q a direct sum
of copies of @(t) and ExtL(@(j}, N)=0 for all j21.
Proof. Let

te=(0>N->N->0-0)
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be a universal extension of N from above by copies of @11), this means the
following: take exact sequences g=(0—->N — T,— ©(1)—0) so that the corre-
sponding equivalence classes [e;],...,[¢n] generate Ext\(@(). N ) as ]eft
End (@ (t))-module, and let £ be “the” exact sequence so that the s-th inclusion

of @ (1) into Q = O ()™ induces the sequence &,. Thus, the connecting homomorph-
ism

o: Hom (@ (1), Q) — Ext (&(1), N)

induced by ¢ is surjective. We show that Ext}(@(t), N)=0for jz1. We consider
the exact sequence

Hom (8(j), Q) — Ext}(0(j), N) = Ext}(8(j), N') - Ext3(8()), Q).

Since j=t, the last term Ext}(©(j), @ (t)") vanishes. For j>1, we know by induc-
tion that Ext\(@(j), N)=0. For j=t, the first map is just &, thus surjective.
Therefore, for all j=t, we have Ext(@(j), N)=0.

Lemmad Let 1<t<n Let N be an A-module with Ext\(@(j), N)=0 for all
j>t. Then there exists an exact sequence 0—N—->Y—>X-0 with
XeZ({01),...,0)}) and Ye¥(0).

Proof. By reverse induction, we construct monomorphisms

N_'—':Nt‘{,l"‘-luf__')Nt_!"}___l—’... a N1:Y

with Q,=Cok p; a direct sum of copies of @(i), and Extl(@(j), Ny=0 for all
j=i Let p=p,...u;: N> Y, and X =Cok . Then Y belongs to #(©), and X
has a filtration with factors Q,. For, without loss of generality, we can assume
that all y; are inclusion maps; the filtration of X = Y/N is given by the submo-
dules N/N, with 1 <i<t+ 1, and (N/NY/(N; . /NY=N/N;,, 2Q, for 1Sist.

Of particular interest is the case t =n which may be formulated as follows:

Lemma 4’ For every A-module N, there exists an exact sequence 0—N - Y
— X -0 with Xe % (@) and Ye¥ (O).

The proof of the main theorem is now straight-forward. Lemma 3 asserts
that the assumptions of Lemma 4’ are satisfied for ¥ =% (@) and @/‘:@/(_@)’
thus every A-module has a right & (@)-approximation. Since the construction
of #(0) is self-dual, we may use duality in order to obtain also left # (@)
approximations. This finishes the proof.

We should remark that our proof, in particular Lemma 2, is inspired by
a recent paper of Auslander and Reiten [AR].

We may reformulate Lemma 4' as follows. Recall that a full subcategory
2 of A-mod closed under direct summands is said to be contravariantly finite
in A-mod provided every A-module has a right Z-approximation, and to b
covariantly finite in A-mod provided every A-module has a left & -apprOXimation.

Proposition 1 The subcategory % (0) is covariantly finite in A-mod.
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Proof. Let 0Ny X0 be exact, with Xe% (0) and Ye®(8). Since
Exti(X.Y)=0 for all Y'e#(@), we can use the dual of Lemma 1 in order
to conclude that f§ is a left #(@)-approximation.

Proposition 1* The full subcategory #(©) of all A-modules W with
Ext (W, @(i)=0 for 1 £i<n, is contravariantly finite in A-mod.

We remark that the proposition and its dual can also be obtained as direct
consequences of the assertion of our main theorem, see Sect. 1 of [AR].

Note that, by definition, the modules in # (@) #(O) are the Ext-injective
objects of .#(0), the modules in (@) #°(O) are the Ext-projective objects
of .#(O).

Remark. If we weaken the assumptions on @, then the subcategory # (@) no

2
longer has to be functorially finite in A-mod. For example, let A={l(; kk] be

the Kronecker algebra, k a field. Let S be an indecomposable A-module of
length 2. For @ =S}, the category % (@) of modules having filtrations with
factors S, is neither covariantly, nor contravariantly finite in 4-mod. For @ =
{P. S}, with P the simple projective A-module, #(0) is a covariantly finite (and
resolving) subcategory, but not contravariantly finite in A-mod.

