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|. INTRODUCTION

Let k be a field of characteristic 2. The representation theory of the alter-
nating group A, over k has an essentially twofold character depending on
whether k& does or does not contain the cubic root of unity. The case when
x?+ x + 1 is reducible over k is reflected in the case when £ is algebraically
closed, which has been treated in detail by several authors (see S. B. Con-
lon [2], E. Kern [9]). The case when x2+x+ 1 is irreducible over k£ has
been considered explicitly only recently (see U. Schoenwaelder [10]). Of
course, there is a well-known general procedure (see D. G. Higman [8]) to
find the represenations of A4, in both cases. This is due to the fact that A4,
contains the Klein 4-group V, as a normal subgroup and the represen-
tations of ¥V, are well-understood (see V. A. Bagev [1], A. Heller,
I. Reiner [7]). It is this procedure that has been used by U. Schoenwaelder
in the case where x*+ x + 1 is irreducible over k. An inherent difficulty of
this method appears in the explicit listing and full understanding of certain
representations, viz. those belonging to the one-parameter family of
kA4-modules which is induced from the one¢-parameter family of indecom-
posable kV,-modules. Whereas in the case of V4 these representations are
indexed by the irreducible polynomials over k, the corresponding index set
appears to be much more involved in the case A4 4. One has to consider an
action of the cyclic group of order 3 on the polynomials and determine the
corresponding orbits. However, there is an alternative approach presented
in our paper, which shows that also in the case of 4,, the one-parameter
family of representations may be indexed again by the set of all irreducible
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polynomials over k, without any further modification. In fact, we offer an
explicit description of all (finite-dimensional) representations of 4, in this
case, by translating the problem to the respective problem of describing ail
representations of a (tame) hereditary k-algebra of type B,. It should be
pointed out that the description of the representation of 4, over an
algebraically closed field £ can be reduced by the same process to the
(tame) hereditary k-algebra of type A;.

2. STATEMENTS

Let A,=<¢h, glh*=g’=(hg)’=1) be a (fixed) presentation of A,.
Then, as a kA ,-module,

kA4:£|kA4®£2kA4 Wlth 8|=g+g2,82=1+g+g2.

Thus, all non-projective-injective indecomposable representation are
kA,/Soc(kA,)-modules, and can be described as modules over the algebra

y o
X

% o =

w

v
| xek; y, u, v, w, € K=k(w) p,

0

y

where w # 1, w?> =1, and ~: K — K is the involution induced by mapping w
to w?. This is due to the fact that we have
PROPOSITION. kA,/Soc(kA,) = A.

Hence, the Loewy structure of the two indecomposable projective-injective
kA, — modules is

(aj,a;) (b
{ay) {as) (as,aqy and <b,, by
(ay, ag) C(byy

here

{a,=g+gha,=1+g%a,=(g+ )1+ h)(1+g+g),
a,=(1+g>)(1+h)(1+ g+ g, as=(g+ )1 +h)(g+g")

(g+ )1 +h)1+g),a,=(g+ )L +A)N1+g+g>)1+h),
(g+ )1+ +g)1+h)}

dg

dg



508 DLAB AND RINGEL

and

{by=1+g+g%b,=(1+g+g)1+h),bs=(1+g+g)1+h) g,
by=(1+g+ g)1+h)1 + g+ g%)}

are k-bases for these modules. With respect to these bases, the two
representations have the forms

(i)
(1 071 011 010 0] 0 1! B
0 110 1,0 11 0 11
10, 110 10|
0 1l jo 1 0 1
B L], g L= :
"1 01 0 ot
10 110 1 10
L__%___ L1 -
|
:1 0 10 1
B 10 1] N SN
C1!'1 01 7] 11 7
o |
: ) ST
1 010 BN
(X} h I
(i) S BT R S And BRI
L——+— L1
I |
L P 1 L 11

Moreover, since rad’(4)=0, there is—up to the two simple injective
B-modules—a bijection between the indecomposable modules over 4 and
the indecomposable modules over the “separated” algebra (see, e.g., [3])

K 0 K KX
k 0 K
kK 0O

K

The latter is a (tame) hereditary k-algebra of the type B, (see V. Dlab and
C. M. Ringel [4]) and hence, denoting by e,, 1<i<4, the obvious
diagonal idempotents of the algebra B, every 4-module M can be described
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in terms of the K-spaces Y, =Me,, Y,= Me,, the k-spaces X,= Me,,
X, = Me,, two k-linear maps @, ¥, and a K-linear map 7:

Y, @« K, X,
/ n®!1 /
X Y. ®k Ki
Call the quadruple
( y, =dim Y, x,=dim Xz)
x;=dim X, ys=dim Y,

the dimension type of M, or of the corresponding representation of A,. It
follows that every module can be, up to a choice of generators in
Y., X5, X;, Y,, uniquely described by a triple of matrices U, W, V over k
of dimensions 2y, X X3, 2y, X 2y4, X X 2p4, respectively. Summarizing, it
turns out that every non-projective-injective indecomposable representation
of A, of dimension type (., *' ,, ™) is given by a pair of (2y, +x,+
X3+ 20X 2y, + x4+ X34 2p4) matrices over k, partitioned into the 4 x4
corresponding blocks

E U E’
E V E
h— E , g P ,
E E"
where E are the identity matrices and
—0 1: - -1 1: -
1 11 1 0,
- mdo ——-d-n
E = ] . E'= ]
L__T____ L“‘"T‘"*—
10 :1 1
- . - 1 O

In view of the latter, these representations will be presented simply by
specifying the three matrices

Uu, w,V,;
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all required types, in an appropriate notation, will be introduced at the end
of this section. With these provisions, we are able to formulate the main
result.

THEOREM. Let A,=<{h, glh*=g>=(hg) ' =1) and let k be a field of
characteristic 2 not containing the cubic roots of unity. Furthermore, let
K =k(w) with o # 1, w* = 1. Referring to the preceding mode of description
and the notation below, the following is a complete list of indecomposable
representations of A, over k:

(1) the two projective-injective representations of dimensions 8 and 4,
repectively, presented in (1) and (i1);

(2) for each d =0, the “preprojective” representations

P(3d) of dimension 6d+1=2d+d+(d+1)+2d U_EV,;
P(3d+1) 6d+3=2d+(d+1)+d+2(d+ 1) UW_ Vg,
P(3d+2) 6d+5=2ld+ 1)+d+({d+ 1)+ 2(d+ 1) UEV _;
0(3d) 12d+2=4d+2d+2d+2(2d+ 1) UW_V_:
OBd+1) 12d+6=202d+ 1)+ 2d+2d + 1)+ 2(2d + 1) U_EV_,;
Q(3d+2) 12d4+10=22d+ 1)+ 2(d+ 1)+ 2(d+ 1)+ 4d+ 1) U_W_V,;
(3) for each d =0, the “preinjective” representations
S(3d) of dimension 6d+1=2d+(d+1)+d+2d(d+#0) UoEV
S(3d+1) 6d+3=2(d+1)+d+(d+1)+2d UW ., V,;
S(3d+2) 6d+5=2(d+ 1)+ (d+1)+d+2(d+1) U, EVy;
T(3d) 12d +2=2(2d + 1)+ 2d + 2d + 4d (d # 0) U, W,V
T(3d+1) 12d+6=22d+ 1)+ 2(d+ 1)+ 2d+ 2(2d+ 1) U,EV,;
T(3d +2) 12d+10=4d+ 1)+ 2(d+ 1)+ 2d+ 1) +2Q2d+ 1) UW, V.
(4) for each d=0, the “regular nonhomogeneous™ representations
Rl(d) of dimension 12d+4=2(2d+ 1)+2d+2(d+1)+4d U'CEV;
R3(d) 12d+8=4(d+1)+2d+2(d+ 1)+ 2(2d + 1) UEVS;
Ri(d) 12d+ 12=4(d+ 1)+ 2(d+ 1) +2(d+ 1) +4(d+1)  U°E°¥:
Ri(d) 12d+4=4d+2(d+1)+2d +2(2d+ 1) UE® 'y
Ri(d) 12d+8=22d+ 1)+ 2{d+ 1} +2(d+ 1} +2(2d+ 1) U'E'V;
R3(d) 12d+ 12=4(d+ 1)+ 2(d+ 1)+ 2(d+ 1)+ 4(d+1) UE'VY,
Ri(d) 12d4+4=22d+ 1)+ 2d+2d+2(2d+ 1) UCEV?®;
Ri(d) 12d+8=22d+ 1)+ 2(d+ 1)+ 2d+4(d+ 1) U°E®Y:;
Ri(d) 12d+12=4(d+ 1)+ 2(d+ 1)+ 2(d+ 1)+ 4(d+ 1) °U'EV:

(3) for each d>=1 and each irreducible f(x)=co+c,x+ - +

Co 1 X"~ 4 x" of k[x], f(x)#1+x+x% the “homogeneous” represen-
tations

H,(d) of dimension 6nd=2nd+nd+nd+2nd U EV,,

and for each d> 1

K. (d)of dimension 6d=2d+d+d+2d U_EV,.
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Here. for each natural m, we consider the following types of matrices:

U/

1

0

o o !

|

oo o 1 1

i
0: -]
1
l"—l"""—‘l
s 1
| H
L._l.__l..__
:1 0
b0 1
| -
t
|
L.
f'.!
l__l___“
|
l1
1 0_
| ]
1
|
I~
b
P
L.
-
11
P
L0
1)
|
na
0!
|
b
11
0
—_— 4 —
f
P
[
|
Pl
o
|
I 0
o

ifsize2mx{(m+1),

of size 2m x m,

of size 2(m+ 1) xm,

of size 4m x 2m,

IO'-"—Ol

£
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+c, X" '+ x"ek[x],

for f(x)=co+c¢,x+ ---
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W = | l of size 2m x 2(m+ 1),

W, = E (identity) of size 2mx 2m, and W, = W'. In addition, for an rxs
matrix Z. we define the (r + 2) x s matrix

- -
OZ= ,
Z
the (r + 2) x (s + 2) matrix
- f -
|
I
Z |
Zl___,_ l
i b
71 oo
I U B

the (r 4+ 4) x (s + 2) matrix °Z'=%Z")= (°Z)', the r x (s + 2) matrix
I
|
Z°=| Zz : :
|
|
the (r + 2) x (s + 2) matrix

lZ=

and the (r + 2) x (s + 4) matrix 170 = ('2)°=Y(2Z°).
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3. METHODS AND PROOFS

Let us start with the following.

Proof of proposition. Consider the homomorphism u: k4, — 4 given by

1 0 1 1 w
u(h)= ! (1) (1) and  p(g)= q
1 w?
Then, for a, bek,
0 0 a+bo 0
pla+bpi+hi+g+gn=l ° 0 7|
i 0_
0 0 O 0 ]
B+ g+ @)1 +harbg]=|  © 0 9P
) 0o
and
0 0 0 ¢+bw
Wl(a+ b0 +hNg +87)+ (14 g+ i +m]y=[ O 0 0]
0

and thus p is surjective. Clearly, rad?(4)=0. Since

ulrad’(kd )] = { u[rad(kA4,)])2 < rad® 4 =0,
Ker u=2rad?(k4,) 2Soc(kA,).

Furthermore,
Top(kA,)=kA,/rad(kA,) ~kC,=k x K,
and therefore

dim, Soc(kA,)=dim, Top(kA,)=3.
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Since dim, kA, =12 and dim, 4 =9, it follows that
Soc(kA,)=rad*(kA,)=Ker g,

and that p induces an isomorphism between kA,/Soc(kA,) and A, as
required.

As a consequence of the proposition, we immediately get the following

COROLLARY. The category of all finite dimensional representations of A,
over k which do not have injective direct summands is equivalent to the
category of all finite dimensional A-modules.

Now,
K K K Y1 u w
B= k k = 2 v |x2,x3ek;yl,y4,u,v,weK
k X3
k Va

is a hereditary k-algebra whose k-species

K k
k K
is the “separated” species of the k-species
C K & k
KKy
of the algebra A. Hence, there is a (full, dense) “separation” functor

@: mod B—» mod A

defined by
0 n®1) (58
D(M )= C(Y,®Y4)®KK;:———"WXZ@X3
00
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where

Y, ® kK, X,

My= / n®1 /
X, Y

1@ K,

which induces a representation equivalence between mod 4 and the full
subcategory of mod B of all B-modules M, with monic ¢*: ¥, » X, ®, Ky
and y. Hence, we may formulate the following

COROLLARY. There is a bijection between the set of all isomorphism
classes of indecomposable A-modules, ie., of non-injective indecomposable
representations of A, over k, and the set of all isomorphism classes of
indecomposable B-modules with the exception of the two classes represented
by

NS NS

Now, we are in position to apply the results and method of V. Dlab and
C. M. Ringel [4, 5]. First of all, we compute the dimension types of the
indecomposable preprojective and preinjective representations and describe
the respective components of the Auslander—Reiten graph of A: for />0,

P(6/+1) P(6/+3

\Q(ﬁl)/ \Q(61+ 2/ )\Q(ﬁl + 4)/ \
/

< 0(61+ 1) Q(61+ 3) (61 + 5)
P(6/) P(61+2) P(6!+4)

P(6/ +5)

N\ N\ N

where
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dimP(3d)m(d_+_1 g d d),

d+1
dim P(3d+ 1) =
im P(3d+1) d d+ 1 )

d+1 d
dim P(3d+2) =
m P = a1 d+ 1 )

2d+1 2d
2d 2d+1 '

2d+ 1 2d+2
2d 2d+ 2

dim Q(3d+1)

.

