TOPICS IN ALGEBRA BANACH CENTER PUBLICATIONS, VOLUME 26, PART 1 PWN-POLISH SCIENTIFIC PUBLISHERS WARSAW 1990

THE DIMENSION OF A QUASI-HEREDITARY ALGEBRA

VLASTIMIL DLAB

Department of Mathematics, Carleton University
Ottawa, Canada

CLAUS MICHAEL RINGEL

Fakultät für Mathematik, Universität Bielefeld Bielefeld, F.R.G.

Quasi-hereditary algebras have been introduced by L. Scott [S] in order to study highest weight categories as they arise in the representation theory of complex Lie algebras and algebraic groups. They have been studied by Cline, Parshall and Scott [CPS], [PS], and in [DR1], [DR2]. Here, we are going to give lower and upper bounds for the dimension of a quasi-hereditary algebra in terms of its species, and we characterize those algebras where one of these bounds is attained: we call them the shallow and the deep quasi-hereditary algebras, respectively.

1. Definitions and results

Let A be a basic semiprimary ring with radical N, let e_1, \ldots, e_n be a complete set of orthogonal primitive idempotents. The simple right A-module which is not annihilated by e_i will be denoted by E(i), its projective cover by $P(i) = P_A(i)$. The simple left A-module not annihilated by e_i is denoted by $E^*(i)$. The species of A is, by definition, $\mathcal{S} = \mathcal{S}(A) = (F_i, iM_j)_{1 \le i,j \le n}$, where $F_i = e_i A e_i / e_i N e_i$, and $iM_j = e_i N e_j / e_i N^2 e_j$. In our considerations, the total ordering of the index set $\{1, \ldots, n\}$ of the species will usually be of importance, and in order to stress this, we will speak of a labelled species.

We recall that an ideal J of A is called a heredity ideal provided $J^2 = J$, JNJ = 0, and the right module J_A (or, equivalently, the left module ${}_AJ$) is

This paper is in final form and no version of it will be submitted for publication elsewhere.

projective. And A is said to be quasi-hereditary provided there exists a chain $\mathcal{J} = (J_i)_i$ of ideals

$$0 = J_0 \subset J_1 \subset \ldots \subset J_m = A$$

such that J_i/J_{i-1} is a heredity ideal of A/J_{i-1} ; such a chain will be called a heredity chain of A. Observe that any heredity ideal J is generated (as an ideal) by an idempotent, and if e is any idempotent in J, then the ideal $\langle e \rangle$ generated by e is a heredity ideal of A, and $J/\langle e \rangle$ is a heredity ideal of $A/\langle e \rangle$. It follows that we can refine any heredity chain of A to a heredity chain \mathcal{J} such that, in addition, J_i/J_{i-1} is generated by a primitive idempotent, and we call such a heredity chain a saturated one. So, let \mathcal{J} be a saturated heredity chain of A, and we always assume that the idempotents e_i are chosen in such a way that $J_i = \langle e_{n-i+1} + \ldots + e_n \rangle$, for $0 \leq i \leq n$. In this way, the quasi-hereditary algebra A together with the fixed saturated heredity chain determines uniquely $\mathcal{S}(A)$ as a labelled species. Note that $\mathcal{S}(A)$ is a species without loops.

Assume that A is quasi-hereditary, with heredity chain $\mathcal{J} = \langle J_i \rangle_i$, where $J_i = \langle e_{n-i+1} + \ldots + e_n \rangle$. Let $A_i = A/J_{n-i}$. Note that E(i) and $E^*(i)$ are A_i -modules, and we denote their A_i -projective covers by $\Delta(i) = \Delta_A(i)$ and $\Delta^*(i) = \Delta_A^*(i)$, respectively. Since we deal with a quasi-hereditary algebra, it follows that J_i/J_{i-1} , as a right A-module, is the direct sum of copies of $\Delta(n-i+1)$ (so the modules $\Delta(i)$ are just those modules which occur as building blocks in the standard filtrations of the projective right A-modules: the "Verma modules", or "induced modules"). Similarly, J_i/J_{i-1} is, as left A-module, the direct sum of copies $\Delta^*(n-i+1)$.

