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Let M be a left unital module over a ring R; write ¥ = end(z/M) and,
considering M as a #-module, 2 = end(My). The module M is said to have
the double centralizer propetty, if the canonic homomorphism of R to &
is onto. If every finitely generated faithful left R-module has the double
centralizer property, the ring R is called a left OF — 1 ring. This concept was
introduced by Thrall [13] as a generalization of quasi-Frobenius rings. To
our knowledge, no characterization of left QF — 1 rings in terms of their ring
structure is known. A ring R is said to be left-balanced, if every left R-module
has the double centralizer property. It is well known that every artinian
uniserial ring is both left and right balanced (Nakayama [9]; Nesbitt and
Thrall [11]). Recently, several authors proved the converse for commutative
rings (Dickson and Fuller [2]; Camillo [1]) and Jans in [7] for finite-
dimensional algebras over algebraically closed fields. In the same paper, Jans
conjectured that the converse was true in general.

The aim of the present paper is to describe the structure of balanced rings
and of certain local OF — | rings. The first result in this direction is the
following theorem proved previously by Camillo [1] for commutative rings.

THEOREM A. A left balanced ring is left artinian.

Since every left artinian left balanced ring is a finite direct sum of full matrix
rings over left artinian left balanced local rings (Fuller [6]), the structure
theorem on balanced rings can be formulated for local rings.

Tueorem B. Let R be a left artinian local ring with the radical W such that
R|W? is left-balanced. Then either

(1)) R s left uniserial; or
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(i) W? =0, dim( rwW) = 2 and, for any two nonzero elements xyof
W,Rx+yR = W; or
(i) W3 =0, W2 is the unique minimal left ideal and RIW? is a ring
described in (ii).
Hence, the left ideal structure of a local left-balanced ring can be illustrated
as follows:

Iw”=o

Making use of Theorem B, one can deduce

THeorREM C. Let R be a ring finitely generated over its center. Then R is
left-balanced if and only if it is uniserial (in the sense of Nakayama).

Thus, in particular, such a ring is left balanced if and only if it is r.ight
balanced. Theorem C proves Jans' conjecture for a large class of rings
including finite-dimensional algebras over arbitrary fields. Howgver, the
conjecture is not true in general. It is shown in [5] that the assumption on R
to be finitely generated over its center is necessary: Indeed, there are examples
of balanced rings which satisfy the condition (ii} of Theorel?.B. On the other
hand, the question on whether balanced rings of the type (iii) of Theorem B

exist is open. . o N
'The proofs of the theorems above depend on investigations of artinian

local QF — 1 rings. In particular, the following result is proved.

THeorEM D. Let R be an artinian local ring finitely gen.erated over its
center. Then R is a QF — 1 ring if and only if R is quasi-Frobenius.

For commutative rings, this was proved by Dickson anfi Fuller [2]. Again,
the examples of [S] show that the condition on R to be finitely generated over

its center is necessary. ' . . .
After introducing notatton and terminology in the ﬁrst. section of the pap d,
Section 2 contains several constructions of modules which are not balanced.

These are afterwards employed in the proof of Theorem A in Section 3. The

T
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following Section 4 consists of some further constructions of nonbalanced
modules to be used in Section 5 to prove Theorem B. The final Section 6
constitutes the proof of Theorem C and Theorem D.

1. PRELIMINARIES

Throughout the paper, R denotes an (associative) ring with unity. By an
R-module we always understand a unital R-module; the symbols M or My
will be used to underline the fact that M is a left or right R-module,
respectively. Given an R-module M, denote by rad M the intersection of
all maximal submodules of M if there are any; otherwise, rad M = M.
Dually, if M has minimal submodules, soc M denotes their union; if M has
no minimal submodules, soc M = 0. Thus, considering a ring R as a left
R-module (or a right R-module) we get the concept of the left socle (or the
right socle) of R, as well as the concept of the radical of R; the latter will be
denoted consistently by W. It is immediate to see that WM C rad M for any
left R-module M. If rad M is the only proper maximal submodule of M,
M will be called local. Thus, all local modules are monogenic. And, if gR (and,
for the matter Ry) is local, then R is said to be a local ring. If M has a composi-
tion series, denote by d(M) its length; again, in case of an artinian ring R,
we can speak of left length 0y(R) and right length ¢x(R) of R.

Let M be a left R-module M, €(M) = end(zxM) the centralizer and
D(M) = end(My) the double centralizer of M. Throughout the paper, the
elements @ of €(M) will act on M from the right, the elements ¥ of Z(M)
will act from the left; in particular, ¥(mg) = (Pm)p for all me M. The
multiplication of these elements will also be written in the respective order.

Following Bass, a ring R is said to be right perfect if W is T-nilpotent and
R{W artinian. And R is right perfect if and only if R/W is artinian and every
quotient ring of R has a nonzero left socle (see, e.g., [4]); in such a ring,
Wi 0 (¢ > 1) necessarily implies that W? 5 Wi+l (cf. [3]). The concept of
T-nilpotence has been weakened by Camillo {1] to that of bi-T-nilpotence:
W is said to be bi-T-nilpotent if, for every sequence {w,}, 2; € W, indexed by
all integers ¢, there ared; 2> 0 > 1, such that w; w; _ = w; 0y, = 0. Let us
remark that by a perfect ting we shall understand a ring which is both right
and left perfect.