’

dim Q(3d+2) =

(o *

(
amesa=(;, ¥ o ™)

(a0

(24

and, for /=0,

S(6/+4) S(6/+2) S(60)

\ /

T(6! + 5) T(61+3 T(6] + 1)

N

S NS
S
7N\
NS

\
T(6! + 4) T(6/ + 2)/ \
SN N

S(61+ 5) S(61+ 3) S(6/+1)

T(6/)

N\
/

where

dimS(3d+1)=(
_ 3d+2) = d+1 d+1)
dim S(3d + )—( d+ 1 ;

dim T(3d) =

481/123/2-17
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2d + 1 2d+2
dim T(3d + 1)=( + )

b

2d 2d+1

2d+2 2d+2
dimT(3d+2)=(2d+2 t o )

Each of the preprojective representations can be associated with a K-space
Y, that is endowed with a structure of a k-subspace X, and a K-subspace
Y, containing a k-subspace X 3

Y,K

taking X3 = Ker ¢ and u = ker @. In this way, choosing bases of the spaces
appropriately, we arrive at the representation presentations listed under (2)
in the theorem. Let us illustrate this procedure in the case of, say, P(3d).
We have dim P(3d)=(,,, ¢ , ¢ ); thus, there is a unique indecomposable
d-dimensional K-space Y, endowed with a d-dimensional k-subspace X,
and a (d— 1)-dimensional k-subspace X (identifying Y, with Y,). We
claim that the vector space Y,=@{_, b,K with X,= @7, b,k and
Xi=@ ! (bjo+b,, )k is indecomposable. Indeed, for d=1, the
statement is trivial, and we proceed by induction. Observe that the

maximal K-subspace ¥, of the k-subspace X, + X', must be compatible
with any decomposition of

X

\Y i X,
\,/

and that Y,= @7 !'b,K together with Y,=Y,, %,= DN bk, X =

I2EBw+b,, )kis indecomposable by induction. Consequently, ¥, is a
direct summand of any decomposition of Y,. However, then the one-



MODULAR REPRESENTATIONS OF A, 519

dimensional K-complement cannot nontrivially intersect both X, and X5.
It turns out that

Y, ®K X,= @ bik

zp{b;@liﬂhj
tpih,@ml=b:,| 1! ,
(1<isd) vib)=56@1
(1<isd)
d+1
X;= @ bk Y, ®K

i=1

is the presentation of the representation P(3d) listed in the theorem.

To deal with the preinjective indecomposable representrations, we
note that the opposite algebra A°°P is isomorphic to 4 and that this
isomorphism yields a bijection 1 between the (right) A-modules which may
be described as

Y1®K X2 Y4®K X3
)

/ w_._ )(: ¢’"

) = (
X3 Y4®K X2 Y1®K

where the matrix of @', (n® 1)*, and ' with respect to chosen bases of
Y,, X,, X, and X, is the transpose of the respective matrix of ¢, n® 1 and
W. Since, under 1, the preinjective indecomposable representations corre-
spond to the preprojective ones, we get immediately the presentations (3)
of the theorem.

In order to deal with the regular nonhomogeneous representations, we
apply the theory described in [4] and the vector space method of con-
structing the explicit presentations, as described in the case of preprojective
representations. Note that there are nine types of such regular indecom-
posable representations depending on the simple regular types in the socle
and at the top. Thus, denoting by (1), (2), and (3) the simple types of
dimension of types

1 0 0 2 1 0) )
, respectively,
(2 0 )’ (0 1 )’ (o 1 pectively

the indecomposable representation R/(d), 1 <1, j< 3,_ has the socle of type
(i) and the top of type (j); the regular length of Ri(d) is 3d+ 1‘, that of
R3(d), R}(d) and R2is 3d + 2, and that of R?(d), R3(d) and Ri(d)is 3d+3.
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Finally, we apply the Tables of [4] and the well-known theory of
homogeneous Kronecker modules. It follows that the subcategory of all
homogeneous representations is equivalent to the category

U, xmod~ k[x],

where mod® k[ x] is the full subcategory of the category of all finite dimen-
sional modules over the polynomial algebra k[ x] whose modules do not
contain a submodule isomorphic to R3(0). Indeed, in the embedding of the
category U, xmod k[x] of all homogeneous Kronecker modules into the
category of all regular representations of the algebra A, as described in [4],
the module k[ x]/(1 + x + x?) k[ x] maps onto R;(0); in fact, it is easy to
check that R!(d)~ H, + «+x2(d). Consequently, a suitable choice of a basis
of X leads to presentation (5) of the theorem.