3 Application

Let E(1), ..., E(n) be the simple A-modules; note that we fix a particular ordering.
For 1 £i<n, let P(i) be the projective cover of E(i), and Q(i) the injective envelop
of E(i). We denote by U(i) the sum of all images of maps P(j)— P(i) with
j>i, and A4(i)= P(i)/U (i). Also, let V(i) be the intersection of all kernels of maps
Q(i)— Q(j) with j>i. Then, we have

ExtL(4(j), A()=0 for j=i
and
ExtL(F(j), P(i))=0 for j<i,

thus, we can apply Theorem 1 both to A={A(1),..., 4(n)} and to V=
vy, ..., vm).

An alternative description of #(4) and # (V) is as follows. Let J; be the
image of all maps P(j) —, A4 with j =i, thus

A=J1 DJZD"'DJMDJn'fl =\

A module M belongs to #(4) if and only if JM/J,,., M is projective as
an A/J;, ,-module, for 1 £i<n. And similarly, M belongs to # (V) if and only
if JM/J,, | M is injective as an A/J,, ;-module, for 1 i <n. It follows that % (4)
and # (V) both are closed under direct summands, thus % (4)=%(4), and
FWy=a (V).

Theorem 2 The subcategories F(4) and F (V) are functorially finite subcategories
which are closed under extensions and direct summands. In particular, both # (4)
and F (V) have (relative ) almost split sequences.
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We should remark that for j <i, we have
Hom (P, V(j)=0, and Hom,(A(j). Q{i)),

since E{i) does not occur as composition factor of V(j) or A(j). Consequently,
we have

Hom,(4(i),7(j)+0 ifandonlyil i=j.
For later reference, we also note the following:

Lemma 5 Let M be an A-module. If Hom ,(Ali), M)=0 for all 1Sizn, then
M=0. If Hom (M, V(i))=0 for all 1 Si<n, then M=0.

Proof. Assume Hom ,(4(i), M)}=0 for all 1 i<n. Since HomA(A(n)_, M)=0, it
follows that M is annihilated by J,, thus an A4,J,-module. By induction, M =0.
The second assertion follows by duality.

Part 11
Quasi-hereditary algebras

We recall some definitions from [S], see also [PS, DR 1]. As before, let A be
an artin algebra, and we fix some ordering of the simple A-modulc;s
E(1), ..., E(n), thus the modules A(i) and V(i) are defined. The algebra A
said to be quasi-hereditary provided first, ,A belongs to # (4), and scqoflds
E(i) occurs with multiplicity one in 4(i), (or, equivalently, End ,(4(i)) is a division
ring) for every 1<i<n. If we want to stress that we have fixed the ordenng
E(1), ..., E(n), we say that we deal with the quasi-hereditary algebra (A, E).

We assume from now on that A, or better (A, E), is quasi-hereditary. The
modules in A are said to be the standard (or Verma, or Weyl) modules, th?“
in ¥ will be called the costandard (or induced) modules. We prefer the notation
A(i), V(i) introduced in [DR3] in contrast to the notation V(i), 4(i} of Cline-
Parshall-Scott [CPS 1, CPS 2], since A(i) always has simple top, V(i) simple socle:
so the shape of the letters visualizes the shape of the modules. '

The modules in % (4) will be said to be A-good (or to have a 4-good filtration,
or a Weyl filtration, or a p-filtration), those in .Z (¥) will be said to be V-good
(or to have a V-good, or just a good filtration). )

Note that the usual definition of a quasi-hereditary algebra used induction:
First, one introduces the notion of a heredity ideal, this is an idempotent ideal
J satisfying JNJ =0, where N is the radical of 4, which is projective when
considered as a left A-module, and one calls 4 quasi-hereditary provided there
exists a heredity ideal J in A such that A/J is quasi-hereditary. With the notation
introduced above, we always will work with the heredity ideal J -=J,,-—*A£’A’
where e is an idempotent of 4 such that A(n) is isomorphic to de; note that

A/J is quasi-hereditary with respect to E(1), ..., E(n—1), so that we can us¢
induction.