A module is said to be uniserial if all its submodules form a chain with
respect to inclusion. Hence, a left (or right) uniserial ring is necessarily local.
Following Nakayama [9), a uniserial ring is defined to be a finite direct sum
of full matrix rings over artinian local rings which are both left and right

uniserial. It is not difficult to see that R is uniserial if and only if R/ W2 is
uniserial (cf. [9]).
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For an element m of a left R-module M, the annshilator (order) {rire R
such that 7m == 0} C R of m will be denoted by ann(m); also, given a sub-
module N of M, write ann(N) = (),,cy ann(m). Correspondingly, in a ring R,
we have the concepts of left and right annihilators (denoted by ann
and ann,, respectively). An artinian ring in which anny(ann/(L)) = L and
anng(ann(K)) = K for every left ideal L and every right ideal K is called
quast-Frobemius. As an immediate consequence, &i(R) = x(R). The concept
of a quasi-Frobenius ring has been introduced by Nakavama in [9]; he has
also shown that an artinian local ring is quasi-Frobenius if and only if
¢i(soc gR) = dsoc Ry) = 1. Moreover, an artinian ring R is uniserial if and
only if every quotient ring of R is quasi-Frobenius (see [10}).

Later, Thrall [13] has generalized the concept of a quasi-Frobenius ring
to that of a OF — | ring: A ring R is said to be a left (or right) QF — |
ring if every finitely generated faithful left (or right) R-module is balanced.
Here, an R-module M is called balanced (or to have the double centralizer
property) if all elements of its double centralizer are induced by the ring
multiplication. If every left (or right) R-module is balanced, R is said to be
left (or right) balanced. And, again, by a balanced ring, or OF — | ring, we
shall mean a ring which is both left and right balanced, or left and right

OF — 1, respectively.

2. CONSTRUCTIONS OF NONBALANCED MODULES

In this section, we have collected several constructions of modules which
are not balanced: these constructions are essential for all our theorems on

balanced rings.

In the first construction, two copies of a local ring R considered as a left
R-module are amalgamated over isomorphic left ideals. This method of
constructing nonbalanced modules was used previously by several authors

(Dickson and Fuller [2]; Jans [7]); their results can be obtained easily from

the following more general

ConstrucTioN 1. Let R be a local ring with a minimal right ideal. Let
U, , U, be two nonzero isomorphic left ideals and 1, , I two trwo-sided ideals of R

such that
Uzglt(i:l,Z) aﬂd Ilﬂlz—-:O.

Then there is a finitely generated faithful left R-module which is not balanced.

Proof. Let
M = (R®R)/D,
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where [} = {(d, —d§) | d € U,} with an isomorphism £&: U} — U, . Obviously,
M is finitely generated and faithful. Every endomorphism of M can be lifted
to an endomorphism of x(R © R) and, in this way, we get just those endomor-
phisms of the left module R &) R which map D into D. Let

(0‘11 ‘5‘12)
g1 O
be the matrix representation of such an endomorphism of R @ R; here,

a;; denote endomorphisms of RR, that is to say, right multiplications by
elements of R. For (d, —d€) e D, we get

a &
(6, —dg) (1 7} = (day — (d6) aay» oy — (d8) o
in order that this element lies in D), it is necessary that

doy; — (dE)ogie Uy (i =1, 2).

This implies that oy € W and o, € W with W denoting the radical of R.
For, if ay, ¢ W, then oz} € R exists and we get

Uy = Uy C Uy’ + Upaggoiy C 13,
a contradiction. Similarly, if a;, ¢ W, then
Uy C Upiy + (Us€) agpoiy = Uy + Upaigpagy C 1,

again a contradiction.

Now, we are going to construct an additive homomorphism ¥: R @ R —
R @ R commuting with all matrices (;u 712), where ay € W and o, € W,
and mapping D into itself. Thus, ¥ will induce an element of the double
centralizer Z(M) of M. Take a nonzero element z of a minimal right ideal and
define ¥ by

Y(x,y) = (2x,0) forall (x,)eRDR.
Evidently, since U; C W, ¥(D) = 0. An easy calculation yields
[0 4 67
[P0 (1) = (ws  svo) = (v , 0,
because, again, = belongs to the right socle and xy, € W. Similarly,

) (G o2)] = Gxons + 2y, 0) = (v, O)

X1 9

Thus, ¥ induces an element of Z(M).
Assume that this morphism is induced by an element p€ R. Then
necessarily,

Y(x,y) — (px,py)eD  forall (x,y)e RO R.
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Hence, if (x, y) = (0, 1), we get (0, p) € D and, consequently, p = 0. But
then, for (x,y) = (1,0), we have (3,0)e D, a contsadiction. Thus, the
morphism defined by ¥ is not induced by the ring multiplication, i.e., M is
not balanced.

Construction I implies, that a perfect local QF — 1 ring has a unique
minimal two-sided ideal. If R is commutative, then R has to be a quasi-
Frobenius ring; this is the main result of Dickson and Fuller in [2]. Also, if
R is a finite-dimensional algebra over an algebraically closed field, and
W? = 0, then R has to be uniserial (because every left ideal is two-sided).
This yields Jans’ result of [7] that an arbitrary (not necessarily local) finite-
dimensional left balanced algebra over an algebraically closed field is uniserial.
Let us point out that these results will not be needed in the sequel; they are
mentioned here briefly just to illustrate the extent of applicability of
Construction I.

Under certain conditions, the direct sum of two modules M, and M,
can be shown to be nonbalanced; such conditions were given, e.g., by
Morita [8] and Camillo [1]. Another sufficient condition is that both modules
be local and faithful and none of them be a quotient of the other. This follows
from the following more general construction which will be required later.