By definition, both $\Delta(i)$ and $\Delta^*(i)$ are local A-modules. In case all the modules $\Delta(i)$ and $\Delta^*(i)$, with $1 \le i \le n$, have Loewy length at most 2, we call A shallow. Thus, A is shallow if and only if all the modules $\operatorname{rad} \Delta(i)$ and $\operatorname{rad} \Delta^*(i)$ are semisimple. Observe that these modules are actually A_{i-1} -modules, and we call A deep provided $\operatorname{rad} \Delta(i)$ is a projective right A_{i-1} -module and $\operatorname{rad} \Delta^*(i)$ is a projective left A_{i-1} -module, for all $1 \le i \le n$.

Now, conversely, let $\mathscr S$ be a labelled species without loops, say $\mathscr S=(F_i,{}_iM_j)_{1\leqslant i,j\leqslant n}$, with ${}_iM_i=0$ for all i. The tensor algebra $\mathscr T(\mathscr S)$ can be decomposed as follows. Let T=T(n) be the set of all sequences $(t_0,\,t_1,\,\ldots,t_m)$ where the t_i are integers with $1\leqslant t_i\leqslant n$, and $m\geqslant 1$, such that, moreover, $t_{i-1}\neq t_i$ for $1\leqslant i\leqslant m$. For $t=(t_0,\,t_1,\,\ldots,t_m)\in T$, let

$$M(t) = {}_{t_0}M_{t_1} \underset{F_{t_1}}{\otimes} {}_{t_1}M_{t_2} \underset{F_{t_2}}{\otimes} \dots \underset{F_{t_{m-1}}}{\otimes} {}_{t_{m-1}}M_{t_m},$$

and for $T' \subseteq T$, let

$$M(T') = \bigoplus_{t \in T'} M(t).$$

Let $\mathcal{T}_0(\mathcal{S}) = \prod_{i=1}^n F_i$ and $\mathcal{T}_+(\mathcal{S}) = M(T)$, thus $\mathcal{T}(\mathcal{S}) = \mathcal{T}_0(\mathcal{S}) \oplus \mathcal{T}_+(\mathcal{S})$.

We are going to define two factor algebras of $\mathcal{F}(\mathcal{S})$ which will turn out to be quasi-hereditary. Both algebras will be of the form $\mathcal{F}(\mathcal{S})/M(T')$ for suitable choices of T'. In order to define the first one, we define complementary subsets U, U^0 of T as follows: Let

$$U = U(n) = \{(t_0, t_1) \in T\} \cup \{(t_0, t_1, t_2) \in T \mid t_0 < t_1 > t_2\},\$$

thus

$$U^{0} = \mathcal{F} \setminus U = \{(t_{0}, t_{1}, \dots, t_{m}) \in T \mid \text{there is } 0 < i < m \}$$
with $t_{i} < \max(t_{i-1}, t_{i+1}) \}$.

Obviously, $M(U^0)$ is an ideal of $\mathcal{F}(\mathcal{S})$, and

$$(\mathscr{T}_{+}(\mathscr{S}))^{3} \subseteq M(U^{0}) \subseteq (\mathscr{T}_{+}(\mathscr{S}))^{2},$$

thus $M(U^0)$ is an admissible ideal. We define $S(\mathcal{S}) = T(\mathcal{S})/M(U^0)$. Note that as abelian groups, we can identify $S(\mathcal{S})$ and $\mathcal{T}_0(\mathcal{S}) \oplus M(U)$.

For the second algebra, we define complementary subsets V, V^0 of T as follows: Let

$$V = V(n) = \{(t_0, \dots, t_m) \in T \mid \text{given } i < j \text{ with } t_i = t_j,$$
 there exists l with $i < l < j$ and $t_i < t_l\}$,
$$V^0 = T \setminus V = \{(t_0, \dots, t_m) \in T \mid \text{there are } i < j \text{ with } t_i = t_j \text{ and } t_l < t_i \text{ for all } i < l < j\}.$$