4 The A-good modules and the ¥-good modules

As we have seen, the subcategory % (4) of 4-good 4-modules and the subcate-
gory F (V) of V-good modules are functorially finite in A-mod.
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In their recent paper [AR]. Auslander and Reiten have drawn attention
to subcategorics which are both contravariantly finite and resolving. Now, the
category .# (A4) of 4-good modules is functorially finite, thus contravariantly
finite. It is also resolving as we want to add. Recall that a full subcategory
2 of A-mod is said 10 be resolring if 4 is closed under extensions, closed under
kernels of surjective maps, and contains the projective A-modules.

Theorem 3 Let A be quasi-hereditary. The category #(A) of A-good A-modules
is a resolving subcategory of A-mod.

Proof. Clearly .7 (A) is closed under extensions and contains the projective A-
modules. It remains to show that .#(4) is closed under kernels of surjective
maps. Let 0— M, — M, — M, — 0 be exact, with M,, M, in #(4). Let J=AeA
be the heredity ideal of 4 where e is an idempotent of A with Ae isomorphic
to A(n). We denote by y;: Ae(X)eM, — M, the multiplication map. Its image
ede

is JM,. Since M, M , are A-good. the maps y,. 5 are monomorphisms ([DR 2,
Lemma 2]). We consider the following commutative diagram

0——A4e@eM, —— Ae®@eM,——— Ae@eM; ——0

|

My ! 5] My
‘ !
0—— M, e M, —_— M, ——>0,

where the upper sequence is obtained from the lower by multiplying with e
and tensoring with Ae over ede. Since eAe is a semisimple ring, the upper
S€quence is exact. Since y, is a monomorphism, the same is true for u,, thus
M, =Ae®eM, is a projective A-module. Since y; is a monomorphism, the
cokernel sequence

0-M,/JM,>M,/IM,—>M,/JM;-0

Is exact. Now, M,/JM, and M,/JM, are A-good A/J-modules, so by induction
MM, is a A-good A/J-module. Altogether we see that M, i1s a 4-good A4-
module,

We want to discuss some consequences.
Corollary 2 The Ext-projective objects in F (A) are just the projective modules.
Corollary 3 ] ¢ XeF(A), Ye¥(A). Then Exty (X, Y)=0 for all iz 1.

Pm."f- Let 05 X' 5P X0 be exact, with P projective. Then for i=2
Exty(X, V) Ext',7'(X', Y), and Ext; !(X', Y)=0 by induction, since with X and
P also XeF(4).

Let us formulate the corresponding result for F (V).

Theorem 3* 7o A be quasi-hereditary. The category F (V) is a coresolving subate-
80ty of A-mod.

. We recall that a full subcategory 4 of A-mod is said to be coresolving if
It1s closed under extensions, cokernels of injective maps, and contains all injec-
tve A-modules,

We now consider the relationship between F (4) and F (V).
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Theorem 4 Let A be quasi-hereditary. Then ¥ (A)=F (V).

Proof. First, we recall that Ext}(4(i), P(j)=0 for all i, (see [CPSHI'S}EC:

A(n) is a projective, and F(n) is an injective A-modtllle, we may assume 1 €4, ée <.

But for 1<i, j<n, we have Extl(4(i), V(j));—(lzxtm(zi(l), V(j)), the latter being
induction. This implies that 7 (V)< #(A).

Zer(;:lz the converse, let I))’e@ (A). Let Y be the maxima} A/J-submodule of

Y, thus Y” = Y/Y’ can be embedded into a direct sum of copies o{ V(n). }t follows

that there is an exact sequence 0 —Y” ~ Z—Z’ -0 where Z is a direct sum

of copies of V(n) and Z' is an 4/J-module. The inclusion Y" — Z yields a mono-
morphism

Hom (4 (i), Y") ~ Hom ,(4(i), Z),

and Hom,,(4(i), Z)=0 for 1<i<n, since Z is a direct sum of V(n), therefore

Hom ((4(f), Y")=0 for 1<i<n. The exact sequence 0 =Y —» Y- Y’ -0 yields
an exact sequence