ConstructioN 11, Let R be a local ring with the radical W. Let M, and M,

be two left R-modules such that, for i # j, every homomorphism ¢: M; - M;
satisfies Mg C WM, . Let, moreover, soc Ry € ann(M,) and M, be faithful
Then M = M, ® M, is a faithful R-module which is not balanced.

Proof. Let us represent the elements of the centralizer of M by the

matrices
((p“ %2), where ¢ 1 M, — M;.
Po1 Paz

Take an element zesoc Rp\ann(M,) and define an additive homo-
morphism ¥: M — M by
¥(m, , my) = (2m, , 0)

In fact, ¥ belongs to the double centralizer of M because

P11 9’12)
Po1  Paz

forall (my,m)eM, ®M,.

(¥, mo)]

= (2my , 0) (‘Pn <P12) = (amey 2y 2)
P11 Pz

= (ampy , 0} = (smypy + 2MaPyy 0) = ({mypyy + Mypay), 0)
P Pz}l
= W(mpy, + MyPay » MyPrs + MaPra) = ¥ [(’"1 ) M) (‘le %2)]:
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here, zm,@,;; = 0 and zmyp,, == 0 in view of the fact that mg,; e WM;,
for i # j. Finally, ¥ is not induced by left multiplication. For, assuming that
¥(m, , m,) = (pm, , pm,) for a certain p € R, we deduce that p == 0 since M,
is faithful. But since z ¢ ann(}M,), there is m," € M, such that zm,” % 0 and
thus

¥(m,, 0) = (zm, 0) # (pm,’, Q).

As a consequence, JM is not balanced.

Construction 11 will be used in the proof of the next construction which
deals with a situation similar to that of Construction I. Here, we are going
to replace the condition that the left ideals L’; are contained in disjoint two-
sided ideals by an asymmetric assumption on [’} and U, and a condition on
the right socle.

ConsTRUCTION II1. Let R be a local ring. Let U, , U, be two nonzero left
ideals and I, a two-sided ideal of R such that

U,CI, and 1,nU,=0.

Let, furthermore, U, contain no nonzero two-sided ideal of R and soc Rg L U, .
Then there is a finitely generated faithful left R-module which is not balanced.

Proof. Let M, = R/U, and M = M, @ M, . First, obviously, M, is
faithful and, since ann(M,) C U, , soc Rg ¢ ann(M,). In order to be able to
apply Construction IT, we have to look at the morphisms between M, and M; .

Every homomorphism g,: M; — M, can be lifted to an endomorphism of
xR mapping U, into U, . Thus, there is an element a; € R (operating on R
by right multiplication) with U o, C U, , and therefore

This means that o; € W, and hence M,p, C WM, .

Similarly, every homomorphism ¢,: M, — M, can be lifted to the right
multiplication by a, on pR satisfying U, C U, . Again a,€ W; for, if o
were a unit, then

U, CU' C 1,

contradicting our hypothesis. Consequently, M,p, C WM, and Construc-
tion I can be applied.

In order to show that the length of the left socle and the right socle of a
balanced local ring is bounded, we need yet another construction. Here,
we show that some quotient modules of a certain ring R are not balanced.
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ConstrucTioN IV, Let R be a ocal ring. Let U C soc Ry be a nonzero left
ideal containing no nonzero two-sided ideal. Let r be a unit of R such that

Lr@U  and socRyC U+ Ur.

Then there is a finitely generated faithful left R-module which is not balanced.
Proof. Let M = R/, for every x € R, write

f:x—{" L]E&M.

Clearly, M is a finitely generated faithful left R-module.

Denote by % the centralizer of M. The elements ¢ of ¢ can be lifted to
endomorphisms of R and, in this way, we get just those elements «, € R
(acting on zR by right multiplication) which satisfy Ua,, C U. Thus, denoting
by W, T == W/U and #" the radicals of R, M and %, respectively, we deduce
from here that

W ={pipec®and a,e W},

hence, € is local and M%" C T. Evidently, T is a ¥-submodule of M and the
%-module M| T is completely reducible. In fact, we can show that

MT=0+T¥QF+TEDC

with a suitable complement C. This follows from the fact that, in view of the

assumptions put on 7,
1¢nigCT.

Indeed, assuming the contrary, there would be ¢ € ¢ such that Ip — 7€ T
and, lifting ¢ to an endomorphism a, of zR, we would get la, —re W.
However, o, — r € W together with U C soc Ry imply U(a, —r) = 0, and
thus Ua, = Ur € U, contradicting the fact that «, induces the endomorphism
g of M.

Now, according to our assumptions on U, there is an element
zesoc RR\(U + Ur). Obviously, since ##° = 0, Z belongs also to the
socle of the @-module M. We are going to construct an element ¥ of the
double centralizer 2 of M such that ¥(I) = 0 and ¥(F) = 2. First, define the

%-homomorphism ¥’: (M/T)g — soc(Mg) by
YA+ T)=0, PFE+7T)=% and ¥(¥+ T)=0 for ¥4 TeC,

and then put
¥ = W,

481/22/3-6

B—
T 4
T
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where e: Mg — (M/T)g is the canonic epimorphism and «¢: soc(My) — My
is the inclusion. Obviously, ¥ € & has the required properties.

In order to complete the proof, it is sufficient to show that ¥ is not induced
by left multiplication. Thus, assume that there is an element ¢ € R such that

of = Y(x) forall xeM.

Then, ol = 0 implies o U and of = % implies zeor + U. Hence,
combining both implications we get a contradiction of our assumption that
¢ U+ Ur

We conclude that M 1s not balanced.

