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The aim of these notes is to report on recent investigations in the

structure of balanced rings. Here, a ring R is called left balanced, if every

left R-module is balanced, i.e. has the double centralizer property *). The study

of balanced modules can be traced back to C. J. NESBITT and R. M, THRALL: in [23]

they showed that uniserial rings in the semse of T. NAKAYAMA [22] are left and

right balanced. Later, R. M. THRALL [27] introduced the class of QF-l rings

generalizing quasi-Frobenius rings as those rings R over which all finitely

generated faithful R-modules are balanced. Some progress in the study of balanced

and QF-1 rings was made in the papers [20], {21] and [24] of K. MORITA and

B. TACHIKAWA. In particular, they established

in (21] that the property to
be balanced is Morita equivalent.

A further progress in the theory of balanced rings has been done quite

recently, Considering the question whether every balanced ring is uniserial,

*) The term "balanced ring" has been introduced by V. P. CAMILLO in (31.

ab
Ve

Cu

5

1



75

D. R. FLOYD [14) proved this statement for finite dimensional commutative algebras.
Later, 5. E. DICKSON and K. R. FULLER [8] extended the result to artinian
commutative rings and J. P. JANS [18] proved it for finite dimensional algebras
over algebraically closed fields *) . 1In [18], J. P. JANS formally conjectured
that the result holds for every artinian ring. 1In his paper [3], V. P. CAMILLO
showed that under certain conditions (if R is commutative or left noetherian)
& left balanced ring is left artinian, and that, in general, a left balanced ring
is always semiperfect and iteradical is nil. K. R. FULLER proved in [16] that a
semiprimary ring is left balanced if and only if it is a finite direct sum of full
matrix rings over local left balanced rings.

These results were extended in [9]. 1In addition to the fact that every
left balanced ring is left artinian, some necessary conditions on the structure
of local left balanced rings were also established. Making use of these structural
conditions, every left balanced ring which is finitely generated over its centre
was shown to be uniserial. Independently, V. P. CAMILLO and K. R. FULLER [4]
obtained this result for algebras. 1In [10], on the other hand, JANS' conjecture
was shown to be false: Local rings R with the radical W such that Q = R/W
is commutative, w2 =0 and dime % dhan = 2 are balanced *¥*), and essentially
these are the only non-uniserial balanced rings with a commutative radical
quotient [11]). This is a special case of the complete characterization of left

balanced rings in terms of exceptional rings given in [12]. One of the immediate

*)  The crucial result that a local algebra over an algebraically closed field
with zero radical square is uniserial was previously proved by D. R. FLOYD
f14].

**) In a recent letter, Professor H. Tachikawa informs us that he has known of

counterexamples to the conjecture, as well.
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consequences is the fact that a ring is left balanced if and only if it is right
balanced. Moreover, 8 ring is balanced if and only if it is left artinian and

every finitely generated module is balanced. Thus, an artinian ring R {is balanced
if and only if every factor ring of R is a QF-1 ring. The paper [12] and [13]

include also a characterization of balanced rings in terms of their module categories.

These notes are virtually self-contained. Besides the basic properties
of Morita equivalent rings, only a theorem of N. JACOBSON conceraning division

rings which are finitely generated over their centres will be used at one instance

(Theorem 11I.4.4). Section 1.3 provides, in fact, a proof that quasi-Frobenius

rings are QF-1 rings. However, since there was no need to introduce these classes

of rings (see e.g. [7]), we restrict ourselves to the class of uniserial rings.

But we note that certain results of Chapters II and T11 can be generalized to

QF-1 rings (cf. [4] and [9]). Let us also note that the duality theory of

H. TACHIKAWA [25] (closely related with Lemma 1.2.5) could be used to prove

Proposition TIT.6.l. This has beea done in [13}; here, we prefer to give an

elementary proof.

Some of the proois given in the present notes have not appeared in the
literature. Let us mention that our proof of Morita equivalence of the property

to be balanced, which follows the idea of the original proof in [21] yields, in

fact, a wore general statement (Proposition II1.1.3). Also, the concept of
"bi-T-nilpotency" of V. P. CAMILLO [3] used previously in [9] to prove the fact that

a balanced ring is artinian has been avoided; as a result, the proof has become
simpler.




1. PRELIMINARIES

I.1. NOTATION AND TERMINOLOGY

Throughout these notes, R denotes an (associative) ring with unity,
R* its opposite. By an R-module we always understand a unital R-module; the
symbols RH or Mk will be used to underline the fact that M 1is & left or a
right R-module, respectively. We usually consider left R-modules, and, in this
case, speak simply about an R-module. It should be noted that homomorphisms always
act from the opposite side as the operators; in particular, every (left) R-module
M defines a right (-module, where ( 1is the endomorphism ring of the R-module M .
The ring (¢ or, more precisely ((M) is called the centraliszer of M . The
double centralizer (M) (or simply D ) is the endomorphism ring of MC . Again,
D operates from the opposite side as C , that is from the left. There is a
canonic ring homomorphism from R into ¥ ; if this homomorphism is sur jective, then
M is called palanced. The ring R is called left finitely balanced, if every
finitely generated left R-module is balanced. If every left R-module is balanced,
then R is called left balanced.

For an element m of an R-module M , the annthilator (r € R | rm = 0)
of m will be denoted by Ann(m) . If the R-module M has a composition series,
denote by OM its length. The radical RadM of M is the intersection of all

maximal submodules of M ; it is the set of all non-generators of M . Here, an
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clement m € M is called a non-generator, 1f it can be ommitted from any
generating set of M . The radical of the ring R is by definition Rad RR ; 1t

will be denoted consistently by W . For the R-module M , we always have the

inclusion WM C RadM ; moreover, if R/W 1is artinian, then WM = RadM . If

RadM is the only (proper) maximal submodule of M , then M will be called loeal .