Hom, (A4 (i), Y")— ExtL(4(i), Y) - Ext,(4(i), Y);

the last term is zero for all i, since Ye#(4), the first term is zero for 1S1<h
thus Extl(4(i), Y)=0 for 1 <i<n. By induction, it follows that the A/J:mgdulc
Y’ has a filtration with factors in {V(1), ..., P(n—1)}. In particular, Y'eZ (V)
thus Y'e%(4) by the first part of the proof. ’
We want to apply the first part of Lemma 5 in oder to show that Z =Q-
Since Z' is an A/J-module, Hom ,(4(n), Z')=0. For i<n, we have Ext3(4(),Y)

=0 according to Corollary 3. The exact sequence 0> Y' =YY" =0 yields
an exact sequence

Ext}(4(i), Y) - Ext}(4(), Y) = Ext3(4(), Y);

the first term is zero, since Ye® (), and we have just observed that the last

term is zero for i<n. Thus Extl(4(i), Y")=0 for i <n. From the exact sequence
0-Y"-Z->Z -0, we obtain an exact sequence

Hom ,(4(i), Z) = Hom (4 (i), Z')— Ext}(4(i), Y").

Since both end terms vanish for i<n, the same is true for the midd'le term.
We see that Hom ,(4(i), Z')=0 for all 1 <i<n, and therefore Z'=0. This shows

that Y/Y'=Z is a direct sum of copies of ¥(n), thus Ye% (V). This finishes
the proof.

Theorem 4* Let A be quasi-hereditary. Then F (A)=W V).

This is the dual assertion. Taking into account Theorem 4, this just asserts
that a module X belongs to % (4) if and only if Ext)(X, Y)=0 for all 1_’*?@('4)'
We observe that this also follows directly from Theorem 3 using Proposition 33
of [AR].

. Let us summarize: If 4 is quasi-hereditary, the two sets 4 and V of modules
yield four interesting full subcategories, namely

WA, FN=WF), YN=FWF). HW)
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The first three are contravariantly finite in 4-mod, the last three are covariantly
finite in A-mod, & (4) is a resolving subcategory, & () is a coresolving subcate-
gory. The pair #(4) and F (V) seems to be a rather pretty example for the
bijection between the resolving contravariantly finite subcategories and the co-
resolving covariantly finite subcategories, as studied by Auslander and Reiten
[AR]. The categories .# (4) and .# (F) have almost split sequences, the Ext-
projective objects in . (4) are the projective A-modules, the Ext-injective objects
in # (V) are the injective 4-modules, finally, the modules in F(MNF (V) are
Just the Ext-injective objects in .% (4) and also precisely the Ext-projective objects
in # (V). We will deal with # (4)n Z (V) below.

Here are the recipes for obtaining the various approximations. Let M be
an A-module. In order to obtain a right % (d4)-approximation of M, we use
the dual of Lemma 3 for % (F): it gives an exact sequence 0 » M" > M' > M -0
where M"e# (V) and M'e % (V)= (4), the map M’ - M is the right Z (4)-
approximation of M; note that M’ is obtained from M by a universal extension
from below, using the modules in V. Similarly, we obtain a left # (V)-approxima-
tion of M by using Lemma 3 for #(d4), here we extend M from above by
the modules in A. In order to obtain a left & (A)-approximation of M, we
have to use the construction described in the proof of Lemma 2; for a right
Z (V)-approximation of M, we use the dual construction. Observe that Lemma 3
applied to # (V) yields the right % (V)-approximation of M, and its dual applied
to #(4) yields the left %~ (4)-approximation of M.

5 The characteristic module

Let w=Z (4)n# (V), thus o is the full subcategory of all A-modules which
hay¢ both a filtration with factors in 4 and a filtration with factors in V. Note
that & depends on the ordering of the simple A-modules, thus we should write
Q_)(E) instead of w. Auslander and Reiten show (on the basis of previous investiga-
tions of Auslander and Buchweitz) that Theorem 4 has the following conse-
quence:

Theorem 5 There is a (uniquely defined) basic module T with w=add T and
T is both a tilting and a cotilting module.