3. LerT-BaLANCED RINGS ARE LEFT ARTINIAN

The main purpose of this section is to prove the statement in its title. In
order to facilitate the proof, we are going to derive some preliminary structural
properties of left artinian local rings. These results will also be used
throughout Section 5.

Limma 3.1. Let R be a local right perfect left OF — 1 ring with a minimal
right ideal. Then R has a unique minimal two-sided ideal I and, moreover, either

() @(I) = | and I is the left socle of R, or
(i) &) = 1 and I is the right socle of R, or
(i) (I} = 2 and I is both the left and the right socle of R.

Proof. Write S = soc Ry and assume that there is a two-sided ideal
IC S with &(I) = 1. In this case, we claim that I is the unique minimal
two-sided ideal and that I is either the left or the right socle of R. The first
statement is an immediate consequence of Construction I and the statement on
the socles follows from Construction III. Indeed, if I is neither the left nor
the right socle of R, we take a minimal left ideal U, which is not contained in [
and U, = I to satisfy the assumptions of Construction IIL.

Now, if no two-sided ideal of length 1 in S exists, denote by I the left
socle of .S; thus &(I) = 2. Obviously, I is a unique minimal two-sided ideal
and it is the left socle of R; for, otherwise, we can apply again Construction I
or Construction 11T to obtain a contradiction. Furthermore, making use of
Construction IV for a minimal left ideal U C I, we deduce that I = 5 and
that di(I) < 2. Lemma 3.1 follows.

As a simple consequence, we can formulate

CoroLLARY 3.2. Let R be a local left QF — | ring with the radical W
satisfying W2 = 0. Then dim(g;yW) << 2 and W is the minimal two-sided
ideal of R.
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LEMMA 3.3. Let R be a left balanced local ring with the radical W. If
Wn == 0, then the powers W are the only two-sided ideals of R and, for each
We £ 0, Wl s both the left and the right socle of R/W"L; moreover,
c(W"[Wv1y - © 2. Thus, in particular, R is left artinian.

Proof.  First, in view of Construction I, R is obviously two-sided uniserial.
Moreover, if, for some v, a two-sided ideal ] exists such that v+ I Wy,

then Construction [I1 applied to R/W¥+! yields a contradiction.

Now, taking a fixed » with W* = 0, consider the ring R/W*+., Without
loss of generality, we can suppose that W1 = 0. Observe that both the left
socle 5] and the right socte Sy of R contain W” which is the minimal two-sided
ideal of R. According to Lemma 3.1, either §; = W* = §;,or S} = We S,
or S; 20 WY = S,. Assuming that W*{ Sy, we deduce that W1 C S;; for,
the powers of W are the only two-sided ideals of R (here, W*-! = R for
v = 1). And hence, we get a contradiction, because

Wy = Wt - WC S+ W=0.

Similarly, we can verify that the case S; 2 W* = S; cannot occur.
Thus, for each W» 5= 0, W*/W»* is both the left and right socle of RfW»+!

and Lemma 3.1 implies that &,(W"/W*+1) < 2. The rest of Lemma follows

easily.
The following lemma is a slight modification of the result of Osofsky [12]

that the radical W of a right perfect ring is nilpotent if the left R-mosiule
W/W? is artinian. For the convenience of the reader we shall repeat briefly

the proof.

LimMmA 3.4. Let R be a ring with bi-T-nilpotent radical W such that the
left R-module W|W? is finitely generated. Then there exists my such that
Wro — [/netl

Proof. Since W/W? is an artinian left R-module, it is finitely generated;
thus, there is a finite number of elements w; € W with

WiW?=Y Rz, where @ =uw;+ W

For every natural number #, denote by A, the set of all possible products
Wy W, W 0. A path of length n 1s defined to be a set {a; | a, € A4, for

1 < & < n} such that
for an even £, and

for an odd & > 3.

a, = ap Wy,
ay, = Wy x4

Now, assuming that there are arbitrary large » with 4, # &, t}maF fs to say,
that there are paths of arbitrarily large length n, we can apply Kénig's Graph



490 DLAB AND RINGEL

Theorem and deduce that there is a path of infinite length. But this contradicts
the fact that W is bi- T-nilpotent. We conclude that there is an integer n, such
that all products w; w; -~ w; equals zero.

0
In order to complete the proof, we are going to show that Wm C /netl,
First, observe that ¥ is generated by W7et! and the elements of the form

B = 1%y poi, Pnow"ﬂo )

Since W/W? is an R — R-bimodule, w; p =3, p; w; for suitable p;" € R.
Consequently, module W+l we can pull each p; occuring in 2 past all of
the ; and obtain that z is equal modulo Wne+1 to a sum of elements of the
form pw; 2; - wj, - But all these products are zero, and therefore z € Wnet1,
as required.

Now, we are ready to prove Theorem A (see the introduction).

Proof of Theorem A. Let R be a left balanced ring with the radical W.
Hence, in view of Theorem 16 of Camillo in [1], R/W? is a left balanced
semiprimary ring. Therefore, according to a theorem of Fuller [6], R/W? is a
direct sum of finitely many full matrix rings over left-balanced local rings R; .
Let W, be the radical of R;. Since the radical of R/W? is nilpotent, W, is
nilpotent, as well. Thus, Lemma 3.3 implies that R; are left artinian. There-
fore, R/W? is left artinian and, in particular, W/W? is an artinian left
R-module. Since W is bi-T-nilpotent (Propositions 15 and 16 of Camillo in
[1]), we can apply Lemma 3.4 and obtain W = H/70%! for some n,, .