As usual, we may consider a product on T by using the juxtaposition, thus $(t_0, \ldots, t_m) \cdot (t'_0, \ldots, t'_{m'}) = (t_0, \ldots, t_m, t'_0, \ldots, t'_{m'})$. Of course, for subsets T', T'' of T, we define $T' \cdot T'' = \{t' \cdot t'' \mid t' \in T', t'' \in T'' \text{ and } t' \cdot t'' \in T\}$ and so on. Then, obviously, for $n \ge 2$

$$V(n) = V(n-1) \cup V(n-1) \cdot n \cup n \cdot V(n-1) \cup V(n-1) \cdot n \cdot V(n-1).$$

By induction on n, we see that V(n) is finite. In particular, the sequences $(t_0, \ldots, t_m) \in V(n)$ are of bounded length, say $m \le v(n)$ for some v(n). Thus

$$(\mathscr{T}_{+}(\mathscr{S}))^{v(n)+1} \subseteq M(V^{0}) \subseteq (\mathscr{T}_{+}(\mathscr{S}))^{2},$$

so that $M(V^0)$ is an admissible ideal. We define $D(\mathcal{S}) = \mathcal{F}(\mathcal{S})/M(V^0)$, and note that $D(\mathcal{S})$ can be identified, as an abelian group, with $\mathcal{F}_0(\mathcal{S}) \oplus M(V)$.

THEOREM 1. Let $\mathscr G$ be a labelled species without loops. The rings $S(\mathscr G)$ and $D(\mathscr G)$ are quasi-hereditary, with labelled species $\mathscr G$. The ring $S(\mathscr G)$ is shallow, the ring $D(\mathscr G)$ is deep.

In particular, we see that the nonexistence of loops is the only condition on a species for being realizable as the species of a quasi-hereditary ring.

Let k be a (commutative) field. In case $\mathscr S$ is a finite-dimensional k-species, labelled and without loops, we denote by $s_k(\mathscr S)$ and $d_k(\mathscr S)$ the k-dimension of $S(\mathscr S)$ and $D(\mathscr S)$, respectively. We are going to formulate an estimate for the Cartan invariants of a quasi-hereditary algebra A in terms of the Cartan invariants of the corresponding algebras $S(\mathscr S)$ and $D(\mathscr S)$. In this way, we deduce that the dimension of A is bounded from below by $s_k(\mathscr S)$ and from above by $d_k(\mathscr S)$.

THEOREM 2. Let A be a basic, finite-dimensional k-algebra which is quasi-hereditary with labelled species $\mathcal S$. Then, for any i,j

$$\dim_{k}(e_{i}S(\mathcal{S})e_{j}) \leq \dim_{k}(e_{i}Ae_{j}) \leq \dim_{k}(e_{i}D(\mathcal{S})e_{j}).$$

In particular,

$$s_k(\mathcal{S}) \leqslant \dim_k A \leqslant d_k(\mathcal{S}).$$

We have $s_k(\mathcal{S}) = \dim_k A$ if and only if A is shallow, and $d_k(\mathcal{S}) = \dim_k A$ if and only if A is deep.

The proof of Theorem 1 is given in Section 2, the proof of Theorem 2 in Section 3. We add examples showing that besides the algebras $S(\mathcal{S})$ and $D(\mathcal{S})$, there are other shallow or deep algebras. A detailed study of the ring-theoretical and homological properties of quasi-hereditary rings which are shallow or deep will be given in a subsequent publication.

2. The rings $S(\mathcal{S})$ and $D(\mathcal{S})$

The aim of this section is a proof of Theorem 1. Thus, let $\mathscr S$ be a labelled species without loops, with index set $\{1, \ldots, n\}$. The proof is by induction on n. If n = 1, then $S(\mathscr S) = D(\mathscr S) = F_1$, thus quasi-hereditary (and trivially both shallow and deep). Thus, let $n \ge 2$, and let $\mathscr S'$ be the restriction of $\mathscr S$ to $\{1, \ldots, n-1\}$.