We recall the definitions. Given a module M, we denote by add M the catego-
ry of all direct sums of direct summands of M. The module M is said to be
basic provided M has no direct summand of the form N @ N, with non-zero
N.A (generalized) tilting module T is a module with finite projective dimension,
EXty(T, T)=0, for all i> 1, and such that for any projective module P, there
€Xists an exact sequence 0— P — T, — T, — ... = T,, >0 with all T,eadd T. Simi-
lquy, a (generalized) cotilting module T is a module with finite injective dimen-
Sion, Ext,(T, T)=0, for all i> 1, and such that for any injective module 1, there
EXIsts an exact sequence 0 » T, —...» T, » Ty > -0 with all T.eaddT.

Proof. We use the notations of [AR] with & = Z (4). According to Proposition
1‘.9 of [AR] we have & < &,, in particular all projective modules are in Z',.
Since A4 has finite global dimension, £, = A-mod. It follows from Theorem 5.3
of [AR] that w=add T with T a cotilting module. By duality, T is also a
tilting module,
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The basic module T with w=add T will be called the characteristic module.
For the special case of the quasi-hereditary algebras occuring in the representa-
tion theory of semisimple Lie-algebras, the existence of the characteristic module
has been shown by Collingwood and Irving [CI].

Corollary 4 The characteristic module T determines F (4), Z (V) as follows:

F(N)={X|Extiy(X, T)=0 forall i=1},
F(V)={Y|Ext\(T, Y)=0forall iz1}.

As a consequence, T determines A and V.

Proof. Theorem 5.2 of [AR], and its dual assert the stated description of .# (4)
and % (A)=% (V).

We obtain the set 4 from # (4) as follows. Recall that A(i)= P(i)/U(i). We
can describe U(i) as the sum of the kernels of non-zero surjective maps
Y: P(i)— X with XeZ (4). For, let y: P(i)— X be a non-zero surjective map
with X e.# (A). Since 04 X € # (4), there is a submodule X' < X with X/X'eA.
Since P(i) maps onto X/X', it follows that X/X'=A(). But then
Hom ,(P(j), X/X")=0 for all j>i, therefore U(i)<Keron, where n: X - X/X'
is the canonical projection. But this is possible only for U(i)=Ker ¢, since
P(i)/U(i) and X/X" have the same length. Thus U (i)=Ker ¢ n 2 Ker ¢. Similarly,
we obtain V from # (V).

Corollary 5 There are precisely n isomorphism classes of indecomposable modules
in .

Proof. A basic tilting module is the direct sum of n indecomposable modules

[(H].

It remains to describe the indecomposable modules in .

Proposition 2 The basic module T with add T= can be decomposed T= P T(i)
into indecomposable modules T (i) such that there are exact sequences =1

0 A4() -2 (i) —— X (i) > 0,

0- Y(i)— T() = P(i) >0,
where B('i) -is a left F (V)-approximation, and X (i) belongs to F ({A(j)|j <i}) and
where (i) is a right % (A)-approximation and Y (i) belongs to # ({V(j)|j <i})-
Proof. We consider some fixed A(i). Lemma 3’ gives an exact sequence 0—

N B . )
4(i)—>Y->X >0 with XeZ({A(Dlj<i}), and YeH(4)=F(V), since
Ext}{A(j), 4())=0 for j=i. In particular, the simple module E(i) appears with

1
multiplicity 1 in Y, Let Y= 6—) ¥, with ¥, indecomposable. We can assume that

s=1
E(i) appears as a composition factor of Y,, thus Hom 4(4(i), ¥,)=0 for 2<s<t
and therefore we may assume that Y= Y, is indecomposable. Since F(4) i
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closed under extensions, Ye.# (4), thus Yew. It follows that T(i):=Y is a direct
summand of T The various T(i), 1 <i<n, are pairwise non-isomorphic, since
T(i) has a composition factor E(i), all other composition factors being of the

form E(j), with j<i. Thus T is isomorphic to @ T(i). Using duality, and the
i=1
characterization of T(i) by its composition factors, we also obtain the second
assertion.
Let us add direct proofs of Theorem 5 and its first corollary.