Now, assume that R is not right perfect. Then, there is a quotient ring R’
without minimal left ideals (see, e.g., Dlab [4]). But R’ is left-balanced, and
thus the above considerations apply to R': denoting by W’ the radical of R, we
have W'® = W'nt1 for some n. Moreover, W'* 5 0 because R’ has no minimal
left ideals. Consequently, the left R-module W' has no minimal submodule
and therefore, in view of Proposition 16 of Camillo in [1], there is a left ideal
L’ of R’ which is a2 maximal submodule of W'®. But L’ must contain J/'™*!
which implies that W'» -« W’n~1 This contradiction establishes that R is
right perfect.

However, a right perfect ring has no nonzero idempotent ideals contained
in its radical and thus, Wne = Wne1 yields W*e = (. This means that R is
semiprimary and another application of the above mentioned theorem of
Fuller and Lemma 3.3 completes the proof of Theorem A.

4. FurTHER CONSTRUCTIONS OF NONBALANCED MODULES

The following additional constructions will be needed in the final Sections 5
and 6.
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ConsTRUCTION V. Let M be an indecomposable left R-module of finite
length. Assume that M possesses a proper submodule and a quotient both isomor-
phic to a faithful R-module N. Then M is a faithful R-module which is not

balanced.

Proof. Since M is an indecomposable module of finite length, the
centralizer ¢ is a local ring; denote its radical by #". Let « be an embedding
t: N — M. First, let us show that Ne C M#".Ife: M — N'is an epimorphism,
then obviously €. € €. But N: is a proper submodule of M, and therefore e is
not a unit, 1.e., belongs to #". Consequently, No = Me. C M#".

Now, both M/M%" and soc(My) are nontrivial* and thus, there exists a
nonzero %-homomorphism

. (M/MW)@ - SOC(M(g).

As a consequence, the morphism ¥ = /¥'¢' (with the canonical epimorphism
€': My — M/M# and the embedding «': soc(Mg) — Mg) belongs to the
double centralizer of M. But ¥ is not induced by ring multiplication. For,

assuming that
Y(m)=pm forall meM

with a suitable p € R, we see immediately that p 5 0 (since ¥ =~ 0) and that
pNeCp(MH#) = P(MW') = 0.

However, this contradicts the fact that N is faithful. It follows that .M/ is not

balanced. o
The preceding result will be used in the next Constructno{l V1. There, as
well as in Construction VII, the double centralizer of an indecomposable

module will be explored, To simplify the presentation, the following lemma

will be found useful.

Levma 4.1. Let R be a local ring with the radical W. Let x, v and x he

elements of R such that
x#£0, aW=0,

y ¢ zW, Wy=0 ad 2¢Rx+-3R
Then |
M=R®RD with D={xy—«z~+ Ax) x, Ae R

' ] ' - . Moreover, if (1 i), a;€R,
is a faithful indecomposable left R module. | i G o) e
represents an endomorphism of the left R-module R & R which maps D tnto D,

then oy e W.

* Compare N. Bourbaki, Algébre, Ch. 8, Modules et anneaux semisimples, Ex. 3,

pp. 26-27.

Tosw M
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Proof. Put T = (W @ R)/D. The submodule T can be characterized in
the following way

T = {m|me M with ann(m) # 0O}.

For, take m = (w,r) + D with we W, re R, and consider two cases. If
r € W, then soc(Rg) C ann(m). 1f 7 is a unit, then 0 5 x7~! € ann(m), because

xr-im = (o w,x) + D = (0,x) + D =0e M.
Conversely, if ann(m) 5= 0 for some m = (ry ,7,) + De M, then
(ury , pry) = (xy, —kz + Ax) for some p 7 0, x and A of R.
Assuming that r, is a unit, we get p = «yry* and thus
kyri’ry = —kz -+ Ax;
however, since u # 0,  is necessarily a unit, and therefore

2 = kx4 y(—r7ry),

a contradiction of 2 ¢ Rx + yR.
Now, m, = (1,0) + D¢ T. This follows easily from the preceding
characterization of T. For, if um, == 0 for some p 5 0, then

(1,0) = (ky, —xz + Ax)  for suitable «,Ae R

and thus « is a unit. But then 2 = x!Ax, a contradiction.

Let us assume that M is not indecomposable. First, as a consequence of this
assumption, we are going to establish the fact that Rm, is a direct summand
of M. Indeed, since &(M/rad M) < 2, M is the direct sum of two local
modules; write

M = Ra @® Rb with suitable a,be M.

Thus, m, = p,a + p,b for some p, , p, € R, and since m, ¢ T, we can assume
that ann(p,a) = 0. But, this implies that Rm, N Rb = 0; for, if omy = 7b,
then op,a = —apyb + 7b, and thus o = 0. Moreover, p, is a unit; otherwise,
we would have soc(Rp) C ann(p,) C ann(p,a). Hence a = pyim, — pi'psb and
we conclude that M = Rm, ® Rb.

Now, denote by e the canonic epimorphism e: M — Rm,. Clearly,
mge = my, . Let n: R — M be given by 1n = (0, 1) + D.

2 =(0,2)+ D = (y0)+ D =ym.
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Furthermore, let ¢ R — Rm, be given by 1£ =m,. Obviously, ¢ is an
isomorphism. Consequently, the monomorphism

R M- Rmy <5 R

maps z into y, and since it has to be induced by right multiplication, we get
that y = zp for a suitable p € R. However, this is impossible: p € W implies
v € 2W, while p ¢ Wimplies 2 = p~ € yR, a contradiction in both instances,
Therefore, M is indecomposable.

