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Quasi-hereditary algebras have been introduced by L. Scott [S] in order to
study highest weight categories as they arise in the representation theory of
complex Lie algebras and algebraic groups. They have been studied by Cline,
Parshall and Scott [CPS], [PS], and in [DR1], [DR2]. Here, we are going to
give lower and upper bounds for the dimension of a quasi-hereditary algebra in
terms of its species, and we characterize those algebras where one of these
bounds is attained: we call them the shallow and the deep quasi-hereditary
algebras, respectively.

1. Definitions and results

Let A be a basic semiprimary ring with radical N, let e, ...,e, be a complete
set of orthogonal primitive idempotents. The simple right A-module which is
not annihilated by e, will be denoted by E(i), its projective cover by
P(i) = P (i). The simple left A-module not annihilated by e, is denoted by E*(i).
The species of A is, by definition, & = ¥(4)=(F;, M)i<ij<n» Where
F;=e;Ae/e,Ne,, and M j=e,.Nej/eiN2ej. In our considerations, the total
ordering of the index set {1, ..., n} of the species will usually be of importance,
and in order to stress this, we will speak of a labelled species.

We recall that an ideal J of A4 is called a heredity ideal provided J2=J,
JNJ =0, and the right module J, (or, equivalently, the left module ,J) is
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projective. And A is said to be quasi-hereditary provided there exists a chain
F =(J), of ideals

O0=JycJ,c...cJ =4

such that J,/J;_, is a heredity ideal of A/J,_,; such a chain will be called
a heredity chain of A. Observe that any heredity ideal J is generated (as an
ideal) by an idempotent, and if e is any idempotent in J, then the ideal <e)
generated by e is a heredity ideal of 4, and J/{e) is a heredity ideal of A/{e). It
follows that we can refine any heredity chain of A to a heredity chain # such
that, in addition, J;/J;_, is generated by a primitive idempotent, and we call
such a heredity chain a saturated one. So, let ¢ be a saturated heredity chain of
A, and we always asume that the idempotents e, are chosen in such a way that
Ji={lep_is1+...+e,), for 0<i<n. In this way, the quasi-hereditary
algebra A together with the fixed saturated heredity chain determines uniquely
Z(A) as a labelled species. Note that & (A) is a species without loops.

Assume that A is quasi-hereditary, with heredity chain # = (J)),, where
Ji={ep-i+1+... +e,>. Let A, = A/J,_,. Note that E(i)) and E*(i) are
A;-modules, and we denote their A-projective covers by A(i)= 4 4() and
A*(i) = A%(i), respectively. Since we deal with a quasi-hereditary algebra, it
follows that J,/J;_,, as a right A-module, is the direct sum of copies of
A(n—i+1) (so the modules A4(i) are just those modules which occur as building
blocks in the standard filtrations of the projective right A-modules: the “Verma
modules”, or “induced modules™). Similarly, Ji/Ji- is, as left A-module, the
direct sum of copies 4*(n—i+1).

By definition, both A(i) and A4*(i) are local 4-modules. In case all the
modules 4(i) and 4*(i), with 1 < i < n, have Loewy length at most 2, we call
A shallow. Thus, A is shallow if and only if all the modules rad 4(i) and rad 4*(i)
are semisimple. Observe that these modules are actually A4;_,;-modules, and we
call 4 deep provided rad 4(j) is a projective right A;_,-module and rad A*(i) is
a projective left A;.,-module, for all 1 <i<n.

Now, conversely, let &% be a labelled species without loops, say
S =(F;, Mpi<ij<n With ;M; =0 for all i. The tensor algebra J (&) can be
decomposed as follows. Let T = T(n) be the set of all sequences (tg, ty,...,t,)
where the ¢; are integers with 1 <t,<n, and m > 1, such that, moreover,
iy #t for 1 <i<m. For t=(ty, t,...,t,)eT, let

Mit)= M QM. & , M,

F:, F:, Fe
and for T' < T, let

m-1

M(T) = @ M().

teT’

Let (#)=[]-1 F; and’ 7,(¥) = M(T), thus T (&) = Fo(S)D T, (¥).
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We are going to define two factor algebras of 9 (%) which will turn out to
be quasi-hereditary. Both algebras will be of the form J (¥)/M(T") for suitable
choices of T". In order to define the first one, we define complementary subsets
U, U° of T as follows: Let

U=Un) = {(ty, t,)eTIV{(to, 8y, )Tty <t > 15},
thus
UC=F\U = {(ty, t;,--- L)€ Tthere is 0 <i<m
with ¢, < max(t;—y, ti+1)}-
Obviously, M(U°) is an ideal of 7 (&), and
(7 (%) = MUY € (Z.(2),

thus M(U®) is an admissible ideal. We define S(¥) = T(¥)/M (U%). Note that
as abelian groups, we can identify S(¥) and Ty rOM(U).