Lemma 6 Let gl.dim A=d. Then, for X € # (A), there exists an exact sequence
0-X->Ty,-T,-»...-T,-0

with T.ew for all 0<i<d.

Proof. Let X _,=X. Using inductively Lemma 2, we obtain exact sequences
£;=(0—>X,_, » T,— X,—0) with X ,e.7 (4), T,e ¥(4). Since Z (4) is closed under
extensions, and also X _,e#(4), we see that T.e # (A)n#(4)=w. Applying
Hom ,(X,, —) to ¢, we obtain an exact sequence

Ext/(X,. T) = Exti (X, X,) - Exti" ' (X4, X;_ 1) = Ext), (X, T)).

Here, the end terms vanish, since X,e#(4), T.e#¥(4). 1t follows that
Exth(X,, X, )=Ext4"'(X,. X _,)=0, therefore ¢, splits. Thus X, , €. Fitting
together the sequences ¢; with 0 <i <d— 1, we obtain the desired exact sequence,
where T,=X, ,.
For the proof of Theorem S, we apply this lemma for X = ,A4, and form
d

T'=@ T, Then T is a tilting module. Deleting multiple summands from T’
i=0

we obtain a basic tilting module Tew. If M is a module in w, also T@ M

satisfies the axioms of a tilting module, thus M eadd T, therefore w =add T. Using

duality, we see that T is also a cotilting module.

In order to show that & (V)={Y|Ext,(T, Y)=0 for all i=1}, let M be a
module with Ext',(T, M)=0 for all i=1. Lemma 2 yields an exact sequence
0-M-oY—-> X0 with Ye#(4) and XeF(4). The lemma above gives an
exact sequence 0+ X Ty~ T, —... > T,—0 with all TTew=add T Since
Ext! (T, M)=0 for all i=1, we conclude that Ext',(X, M)=0 for all iz 1. (We
use induction. The case m=0 is trivial. If m=1, there is an exact sequence
0— X - T,— X' -0 with Ext,(X', M)=0 for all i1, and it yields an exact
sequence 0= Ext(T,, M)— Ext'(X, M) - Ext}"'(X’, M)=0, for all i=1.) It fol-
lows that the sequence 0 » M = Y — X — 0 splits, thus Me# (4)=% (V). By dua-
lity, we also have % (4)={ X |Exti{(X, T)=0 for all i=1}.

6 The endomorphism ring of the characteristic module

Let AT-—-(—DT(i) be the characteristic module, and 4'=End(,7). We denote
P=1

by F the functor F=Hom (T, —): A-mod — A’-mod.
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Theorem 6 The ring A' is quasi-hereditary with A'={FV (i), 1 <i<n} the set of
standard modules. The functor F yields an equivalence between F# (V) and the
category F (A') of A'-good A'-modules.

Remark. Since the standard 4'-modules FV (i) satisfy the relations
Ext!' (FF(j), FV(i))=0 for j<i,

it seems appropriate to use the following numbering: let A4'(i)=FV(n—i+1),
for 1=i<n, and E'(i)=top A'(i). In this way, the indices of the simple 4’-modules
are in accordance with the rule specified for A at the beginning of Part II.

Proof of Theorem 6. Since ,Tis a tilting module and A'=End(,T), we know
(see [M] or [H]) that F is a full exact embedding of # (V)={Y|Ext{(T, Y)=0
for all i21} onto an extension closed subcategory of 4’-mod containing the
projective A’-modules. Here, exact means that any sequence 0 » V' > Y- Y" =0
which is exact in A-mod, with Y'Y, Y"eZ (V) goes under F to an exact
sequence in A-mod. For 1=iZn, leti=n—i+1. LetA'(i))=FV(i), and
A'={A'(1), ..., 4'(n)}. Clearly, the image of # (V) under F is the set of A’-modules
having filtrations with factors in A’, and it is closed under direct summands,
thus it is just % (4'). Let us determine the structure of the A’-modules A4’(i).
We denote by P’(i)= F T (i) the indecomposable projective A’-modules, and E’(i)-
=top P'(i} denotes the corresponding simple A’-module. We claim that
Hom ,.(P(j), 4(i))=0 for j>i; for, we have Hom ((T(j'), V(i'))=0 for j' <i, since
E(F') does not occur as composition factor of T(j'), whereas soc ¥ (i')= E(). On
the other hand, Proposition 2 yields an exact sequence