Finally, let (31 ;1%) be an endomorphism of z(R @ R) mapping D into D.
Then,

(0, x) (au a”) = (xag) , Xay) = («¥, —kz +Ax)  for suitable x, AeR.
X1 Xog

Assuming that oy, ¢ W, we get & = xyaz and thus ¢ W. Therefore,
2 = k% + y(—oglay,) € Rt + yR, contrary to our assumption. The

proof of our lemma is completed.

ConsTrucTION VI. Let R be a left artinian local ring. Denote by S the
intersection of the left and the right socles of R. Let x and y be two elements of S
such that Rx and Ry are not two-sided ideals and S is not equal to Rx + yR.
Then there exists a finitely generated faithful left R-module which is not balanced.

Proof. If the finitely generated faithful R-modules R/Rx and R'/Ry are
not isomorphic, then every homomorphism between them maps one into the
radical of the other and Construction II applies. Hence, we assume that
R/Rx ~ R/Ry.

Take an element z € S\(Rx + yR) and consider the finitely generated
faithful R-module M = (R @ R)/D of Lemma 4.1. Since R is left artinian, 4/

is an indecomposable module of finite length. . _
Also, observe that N = R/Rx is a faithful R-module isomorphic both to

X = (Ry ® R)/D and to M/X. The first assertion follows fr_om t]?e f'fzct that
the map R - X defined by sending 1 into (0, 1) 4 D e X 1s surjective anfi
has Rx as its kernel, the other is a consequence of our hypothesis
RiRx ~ R/Ry : M|X =~ (R @ R)/(Ry ® R) = R/Ry =~ N. As a result, we
can apply Construction V and complete the proof.

Construction VI Let R be a left artinian local ring. Denote by S the
intersection of the left and the right socles of R. Let x be a nonzero element of S
such that Rx is a two-sided ideal. Furthermore, let v and % be two elements of R

such that
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and
2¢ Rx + yR, Wz 4 W C Rx.
Then there exists a fimitely generated faithful left R-module which is not balanced.

Proof.  Consider the finitely generated faithful R-module M = (R @ R)/D
of Lemma 4.1. Let (&1 312) represent an endomorphism of the left R-module
R @ R mapping D into D and let the induced endomorphism ¢ of M be
nilpotent; let, p» = 0. Under this hypothesis, we can show that, in addition to
ay; € W (Lemma 4.1), also ay; , 2y, and ay, belong to W.

First,

o Qg
(5,0) (0 %1) = (voqy , xaqy)
Aoy g
and, since Rx is a two-sided ideal,

(xoyq 5 Xagp) + D = (%ayy, 0) + D.

By induction, one gets immediately that

@0 (2 %) 4 D = (vafy, 0) + D.

gy gy

Thus, (¥af;, 0) € D, ie., xaf; = «y for a suitable « € R. Therefore, oy, € W;
for, otherwise, k ¢ Wand y = k" Yxa], € Rx, a contradiction.

Now, we show that «,, € W. First, we get, for arbitrary y; € R,

8.2
(,Lth, ya§2) ( H
Xy

8./
L) = (s o, oy + 0k

= (yoadtyy , g, + yaiy?)
= (11X, Py, -+ yoda)  for a suitable pyy, €R,

because «;; € W and oy, € W. Hence,
Ey (%11 %2 k+1
(e, Yogs) ( ) + D = (P«k+1x, Yags ) + D.
QXg)  Oigy
Therefore, by induction,

(0, ») (au am) + D = (pnx, yogs) + D for some pu, € R.
) B

We deduce that

(un¥, yog) = (ky, —kz + Ax)  for suitable «, A€ R.

Necessarily, x € W and thus ya?, € Wz + Rx C Ry; therefore, oge € W.
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Finally, calculate

oy O
1 %
) = (yay — Bolyy |, Yolyp — Jtgs)

(.y’ —-2)(

Qg (g

= (ky, —xz + Ax)  for suitable «, e R,

Since oy € W and ay € W, yoy, — 2oy €EyW 4 W C Rx. Again, this
tmplies that x € W, and thus

Yo € 2W + Wz + Rx C Ryx;

therefore oy, € W, as required.
Now, consider the module M over its centralizer € ; let us remark that

is a local ring with a nil radical #". Again, we can easily show that (x,0)+ D
belongs to soc(My). For, if ¢ € #", then ¢” = 0 and taking

(“"“ “‘12) € endg(R @ R)

Mgy Cgo
which induces ¢, we have

(5,0) (722} = (v, 3o05) = (0, 0)

%gy  Xog

here, (x, 0) + D is obviously a nonzero element of M. Furthermore, since all
@5 € W9

X=(WOW)DCMW¥.
This enables us to define the following element ¥ of the double centralizer

of M:
Y = My -S> Mo/ X E5 soco(Myg) —> My

with the canonic epimorphism ¢, the embedding : and ¥’ such that

¥'[(0, 1) + X] = (x, 0) -+ D. This morphism cannot be induced by ring

multiplication. For, if

P[(0, 1) + D] = p[(0, 1) + D] for a suitable p € R,

then
(x’0)+ D = (O’P) + D;

hence, (v, —p) € D. Since Rx N Ry = 0, this implies readily that x must be
equal to 0, a contradiction. The proof of Construction VII is completed.
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5. STRUCTURE OF LEFT-BALANCED Locar RINGs

We start with the following lemma, which extends the investigations of the
left QOF — 1 rings in Section 3. This lemma will be used to establish a structural
characterization of the left balanced local rings in the present section, as well
as to exclude the case (ii1) of Lemma 3.1 for rings which are finitely generated
over their centers in the next section.