For the second algebra, we define complementary subsets ¥, Vo of Tas
follows: Let

V=Vn=I{lt,-- treTlgiven i <j with t; =t
there exists | with i <! <j and t; <t},
Vo =T\V={(ty, ... tw€ T|there are i <j with t; = ¢;
and t, <t; for all i <l<j}.

As usual, we may consider a product on T by using the juxtaposition, thus
(tos --esty) (s +vvs tu) = (Egs +++» s L - - » Em)- OF course, for subsets T, T" of
T, we define T-T" = {t-t"|VeT’, t'eT" and tt"e T} and so on. Then,
obviously, for n>2

Viny=V@n-1)uV@—1)ynunVn-1)oV(n- 1)n-V(n—1).

By induction on n, we see that V(n) is finite. In particular, the sequences
(tys ..., t,)€V(n) are of bounded length, say m < v(n) for some v(n). Thus

(Z @) e M) (7)),

so that M(V°) is an admissible ideal. We define D(#) = T ()M V), and
note that D(¥) can be identified, as an abelian group, with ,(¥)DM(V).

THEOREM 1. Let & be a labelled species without loops. The rings S(¥) and
D(&) are quasi-hereditary, with labelled species & . The ring S() is shallow, the
ring D(¥) is deep.

In particular, we see that the nonexistence of loops is the only condiFion
on a species for being realizable as the species of a quasi-hereditary ring.
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Let k be a (commutative) field. In case & is a finite-dimensional k-species,
labelled and without loops, we denote by 5,(¥) and d,(¥) the k-dimension of
S(#) and D(%), respectively. We are going to formulate an estimate for the
Cartan invariants of a quasi-hereditary algebra A in terms of the Cartan
invariants of the corresponding algebras S(%) and D(%). In this way, we
deduce that the dimension of 4 is bounded from below by 5,(%#) and from
above by d,(¥).

THEOREM 2. Let A be a basic, finite-dimensional k-algebra which is
quasi-hereditary with labelled species . Then, for any i, j

dim,(e;S(¥)e)) < dim, (e, de) < dim,(e,D(F)e)).
In particular,
5() < dim, 4 < d,().

We have 5,(#) = dim, A if and only if A is shallow, and d (&) = dim, A if and
only if A is deep.

The proof of Theorem 1 is given in Section 2, the proof of Theorem 2 in
Section 3. We add examples showing that besides the algebras S(¥) and D(¥),
there are other shallow or deep algebras. A detailed study of the
ring-theoretical and homological properties of quasi-hereditary rings which are
shallow or deep will be given in a subsequent publication.

2. The rings S(%) and D(%)

The aim of this section is a proof of Theorem 1. Thus, let & be a labelled
species without loops, with index set {1, ..., n}. The proof is by induction on n.
If n=1, then S(&) = D(¥) =F,, thus quasi-hereditary (and trivially both
shallow and deep). Thus, let n> 2, and let &' be the restriction of % to
{1, cn—1},

Consider first $(%). Given meN, let [1,m] = {ieN|1<i< m}. Then
S(Pe,=F,dM([1, n— 1]'n),
&,S(&)=F,&M(n[1, n—17]),
<& =F,®M({te Ult;=n for some i})
=F®M([1, n—1]-nun-1, n—1]0[1, n—1]-n-[1, n—11))
= (F@®M(1, n~11m)®,,(F,@M(n-[1, n—17)
= 8(%)e,®;_e,S(¥).

In particular, e,S(¥)e, =F,, and the equalities above show that (e ) is
a heredity ideal. Of course, radA(m}) = M(n-(1,n—1]) is a semisimple right
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module, rad4*(n) = M({1,n—1]-n) is a semisimple left module. Since
S(#)/Le,> = S(¥’), we use induction and conclude that S(¥) is a shallow
quasi-hereditary ring.