Consider first $S(\mathcal{S})$. Given $m \in \mathbb{N}$, let $[1, m] = \{i \in \mathbb{N} \mid 1 \le i \le m\}$. Then

$$S(\mathcal{S})e_{n} = F_{n} \oplus M([1, n-1] \cdot n),$$

$$e_{n}S(\mathcal{S}) = F_{n} \oplus M(n \cdot [1, n-1]),$$

$$\langle e_{n} \rangle = F_{n} \oplus M(\{t \in U \mid t_{i} = n \text{ for some } i\})$$

$$= F_{n} \oplus M([1, n-1] \cdot n \cup n \cdot [1, n-1] \cup [1, n-1] \cdot n \cdot [1, n-1])$$

$$= (F_{n} \oplus M([1, n-1] \cdot n)) \otimes_{F_{n}} (F_{n} \oplus M(n \cdot [1, n-1]))$$

$$= S(\mathcal{S})e_{n} \otimes_{F_{n}} e_{n}S(\mathcal{S}).$$

In particular, $e_n S(\mathcal{S})e_n = F_n$, and the equalities above show that $\langle e_n \rangle$ is a heredity ideal. Of course, rad $\Delta(n) = M(n \cdot [1, n-1])$ is a semisimple right

module, $\operatorname{rad} \Delta^*(n) = M([1, n-1] \cdot n)$ is a semisimple left module. Since $S(\mathcal{S})/\langle e_n \rangle = S(\mathcal{S}')$, we use induction and conclude that $S(\mathcal{S})$ is a shallow quasi-hereditary ring.

Next, we consider $D(\mathcal{S})$. We have

$$\begin{split} D(\mathcal{S})e_n &= F_n \oplus M\big(V(n-1)\cdot n\big), \\ e_n D(\mathcal{S}) &= F_n \oplus M\big(n\cdot V(n-1)\big), \\ \langle e_n \rangle &= F_n \oplus M\big(V(n-1)\cdot n \cup n\cdot V(n-1) \cup V(n-1)\cdot n\cdot V(n-1)\big) \\ &= \big(F_n \oplus M\big(V(n-1)\cdot n\big)\big) \otimes_{F_n} \big(F_n \oplus M\big(n\cdot V(n-1)\big)\big) \\ &= D(\mathcal{S})e_n \otimes_{F_n} e_n D(\mathcal{S}), \end{split}$$

so that $e_n D(\mathcal{S}) e_n = F_n$, and $\langle e_n \rangle$ is a heredity ideal. Since $D(\mathcal{S})/\langle e_n \rangle = D(\mathcal{S}')$, it follows by induction that $D(\mathcal{S})$ is quasi-hereditary. Now

$$\operatorname{rad} \Delta(n) = M(n \cdot V(n-1)) = \bigoplus_{i=1}^{n-1} {}_{n}M_{i} \otimes_{F_{i}} P_{D(\mathscr{S}')}(i),$$

thus $\Delta(n)$ is a projective right $D(\mathcal{S}')$ -module. Similarly, rad $\Delta^*(n)$ is a projective left $D(\mathcal{S}')$ -module. By induction, it follows that $D(\mathcal{S})$ is deep.

3. Quasi-hereditary k-algebras

Let k be a field, and A a basic finite-dimensional quasi-hereditary k-algebra with labelled species \mathscr{G} . Let $\{1, \ldots, n\}$ be the index set of \mathscr{G} . Note that $e_n A e_n = F_n$, and, in the same way, $e_n S(\mathscr{G}) e_n = e_n D(\mathscr{G}) e_n = F_n$. In particular, for the proof of the dimension inequalities, we may assume $n \ge 2$. Let \mathscr{G}' be the restriction of \mathscr{G} to $\{1, \ldots, n-1\}$; clearly, this is the labelled species for $B = A/\langle e_n \rangle$. By induction, we know that

$$\dim_{k}(e_{i}S(\mathcal{S}')e_{j}) \leq \dim_{k}(e_{i}Be_{j}) \leq \dim_{k}(e_{i}D(\mathcal{S}')e_{j}),$$

for all $i, j \leq n-1$.