LEMMA 5.1. Let R be a left artinian left OF — | local ring. Then, for any
two nonzero elements x and y which belong to the intersection S of the left and the
right socles, we have the equality

Rx+ yR = §.

Proof. In view of Lemma 3.1, S is a minimal two-sided ideal and
¢1(S) <X 2. Let x and y be nonzero elements of S. If &(S) = 1, then Rx = S.
It 61(S) =2, then Rx is not a two-sided ideal, and thus the equality
Rx + yR = § follows immediately from Construction VI.

Now, let R be a local ring and consider the quotient rings R/W? and R/W®.
First, W/W?is both the left and the right socle of R/W?2. Therefore, if R/W?is
left balanced, it turns out by Lemma 3.1 that W/|W? is the unique minimal
two-sided ideal of R/W2 and that &y(W/W?) < 2. If &(W/W?) equals O or 1,
then R/W? is left uniserial and, as a consequence, R itself is left uniserial.
Hence, we may restrict our attention to the case when &(W/W?) = 2. It is
shown in our paper [5] that this case can actually happen.

Now, let us strengthen our assumption and consider the case when R/W? is
left balanced. Again, according to Lemma 3.3, W2/ W3 is both the left and the
right socle of R/W? and &)(W?/W?3) < 2. We are going to show that, in fact,
o(W2/W3) equals either 0 or 1.

LemMma 5.2. Let R be a local ring such that R/W? is left balanced. Then
a(WHWe) < 1.

Proof. Obviously, we may assume that W3 = 0. Applying Lemma 5.1
to the ring R/W? we can see that, for any element we W\W?, we have
the equality

Rw + wR W2 =W,

It has been proved in Lemma 3.3 that W2 is both the left and the right socle
of R. Thus, in particular, both Rw and R intersect 2 nontrivially., Taking
nonzero elements xe Rw N W2 and ye Rwn W? and making use of
Lemma 5.1, we deduce that

Rx + yR = W2
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Therefore, Rw + wR 2D W? and we conclude that
Rw+uwR =W forall we W\W2

Now, if we assume that &(#2) = 2, then also a(W/W?) = 2, and there-
fore &3(W) = 4 and &(R) = 5. Let w be an element of R with O(Rw) = 2.
Hence, anmi(e) has length 3, and therefore is not contained in W2 Let us
take an element v € W\ W2 with vw = 0. Thus we have the equalities

Ry +vR=W and Rw+wR=1W,

and consequently
Ww = (Ry 4 vR)w = vRw = v(Rw 4 wR) = vW

implying that Ww is a two-sided ideal. Therefore, since Wew C W2 and since
W?is a minimal two-sided ideal, either Wa = 0 or Wa = W?2. But Wa +# 0
because d[anny(w)] = 3 and Ww # W? because Rw ) W2 This shows that
O(Rw) 5 2 foranywe W.

Next, we show that the faithful left R/W?-module M, = W has no
monogenic quotient of length 2. For, otherwise the kernel would be of length 2,
and since there is no monogenic submodule of length 2, it would equal to I¥%;
however, this is impossible because W/W? is not monogenic.

Thus, denoting by M, a monogenic left R-module of length 2, we can
check easily that M, and M, are faithful R/W2-modules which satisfy the
assumptions of Construction II. This contradiction establishes di(W?) < 1,

as desired.
Now, we are ready to give

Proof of Theorem B. Assume that R is not left uniserial. Then, in view of
Lemma 3.3, &(W/IW?) = 2. If W? =0, R is of the type described in (ii);
this follows immediately from Lemma 5.1. If W2 £ (), we get, according to
Lemma 5.2, that &(W?/W?) = 1. Furthermore, by Lemma 3.3, W2W? is
the left socle of R/W®. From here, we deduce easily that W? = 0. Indeed,
taking w e W\W? and assuming W3 - 0, necessarily (Rw) > 3 and Rw
has a uniserial quotient of length 3. Now, Rw =~ R/ann(w); however, R h:%s
obviously no uniserial quatient of length 3. The proof of Theorem B is

completed.
Remark. It is easy to see that in the case (iii) of Theorem B, R cannot
be right uniserial. For, in such a case, we would have

2i(soc gR) = dx(soc Rg) = 1,
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and R would be a quasi-Frobenius ring. But this is impossible, because
Ai(R) = 4 while &(R) would equal 3.
An immediate consequence of Theorem A and Theorem B is the following

CoroLLARY 5.3. Let R be a left-balanced local ring. Then R is of the
type (i) or (11) or (iil) of Theorem B. Thus a left-balanced ring is a finite direct
sum of full matrix rings over rings of the types (i) or (ii) or (iii) of Theorem B.

If R is both left and right balanced, we get the following result.

CoroLLARY 5.4. Let R be a balanced local ring with the radical W. Then
either

(1) Ris uniserial; or
(i) W2=0, (W) < 2, &(W) < 2 and, for any two nonzero elements
,yof W,Rx + yR = W, or

(i) R #s a quasi-Frobenius ring of length 4, and for any two elements
x,yof W\W?% Rx + yR = W.

6. RinGgs FINITELY GENERATED OVER THEIR CENTERS

In this final section, we are going to show that Jans’ conjecture is true for
rings which are finitely generated over their centers. We start with a result on
OF — 1 rings. Let us recall that, by Lemma 3.1, a perfect left OF — 1 local
ring has a unique two-sided ideal which is either the left socle or the right
socle of it.