Next, we consider D(%). We have

D(#)e, = F,&M(V(n—1)-n),
e, D(¥) = F,@M(n V(n—1)),
(e, = F,®OM(V(n—1)-nun-V(n—1)u Vin—1)nV(n-—1)
= (F,@ M(V(n—1)1))®@¢,(F,@M(n ¥ (n—1))
= D($)e,®,e,D(S),

so that ¢, D(¥)e, = F,, and {e,> is a heredity ideal. Since D(&)/{e,) = DS,
it follows by induction that D(¥) is quasi-hereditary. Now

n—1
radd(n) = M(n'V(n—1)) = @ M,®, Ppissi),

i=1

thus A(n) is a projective right D(&')-module. Similarly, rad A*(n) is a projective
left D(¥")-module. By induction, it follows that D(¥) is deep.

3. Quasi-hereditary k-algebras

Let k be a field, and 4 a basic finite-dimensional quasi-hereditary k-algebra
with labelled species . Let {1,...,n} be the index set of #. Note that
e,Ae, = F,, and, in the same way, e,5(¥)e, = e, D(#)e, = F,. In particular, for
the proof of the dimension inequalities, we may assume n 2 2. Let & be the
restriction of & to {1,...,n—1}; clearly, this is the labelled species for
B = A/{e,>. By induction, we know that

dim, (e;S(¥")e;) < dim,(e;Be)) < dim,(e;D(#)e;)),

for all i, j<n-—1.

First, consider e,Ae;, with 1 <j < n—1. Let X = @"={ e, Ae;, thus X is
the radical of the right A-module e,A; this is a B-module with top
X = @2} M,. Let d, = dim(,M,);,. We denote by P the B-projective cover of
X, thus P is the direct sum of d; copies of ¢B, for 1<1i <n—1. The
epimorphisms P—X—»X yield epimorphisms Pej--»Xej—+Xej. Now,
Xe;= M, Xe;=e,Ae;, and Pe;= @121 (e;Be))", thus

n—1
dim,(,M ) < dim(e,de) < Y, d;-dim,(e;Be)).
i=1

However, e,5(%)e; = ,M,, so the left-hand term is the desired one. Now,

Jj*
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rad(e,D(¥)ps)) is the D(¥')-projective module with top D! M,, thus

n-1

rad(e,D(#)ps) = @ (e;D(F))*

i=t1

It follows that e,D(¥)e;, = P }(e,.D(Q”)ej)"‘, and therefore

n-1 n—-1
Y dydim,(e;Be) < ¥ d;dim(e; D(#")e,) = dim,(e,D(¥)e,).
i=1 i=1

This finishes the proof for e,Ae;. The dual proof yields the similar inequality
for e;Ae,, where 1 <j<n—1.

It remains to consider ¢;Ae;, where 1<i,j<n—1. Since (e,
=Ae,®p e,A, there is the exact sequence

0—>e,-Ae,,®Fne,,Aej—+e,-Aej—>e,.Bej—>0,
and similar ones for $(#) and D(¥), namely
0—>e,-S(.9’)e,,®Fne,,S(5/’)ejaeIS(.?)ejaeiS(V’)ej—»O,
O—»e,-D(.?’)e,,@Fne,,D((Sf’)ejﬁeiD(L?’)ej—»e,-D(y’)ej—vﬂ.

The desired inequalities follow from the inequalities for ¢, Ae, , e,Ae;, and e;Be;,

by taking into account that for a right F,-space X and a left F -Space Y, we
have

dika®Fn Y =

1 ) .
dim, F, dim, X -dim, Y.
This finishes the proof of the first part of Theorem 2.

Now assume that 4 is shallow. By induction, we know that
dim,(e;S(¥")e;) = dim,(e;Be), for i,j<n—1. Since X = X, we have
e,,S(.V)ej=,,Mj=e,,Aej, for j<n-1, and similarly e;§(%)e, = e;Ae, for
J<n—1. 1t follows that dim,(e;S(¥)e)) = dim,(e; de)), for all i, j.

Similarly, if we assume that A is deep, then, by induction,
dim,(e; Be)) = dim,(e;D(#")e)), for i, j < n—1. On the other hand, we have in
this case X = P, thus e.Ae; = @72{(e;Be)", and therefore

n~1 n—1
dimy(e,de)) = ¥ d,-dim,(e,Be) = ¥ d;-dimy(e,D(5)e) = dim, (e, D(%)e)).
i=1 i=1
It follows that dim,(e,de) = dim,(e; D(#)e)).