First, consider $e_n A e_j$, with $1 \le j \le n-1$. Let $X = \bigoplus_{j=1}^{n-1} e_n A e_j$, thus X is the radical of the right A-module $e_n A$; this is a B-module with top $\overline{X} = \bigoplus_{i=1}^{n-1} {}_n M_i$. Let $d_i = \dim({}_n M_i)_{F_i}$. We denote by P the B-projective cover of X, thus P is the direct sum of d_i copies of $e_i B$, for $1 \le i \le n-1$. The epimorphisms $P \to X \to \overline{X}$ yield epimorphisms $P e_j \to X e_j \to \overline{X} e_j$. Now, $\overline{X} e_j = {}_n M_j$, $X e_j = e_n A e_j$, and $P e_j = \bigoplus_{i=1}^{n-1} (e_i B e_j)^{d_i}$, thus

$$\dim_k({}_nM_j)\leqslant\dim_k(e_nAe_j)\leqslant\sum_{i=1}^{n-1}d_i\cdot\dim_k(e_iBe_j).$$

However, $e_n S(\mathcal{S}) e_j = {}_n M_j$, so the left-hand term is the desired one. Now,

 $rad(e_n D(\mathcal{S})_{D(\mathcal{S})})$ is the $D(\mathcal{S}')$ -projective module with top $\bigoplus_{i=1}^{n-1} {}_n M_i$, thus

$$\mathrm{rad}(e_n D(\mathscr{S})_{D(\mathscr{S})}) = \bigoplus_{i=1}^{n-1} (e_i D(\mathscr{S}'))^{d_i}.$$

It follows that $e_n D(\mathcal{S}) e_j = \bigoplus_{i=1}^{n-1} (e_i D(\mathcal{S}') e_j)^{d_i}$, and therefore

$$\sum_{i=1}^{n-1} d_i \cdot \dim_k(e_i B e_j) \leqslant \sum_{i=1}^{n-1} d_i \cdot \dim_k(e_i D(\mathcal{S}') e_j) = \dim_k(e_n D(\mathcal{S}) e_j).$$

This finishes the proof for $e_n A e_j$. The dual proof yields the similar inequality for $e_j A e_n$, where $1 \le j \le n-1$.

It remains to consider $e_i A e_j$, where $1 \le i, j \le n-1$. Since $\langle e_n \rangle$ $=Ae_n\otimes_{F_n}e_nA$, there is the exact sequence

$$0 \rightarrow e_i A e_n \otimes_{F_n} e_n A e_j \rightarrow e_i A e_j \rightarrow e_i B e_j \rightarrow 0,$$

and similar ones for $S(\mathcal{S})$ and $D(\mathcal{S})$, namely

$$\begin{split} 0 &\to e_i S(\mathcal{S}) e_{\mathbf{n}} \otimes_{F_{\mathbf{n}}} e_{\mathbf{n}} S(\mathcal{S}) e_j \to e_i S(\mathcal{S}) e_j \to e_i S(\mathcal{S}') e_j \to 0, \\ 0 &\to e_i D(\mathcal{S}) e_{\mathbf{n}} \otimes_{F_{\mathbf{n}}} e_{\mathbf{n}} D(\mathcal{S}) e_j \to e_i D(\mathcal{S}) e_j \to e_i D(\mathcal{S}') e_j \to 0. \end{split}$$

The desired inequalities follow from the inequalities for $e_i A e_n$, $e_n A e_j$, and $e_i B e_j$, by taking into account that for a right F_n -space X and a left F_n -space Y, we have

$$\dim_k X \otimes_{F_n} Y = \frac{1}{\dim_k F_n} \dim_k X \cdot \dim_k Y.$$

This finishes the proof of the first part of Theorem 2.

Now assume that A is shallow. By induction, we know that $\dim_k(e_iS(\mathcal{S}')e_j) = \dim_k(e_iBe_j)$, for $i,j \leq n-1$. Since $X = \overline{X}$, we have $e_n S(\mathcal{S}) e_j = {}_n M_j = e_n A e_j$, for $j \le n-1$, and similarly $e_j S(\mathcal{S}) e_n = e_j A e_n$ for $j \le n-1$. It follows that $\dim_k(e_i S(\mathcal{S})e_j) = \dim_k(e_i Ae_j)$, for all i, j.