4. APPENDIX

To summarize the following is the list of all indecomposable represen-
tations of A4, of dimension § modulo 12, which are not of the form H  (the
latter have dimension 0 or 6 modulo 12):

Regular

4 {mod 12) Non-regular non-homogeneous Homogeneous Remark
0 R, R}, R} H,
1 P(3d), 5(3d) PO} = 5(0)
2 Q(3d), T(3d) Q(0) =~ T(0)
3 P(3d+ 1), S(3d+ 1)
4 £.kA, R}, R R} (Projective of
5 P(3d+2), 5(3d+ 2) dimension 4)
6 Q(3d+1), T(3d+ 1) H,
7 P(3d), 5(3d)
8 e kA, R}, R}, R? (Projective of
9 P(3d+ 1), 5(3d+ 1) dimension 8)
0 Q(3d+2), T(3d+2)
1

[ —

P(3d + 2), S(3d + 2)

The simple homogeneous representations H,(n) are indexed by the
irreducible polynomials J over k. For the field k = F,, the number a(n) of

such polynomials of a given degree n has been determined by C. F. Gauss.
In [6, p. 610], he proves that

2"=3" t-a(r).

fn

Using the Mobius inversion, we get
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1 n

tin

where yu is the M&bius function: u(m) = 0 if m is divisible by the square of a
prime, and u(p, p,---p)=(—1)*if p,, p,, ..., p, are distinct primes. Thus,
for the dimension & =6r, the number of homogeneous indecomposable
representations of A, over the field F, which are of the form H,is

Y o afn).

tirand r#=2

Consequently, the total numner N, of the indecomposable representations
of A, over F, of dimension § is given by

& N, forr>1 d N;
1 1 12041 2
2 i 12¢ 42 2
3 2 12¢+ 3 2
4 4 121+ 4 3
5 2 12045 2
6 5

7 2 12t +7 2
8 4 12¢ + 8 3
9 2 12+ 9 2
10 2 121+ 10 2
11 2 121+ 11 2

and for d=6r, r=2,
Ns=3+> af1)

1744

(comp. the computations for 6 < 36 and an error for <42 in [10])

r d N, r & N,
2 12 6 14 84 1185
3 18 7 15 90 2195
4 24 9 16 96 4119
5 30 11 17 102 7715
6 36 17 18 108 14605
7 42 23 19 114 27599
8 48 19 20 120 52491
9 54 63 : : :
10 60 111 24 144 699255
11 66 191 : : :
12 72 355 50 300 22517998808031

13 78 635



522 DLAB AND RINGEL

10.

REFERENCES

. V. A. BA3Ev, Representations of the group Z,x Z, in a field of characteristic 2, Dokl
Akad. Nauk SSSR 141 (1961), 1015-1018; Sovier Math. Dokl. 2, No. 6 (1962 ), 1589-1593.
S. B. ConLoN, Certain representation algebras, J. Austral. Math. Soc. § (1965 ), 83-99,
V. DLaB AND C. M. RINGEL, On algebras of finite representation type, J. Algebra 33
(1975), 306-394.

V. DLaB AnND C. M. RINGEL, Indecomposable representations of graphs and algebras,
Mem. Amer. Math. Soc. 173 (1976).

V. DLAB AND C. M. RINGEL, A remark on normal forms of matrices, Linear Algebra Appl.
30 (1980), 109-114.

. C. F. Gauss, “Disquisitiones Arithmeticae; Untersuchungen iiber hohere Arithmetik,”
Chelsea Publ. Co., 1989.

A. HELLER AND 1. REINER, Indecomposable representations, Illinois J. Math. § {1961),
314-323.

D. G. HiGMaN, Indecomposable representations of characteristic p, Duke Math. J. 21
(1954), 377-381.

E. KERN, Representations indecomposables du groupe A, sur un corps algebriquement
clos de characteristique 2, These, Université Strasbourg, 1971.

U. SCHOENWAELDER, Von Normalteilern induzierte Moduln iiber endliche Korpern: die
unzerlegbaren F, A,-Matrixdarstellungen, Bayreuth. Math. Schr. 22 (1986).



	Seite 1 
	Seite 2 
	Seite 3 
	Seite 4 
	Seite 5 
	Seite 6 
	Seite 7 
	Seite 8 
	Seite 9 
	Seite 10 
	Seite 11 
	Seite 12 
	Seite 13 
	Seite 14 
	Seite 15 
	Seite 16 
	Seite 17 