LeEMMA 6.1. Let R be a perfect left QF — | local ring. Assume that R l:S
finitely generated over its center. Then the unique minimal two-sided ideal is
both a minimal left ideal and a minimal right ideal.

Proof. Let I be the unique minimal two-sided ideal. Thus, / can be
considered as an R — R-bimodule. Furthermore, since I C soc(zR) N s0¢(Rpg),
we have W71 == 0 = IW; it turns out that [ is, in fact, an R/W — R/W-
bimodule.

Now, let Z be the center of R. Hence, (Z + W)/W is contained in the center
of the division ring R/W, and we can consider the quotient field F of
(Z -+ W)/W as a subring of R/W. It is immediate from the R/W — R/W-
bimodule structure of I that the equality

KX == XK

holds for all ke Fand all x e I.
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We have assumed that R is finitely generated as a Z-module. Hence, R/ W
is finitely generated as a (7 - W)/W-module and is therefore a finite-
dimensional vector space over F. Let n be the dimension dim(zR/W). If
dim(g 41} = m, then dim(zI) = mn and, obviously, this does not depend
on whether we consider the left or the right action of F on I. Consequently,

dim(g 1) = dim(Zy ).

Now, in view of Lemma 3.1, we know that &(I) = dim(g 4I) equals |
or 2 and thus to prove our lemma, it is sufficient to show that the case

dim(g/pf) = 2 cannot occur. Supposing the contrary and applying
Lemma 5.1, we know that

Rue+wR =1 forall w=#0inl

Therefore,
2n = dim; ] = dimg(Rw + «R)
= dimy Rw 4 dimy wR — dimg(Rz N wR)
= n + n — dimz(Rw N wR).

Since, obviously, dimg(Rw N wR) > 1, we get a contradiction and therefore
dim(g 1) = 1, as required.
As a result of the previous lemma, we are ready to present

Proof of Theorem C. 1f Ris uniserial, then it is left balanced. On the other
hand, assume that R/W? is left balanced. Then, R/W? is a finite direct sum
of full matrix rings over left-balanced local rings R; (cf. Fuller [6]). Of
course, R; are finitely generated over their centers. Let W, be the radical of

R; . Evidently, W2 = 0. Thus, W, is the left and the right socle of R,.

By Lemma 3.1 and Lemma 6.1, W, is both a minimal left and a minimal

C R
right ideal of R;, and therefore R, is uniserial. Consequently, R/W is
uniserial. And, by a simple argument due to Nakayama [9], R is necessarily

uniserial, as well.

Remark 1. Let us point out that on the basis of Theorem C the following
conditions can easilv be shown to be equivalent for a ring R finitelv generated

over its center:
() R s unisersal,
(ii) R is left balanced,
(ii)* R is right balanced,
(i)  R/W? is left balanced,
(ii)* R/W2is right balanced.

f
'
!
}
4
:
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Note that this remark applies, in particular, to finite-dimensional algebras
over arbitrary fields and to finite rings.

Remark 2. The fact that R/W2 is left balanced does not imply in general
that the ring R itself is left balanced. An example to that effect is given in [5].

In order to prove Theorem D, we need a result asserting that, for left
artinian rings, the case (ii) of Lemma 3.1 can take place only if the left and
the right socles coincide.

LEMMA 6.2. Let R be a left artinian left QF — | local ring. Then the left
socle of R is the unique mimimal two-sided ideal.

Proof. According to Lemma 3.1, we can assume that the right socle S¢
of R is properly contained in the left socle .S} of R and that ¢,(S;) = 1. We
want to show that the intersection of the left and the right socles of R[Sy is
contained in §/S;. Indeed, choose first a nonzero element x € Sy (thus,
Rx = S; is a two-sided ideal) and an element y € S;\Sy such that y + Sr
belongs to the right socle of $1/S; (thus, y ¢ Rx, Wy = 0 and yW C Rx).
Then, if = is an arbitrary element such that 2 4+ Sy belongs both to the left
and the right socles of R/S; (that is, if Wz -- z2W C Rx), necessarily
z€ Rx + yR C S) in view of Construction VII.

Now, if W" £ 0 and W1 = (, obviously Sy = W™"; this follows from
the fact that Sy is the unique minimal two-sided ideal. Moreover, W~ must
be contained in Sy, because Wn-1/W" is contained in the intersection of the
left and the right socles of R/W™ which, in turn, is contained in Si/Sr, a8
shown above. Hence,

Wr =W -WrlCW-5 =0,

contradicting our hypothesis.
Now, it is easy to give

Proof of Theorem D. Applying Lemma 6.2 both to the left and the right
of the ring R, we get immediately that soc(zR) = I = soc(Ry) is the unique
minimal two-sided ideal. And, by Lemma 6.1, it follows that &y(I) = &(I) = 1.
This completes the proof of Theorem D.

Remark 3. 1t should be mentioned that the conclusion of Theorem D
can be immediately extended to finite direct sums of full matrix rings over
artinian local rings. For, such a ring is QF — 1 or quasi-Frobenius if and only
if the local rings involved are QF — 1 or quasi-Frobenius, respectively.

Remark 4. The assumption on R to be finitely generated over its center is
necessary both in Theorem C and Theorem D. For, it has been shown in [5]
that there exists a class of artinian local rings which are balanced but not
quasi-Frobenius.
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After completion of this paper, the authors have learnt that Camillo and
Fuller have proved independently Theorems C and D for finite-dimensional

algebras.

Added in Proof (June, 1972). A full characterization of balanced rings 1s given
in “Lecture Notes in Mathematics,” p. 246, Springer-Verlag, New York, 1972.
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