Note that dim, 4 = ,-Jdim,‘(eiAej), thus always s, (%) < dim, 4 < d,(¥).
Let us first assme s,(%) = dim, 4, thus dim, (e, de;) = dim,(e;S(#)e)), for all
L,j.Ifi,j<n-1,a proper inequality dimk(eiS(.Sf’)ejs < dim,(e; Be ) would yield
that dim,(e;S(¥)e,) < dim,(e; Ae)) for the same pair i, of indices, since

dim, (¢; Ae))— dim, (e, S (#)e) = dim(e;Be)) —dim,(e,S (¥e) +a,
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with
a= dim,‘(e,.Ae,,®F"e,,Aej)—dim,‘(eiS(.Sf’)en®FnenS(5")ej) >0.

Thus s5,(¥’) = dim, B, and B is shallow by induction. On the other hand,
dim, (e, S(¥)e;) = dim, (e, Ae;) implies that Xe; = Xe,, for all 1<j<n, and
therefore X = X is semisimple. This shows that the right 4-module e, A4 has
Loewy length at most 2. Similarly, the left A-module Ae, has Loewy length at
most 2. As a consequence, A is shallow.

In the same way, we proceed in case dim, A = d;(¥). We see immediately
that dim,(e;de) = dim,(e,D(¥)e), for all i,j, and conclude that
dim,B = d,(¥'). Thus B is deep by induction. On the other hand,
dim, (e, Ae;) = dim,(e,D(¥)e;) implies that Pe; = Xe;, foralll <j<n—1,and
therefore X = P is a projective right B-module. Similarly, the radical of the left
A-module Ae, is projective as a left B-module. Thus A is deep.

4. Examples

The bounds s5,(%) < dim, A < d,(¥) are optimal, but we should remark that
usually d,(¥)—s,(¥) may be rather large. As an example, consider the
k-species &, = (F;, ;M) <ij<n With F; =k and M, =0 for all i, whereas
M;=k for all i#j; thus T(¥,) is the path algebra for the quiver with
n vertices, a unique arrow i—j for i # j, and no loops. We are going to exhibit
s(n):= s5,(<,) and d(n): = d,(¥,). It suffices to calculate the cardinalities of the
index sets U(n) and V(n), since
s(n) =n+Un), dn)=n+V(n.
Clearly, |[U(1)] = 0 = |V(1)|. For n > 2, we have
U(n) = Un—1u[1,n—13-nun-[1, n—1]U1, n—1]n-[1,n—-1],
thus
Um)| = |U(n—1)|+2(1—1)+(n—1)* = [Un—1)|+n*-1,

and consequently,

[Um) = —n+ i 2= —n+inn+1)2n+1).

t=1

Similarly, from
Vn) = Vin—1)uV(n—1)nun-Vn—1)uVm—1)nVm-1)
for n > 2, we obtain
V()| =3IV (n— D+ V(n=1).
It follows that s(n) = 2(n+1)2n+1), and that d(n) is given recursively by



270 V. DLAB AND C. M. RINGEL

d(1) =1, and d(n) = d(n—1)+(d(n—1)+ 1) for n > 2. The first values for s(n)
and d(n) are the following:

s(h=1, d(1)=1,
s2)=5, d@) =S5,
s3)=14, d(3) =41,

s(4) =30, d(4)= 1805,
s(5) =55, d(5) = 3263441.

Let & be a labelled species without loops. Let us assume that there are
even no oriented cycles. Then D(&) is the tensor algebra of . In particular, if
& is, in addition, a finite-dimensional k-algebra where k is a perfect field, then
D(%) is the only deep quasi-hereditary algebra with species &. If the labelling
is chosen in such a way that M, = 0 for i > j, then (&) = T(¥)/T.(¥)? so
again S(¥) is the only shallow quasi-hereditary algebra with labelled species
& . Of course, in general there may be shallow rings which are not of the form
S(&), the first example is the path algebra of the quiver of Fig. 1 with the

commutativity relation.
2\
/ 3
\L /

Fig. 1

1

For a labelled species & without loops but with oriented cycles there
usually also will exist deep rings which are not of the form D(%). For example,
consider the algebra 4 given by the quiver of Fig. 2 with relations fa—y5 = 0

——

SN
NS

Fig. 3
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and 0y = 0. The labelled species corresponding to this quiver will be denoted
by . Then A is deep with labelled species &, but not isomorphic to D(¥).
Also, we should remark that there are quasi-hereditary algebras A with
radical N such that no ideal I = N? yields a shallow algebra A/I. A typical
example is the algebra A given by the quiver of Fig. 3 with the commutativity
relation. Note that 4 has a unique minimal nonzero ideal J. An ideal I with
A/I shallow must contain J, but there is no ideal I with J = I = N? such that
A/l is quasi-hereditary with respect to the given ordering of the vertices.
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