Similarly, if we assume that A is deep, then, by induction, $\dim_k(e_iBe_j) = \dim_k(e_iD(\mathcal{S}')e_j)$, for $i, j \le n-1$. On the other hand, we have in this case X = P, thus $e_n A e_j' = \bigoplus_{i=1}^{n-1} (e_i B e_j)^{d_i}$, and therefore

$$\dim_{\mathbf{k}}(e_nAe_j) = \sum_{i=1}^{n-1} d_i \cdot \dim_{\mathbf{k}}(e_iBe_j) = \sum_{i=1}^{n-1} d_i \cdot \dim_{\mathbf{k}}(e_iD(\mathscr{S}')e_j) = \dim_{\mathbf{k}}(e_nD(\mathscr{S})e_j).$$

It follows that $\dim_k(e_iAe_j) = \dim_k(e_iD(\mathcal{S})e_j)$. Note that $\dim_k A = \sum_{i,j} \dim_k(e_iAe_j)$, thus always $s_k(\mathcal{S}) \leq \dim_k A \leq d_k(\mathcal{S})$. Let us first assme $s_k(\mathscr{S}) = \dim_k A$, thus $\dim_k (e_i A e_j) = \dim_k (e_i S(\mathscr{S}) e_j)$, for all i,j. If $i,j \leq n-1$, a proper inequality $\dim_k(e_iS(\mathcal{S}')e_j) < \dim_k(e_iBe_j)$ would yield that $\dim_k(e_iS(\mathcal{S})e_j) < \dim_k(e_iAe_j)$ for the same pair i, j of indices, since

$$\dim_{k}(e_{i}Ae_{j})-\dim_{k}(e_{i}S(\mathcal{S})e_{i})=\dim_{k}(e_{i}Be_{j})-\dim_{k}(e_{i}S(\mathcal{S}')e_{j})+a,$$

with

$$a = \dim_{\mathbf{k}}(e_i A e_n \otimes_{F_n} e_n A e_j) - \dim_{\mathbf{k}}(e_i S(\mathcal{S}) e_n \otimes_{F_n} e_n S(\mathcal{S}) e_j) \geqslant 0.$$

Thus $s_k(\mathcal{S}') = \dim_k B$, and B is shallow by induction. On the other hand, $\dim_k(e_n S(\mathcal{S})e_j) = \dim_k(e_n Ae_j)$ implies that $Xe_j = \overline{X}e_j$, for all $1 \le j < n$, and therefore $X = \overline{X}$ is semisimple. This shows that the right A-module $e_n A$ has Loewy length at most 2. Similarly, the left A-module Ae_n has Loewy length at most 2. As a consequence, A is shallow.

In the same way, we proceed in case $\dim_k A = d_k(\mathcal{S})$. We see immediately that $\dim_k(e_iAe_j) = \dim_k(e_iD(\mathcal{S})e_j)$, for all i,j, and conclude that $\dim_k B = d_k(\mathcal{S}')$. Thus B is deep by induction. On the other hand, $\dim_k(e_nAe_j) = \dim_k(e_nD(\mathcal{S})e_j)$ implies that $Pe_j = Xe_j$, for all $1 \le j \le n-1$, and therefore X = P is a projective right B-module. Similarly, the radical of the left A-module Ae_n is projective as a left B-module. Thus A is deep.

4. Examples

The bounds $s_k(\mathcal{S}) \leq \dim_k A \leq d_k(\mathcal{S})$ are optimal, but we should remark that usually $d_k(\mathcal{S}) - s_k(\mathcal{S})$ may be rather large. As an example, consider the k-species $\mathcal{S}_n = (F_i, {}_iM_j)_{1 \leq i,j \leq n}$ with $F_i = k$ and ${}_iM_i = 0$ for all i, whereas ${}_iM_j = k$ for all $i \neq j$; thus $T(\mathcal{S}_n)$ is the path algebra for the quiver with n vertices, a unique arrow $i \to j$ for $i \neq j$, and no loops. We are going to exhibit $s(n) := s_k(\mathcal{S}_n)$ and $d(n) := d_k(\mathcal{S}_n)$. It suffices to calculate the cardinalities of the index sets U(n) and V(n), since