0-Y({")~> T -V(i)-0

with Y()e Z ({F (j")|j <i'}). All three terms Y(i'), T(i'), V(i') belong to &# (V), thus
under F we obtain an exact sequence

0= FY (i) - P'(i) = A4'(i) = O,

where FY(i) belongs to # ({4'(j)|j>i}). As a first consequence, top 4’(i)=E'(i)-
Since FY (i) has a filtration with factors A'(j), j>1i, and top 4'(j)= E’(j), it follows
that the top composition factors of F Y(i') are of the form E'(j), with j>i. As
a consequence, A°(i) is the largest factor module of P'(i) with composition factors
of the form E'(j), where J=i, thus it is the indecomposable projective
A’/In_;-module with top E'(i), where I, denotes the ideal of A’ of all endomorph-
isms of ,7 which factor through a module in add(T, ®...®T,). Since
End . (4'(i))=End,(V(i") is a division ring, it follows that E'(i) occurs only once
as a composition factor of A'(i). Finally, we use that any projective A’-module
_belongs to the image of # (V) under F, thus it has a filtration with factors
Lnl(fl)’. Alj)’%e;her, we see that A" is quasi-hereditary with standard modules
s eeey A'(0).

Starting with the quasi-hereditary algebra (A, E), we have constructed a
(unlquely defined) quasi-hereditary algebra (4, E'), where A’ is the endomorph-
1sm ring of the characteristic module T of (A, E), and we may iterate this proce-
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dure: we may consider the characteristic module T’ of (A, E’), and its endo-
morphism ring A", or better, (4", E").

Lemma 7 We have FQ()=T'(i') for all 1<i<n.

Proof. The module FQ(i) is Ext-injective in % (4’), thus FQ(i)= T'(r), for some
r. But we know that Hom ,(T'(i), Q(1))*0, and Hom ,(T'(j), Q(i))=0 for j <i. Thus
Hom ,.(P'(i"), T'(r))+0, and Hom ,.(P'(j"), T'(r))=0 for j<i, and therefore r=1".

Theorem 7 Assume that A is basic. Then we may identify the quasi-hereditary
ring (A", E") with (A, E).

Proof. Let Q=@ Q(i), then A=~End,(Q)~End ,.(FQ)=End, (T")=A", and,
under this isomorphism, E” corresponds to E.

Corollary 6 The categories F (A) and F (V') are equivalent.

Proof. We apply Theorem 6 in order to see that % (V') is equivalent to & (4"),
thus to Z (4).

Appendix

Quasi-hereditary algebras have been introduced by Cline, Parshall and Scott
([S, PS, CPS1]) in order to deal with the structure of suitable derived categories
using recollements and tilting functors. On the basis of the results above, we
are going to provide an explicit description of the quasi-hereditary algebras
in terms of tilting modules.

Let A be an artin algebra with simple modules E(1), ..., E(n). Given an
A-module M, we denote by dim MeZ" its dimension vector, thus (dim M), is
the Jordan-Hélder multiplicity of E(i) in M. Let P(i) be the projective cover
of E(i), and J; the sum of all images of maps P(j)— 44, with j=i. Note that
the A/J-modules are precisely the A-modules M with (dim M);=0 for all j=i.