$$s(n) = n + U(n), \quad d(n) = n + V(n).$$

Clearly, |U(1)| = 0 = |V(1)|. For $n \ge 2$, we have

$$U(n) = U(n-1) \cup [1, n-1] \cdot n \cup n \cdot [1, n-1] \cup [1, n-1] \cdot n \cdot [1, n-1],$$

thus

$$|U(n)| = |U(n-1)| + 2(n-1) + (n-1)^2 = |U(n-1)| + n^2 - 1,$$

and consequently,

$$|U(n)| = -n + \sum_{t=1}^{n} t^2 = -n + \frac{1}{6}n(n+1)(2n+1).$$

Similarly, from

$$V(n) = V(n-1) \cup V(n-1) \cdot n \cup n \cdot V(n-1) \cup V(n-1) \cdot n \cdot V(n-1)$$

for $n \ge 2$, we obtain

$$|V(n)| = 3|V(n-1)| + |V(n-1)|^2.$$

It follows that $s(n) = \frac{1}{6}(n+1)(2n+1)$, and that d(n) is given recursively by

d(1) = 1, and $d(n) = d(n-1) + (d(n-1)+1)^2$ for $n \ge 2$. The first values for s(n) and d(n) are the following:

$$s(1) = 1,$$
 $d(1) = 1,$
 $s(2) = 5,$ $d(2) = 5,$
 $s(3) = 14,$ $d(3) = 41,$
 $s(4) = 30,$ $d(4) = 1805,$
 $s(5) = 55,$ $d(5) = 3263441.$

Let $\mathscr G$ be a labelled species without loops. Let us assume that there are even no oriented cycles. Then $D(\mathscr G)$ is the tensor algebra of $\mathscr G$. In particular, if $\mathscr G$ is, in addition, a finite-dimensional k-algebra where k is a perfect field, then $D(\mathscr G)$ is the only deep quasi-hereditary algebra with species $\mathscr G$. If the labelling is chosen in such a way that ${}_iM_j=0$ for i>j, then $S(\mathscr G)=T(\mathscr G)/T_+(\mathscr G)^2$, so again $S(\mathscr G)$ is the only shallow quasi-hereditary algebra with labelled species $\mathscr G$. Of course, in general there may be shallow rings which are not of the form $S(\mathscr G)$, the first example is the path algebra of the quiver of Fig. 1 with the commutativity relation.

For a labelled species $\mathscr S$ without loops but with oriented cycles there usually also will exist deep rings which are not of the form $D(\mathscr S)$. For example, consider the algebra A given by the quiver of Fig. 2 with relations $\beta \alpha - \gamma \delta = 0$

Fig. 2

Fig. 3

and $\delta \gamma = 0$. The labelled species corresponding to this quiver will be denoted by \mathscr{S} . Then A is deep with labelled species \mathscr{S} , but not isomorphic to $D(\mathscr{S})$.

Also, we should remark that there are quasi-hereditary algebras A with radical N such that no ideal $I \subseteq N^2$ yields a shallow algebra A/I. A typical example is the algebra A given by the quiver of Fig. 3 with the commutativity relation. Note that A has a unique minimal nonzero ideal I. An ideal I with A/I shallow must contain I, but there is no ideal I with $I \subseteq I \subseteq I$ such that I is quasi-hereditary with respect to the given ordering of the vertices.

References

- [CPS] E. Cline, B. Parshall and L. Scott, Finite dimensional algebras and highest weight categories, J. Reine Angew. Math. 391 (1988), 85-99.
- [DR1] V. Dlab and C. M. Ringel, Quasi-hereditary algebras, Illinois J. Math. 33 (1989), 280-291.
- [DR2] -, -, A construction for quasi-hereditary algebras, Compositio Math. 70 (1989), 155-175.
- [G] P. Gabriel, Indecomposable representations II, Symp. Math. Inst. Nazionale Alta Mat. 11 (1973), 81-104.
- [PS] B. J. Parshall and L. L. Scott, Derived categories, quasi-hereditary algebras, and algebraic groups, Ottawa-Moosonee lecture notes, to appear.
- [S] L. L. Scott, Simulating algebraic geometry with algebra 1: Derived categories and Morita theory, in: Proc. Sympos. Pure Math. 47, Part 2, Amer. Math. Soc., Providence 1987, 271-281.