Theorem. The artin algebra A is quasi-hereditary with respect to the ordering
E(1), ..., E(n) if and only if there exist indecomposable A-modules T(i), | Si<n,

such that (dim T(i));= 1 and @@ T(j) is a tilting A/J;. ,-module, for 1 SiZn.

ji=1
Proof. If (A, E) is quasi-hereditary, let T be its characteristic module. It is a

tilting A-module and Proposition 2 asserts that T= @ T (i), where (dim T(i));=1

i=1

for all i. Note that A/J,,, is quasi-hereditary with respect to E(1), ..., E(i) and

@ T () is its characteristic module.

ji=1 n

Conversely, assume there is a tilting module T= (P T(i) with indecomposable
=1

modules T1(i) such that (dim T(i));=1 and (dim T(i)),=0 for i <n. We claim that

J=J, is a heredity ideal. Since T is a tilting module, ,A4 is cogenerated by

T. thus P(n) and ,J both are cogenerated by 7. Since Hom ,(P(n), T(i))=0 for
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i<n, it follows that P(n) is cogenerated by T(n). Similarly, ,J is cogenerated
by T(n), since ,J is generated by P(n). We are going to show that any non-zero
map P(n)->T(n) is a monomorphism. Let D,=End,(E(i)), and D}
=End(T(i))/rad End (T (i)). Now, (dim T(i));=1 means that Hom ,(P(i), T{(i))
1s a one-dimensional D;-vectorspace. Since it is a D,— D)-bimodule, we see that

dim, D; <dim, D;. However, the k-algebras || D, and [ ] D: are isomorphic, since
i=1 i=1

these algebras can be recovered from the derived categories D?(A4) = D*(End(, T)_),
see [H]. Thus dim,D;=dim,D;, for all i. It follows that Hom ,(P(i), T(i)) is
a one-dimensional Dj-vectorspace. Let ¢: P(n)— T(n) be a non-zero map and
U its image. Since P(n) is cogenerated by T(n), and ¢ generates Hom ,(P(n), T(n))
as an End (T(n))-module, we see that ¢ is a monomorphism, thus U = P(n).
As a consequence, the Jordan-Hélder multiplicity of E(n) in P(n) is 1. We also
know that ,J is cogenerated by T(n), let y: ,J — T(n)" be an embedding. Sinqe
4J 1s generated by P(n), we see that the image of ¥ lies in U™, thus aJ 18
both generated and cogenerated by P(n). It follows easily [DR 1] that therefore
4J s a projective left A-module. Thus J is a heredity ideal of A.

Assume now, in addition that @ T(j) is a tilting A/J, ,-module for all i.
j=1
Then we use induction and conclude that A/J is quasi-hereditary, with respect
to E(1), ..., E(n—1). This finishes the proof.
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Note added in proof
Let A be an artin algebra.

{1} Theorem I may be generalized as follows: Let 4y, ', be contravariantly finite and
extension closed subcategories of A-mod. If we assume that Ext'(X,, X,)=0 for all X e¥,,
and X,e#',. then # (4, .7,) is again contravariantly finite (and extension closed) in A-mod.
See the paper: On contravariantly finite subcategories, to appear in the Proceedings of the
Tsukuba Conference on Representation Theory of Algebras, Canadian Math. Soc. Lect. Note
Series.

(2) We have shown in this paper that for 4 quasi-hereditary, the category .# (4) has relative
almost split sequences. As a consequence, the usual techniques of the modern representation
theory of finite dimensional algebras may be adapted. In particular, the analogue of the first
Brauer-Thrall conjecture is valid for F(4): in case the indecomposable modules in F (A)
are of bounded length, there are only finitely many isomorphism classes of indecomposable
modules in .# (A4). This result and investigations concerning the structure of the Auslander-
Reiten quiver of .# (4) may be found in the paper: The category of modules with good filtrations
over a quasi-hereditary aigebra, which also will appear in the Proceedings of the Tsukuba
Conference.

(3) Given a set @=[0(1), ..., O(n)} of indecomposable A-modules 6(i) such that
rad (@), @(i)=0 and Ext"(8(j), O(i)=0 for all J i, there always exists a quasi-hereditary
algebra B, such that the category .#(6) is equivalent (as an exact category) to the category
of Ag-good modules. This means that under the mentioned assumptions, we may consider
@ as the set of standard modules of some quasi-hereditary algebra. See the joint paper with
V. Dlab: The module theoretic approach to quasi-hereditary algebras, to appear in the Proceedings
Tsukuba Workshop, London Math. Soc. Lect. Note Series. This survey also contains a detailled
study of the category of good modules for the Auslander algebras of uniserial algebras.
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