Thus, all local modules are monogenic. And, if RR (and, for the matter RR y is

local, then R is said to be a local ring. Note that the ring R is local if and

only if the non-units of R form an ideal. If the R-module M has minimal

submodules, the soele SocM is defined as their union. We always have

SocM € (m €M | Wm =0} ; moreover, if R/W is artinian, then SocM =

={meM ] Wm = 0} . Considering R as a left R-module, we get the concept of

the left soele Soc RR of R . A module is said to be ynigeriql., if all its

submodules form a chain with respect to inclusion. Hence, a uniserial module of

finite length is local. A local ring R 1is called uniserial, if both RR and

Ry are uniserial modules of finite length. An arbitrary ring is called uniserial

[22]. if it is a finite direct sum of full matrix rings over local uniserial rings-

It is not difficult to see that a lefr artinian ring R 1is uniserial if and only

if R/’W2 is uniserial.

The R-module M is called indecomposable, if M cannot be written as

the direct sum of two proper submodules. If M is indecomposable and of finite
length, then the centralizer

is a local ring. Moreover, there exists a

composition series

= C C:,,, =
0 MO Ml CMn M

such that MW< M, ., forall i, where § is the radical of ¢ (see [2],

Ex. 3, pp. 26-27). Thus, ¢ =0

and, furthermore,

c
M __Socl“b and RadMC Eanl .
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Let Ml and M2 be two R-modules. If ¢ : Ml _+M2 is a homomorphism,
we denote by Ker¢ and Im® the kernel and the image of ¢ , respectively. The
module Ml is called a generator for M2 > 1f the images of all homomorphisms
M, —aMz generate M, . Dually, M, 1is called a cogenerator for M, , if the
intersection of kernels of all homomorphisms M2 —aMl is zero. Finally, M is
4 generator or a cogenerator for a class of modules, if it is a generator or a
cogenerator for every module of this class.

The category of all (left) R-modules will be denoted by ModR . Two
rings R and R' are called Morita equivalent, if ModR and ModR' are
equivalent categories. The rings R and R' are Morita equivalent if and only
if there exists a right R-module PR which is finitely generated, projective and
4 generator for all right R-modules such that R' is isomorphic to the centralizer
of P ([19] or [1]). 1In particular, a ring R 1is Morita equivalent to every

R

full matrix ring over R .

I1.2. GENERATORS AND COGENERATORS

Results of this section belong in part to the folklore of the sub ject.
They are presented here in such a way as to be easily applicable in the next

chapters.

LEMMA 1.2.1. [g¢t My and M, be R-modules such that M, i8 either
a generator or a cogenerator for M, . If M, 18 balanced, then M, ® M, ig

balanced, as well.
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Proof. The elements of the centralizer of My ‘BH2 can be written as

11 9

matrices \CP21 %,

) » where ¢.j ! M, —+Hj with 1 <1, § €2 are R-homomorphisms.
i i

Let ¥ be in the double centralizer of Ml @Mz . If x¢ Ml and ¢(x, 0) =

= (x', y') , then

\ 10 10
Ve 0) = 40(x, 0)i o1 = [¥(x, y)]

0o/~ (x', Y')\O 0>. (x', 0) ,

and thus y' =0 .

Similarly, if y ¢ M, and ¥(0, y) = (x", y") , then «x" = 0. Itis

easy to see that *1 : M1 -—>M1 defined by (tlx, 0) = ¥(x, 0) belongs to the

double centralizer of M1 + Therefore, there is P £€R with

¥(x, 0) = p(x, 0) for all x ¢ Ml

Assume now that Ml generates Mz + Then, taking an element of the

form (0, xtplz) » where x € Ml and ®,, € Hom (Ml . M.Z) » we get the equality

09 0o
MO0 =46 00y PN = e, 01 0 ) e 0xe )

Since the elements of the form (x,

0) and of the form (0, x(plz) with x ¢ Ml
and % € Hom (Ml , M.z) generate Ml @M2 additively, it follows that ¥ is

induced by multiplication by p .

If we assume that Ml cogenerates M

) consider 1 € Hom (M2 » M)
Q0

and apply O) to ¥(0, y) -~ pgo, y)

@, with y € M, | we get

0 o0

/ A 0 0 0
[¥(0, y)-p(0, y)) ) - 0, y)i - ’ -
\cpzl 0, = ¥I( y)\q,z]. 0)1 p(0, Y)\tpzl 0) =

VOO 0-0tym,, 0y = g |



81

Therefore, ¢(0, y) = p(0, y) . Again, since the elements (x, 0) and (0, y)
with x € HI and vy € H.2 generate M, @Hz additively, ve conclude that ¥ is

induced by multiplication by 0 . The proof is completed.

LEMMA 1.2.2. [et Hi and H.z be R-modules such that Hl 18 both a

generator and a cogenerator for M, . If M, @M, is balanced, then M 18
balanced, as well.

Proof. lLet '1 be an element of the double centralizer of Hl . We are

. v,
golng to construct § in the double centralizer of Hz , such that y Dy, =

2 1772 0 '2

belongs to the double centralizer of Hl @Mz .

Si
nce Hl

Txoy, o wi 1
Yy v th X 4 Hl and Yi € Hom(Ml ’ Hz) . Define tz as follows

is a generator for M2 » every element of M2 has the form

Here , *z is well defined. For, if inYi = 0 and By 0 My oM then the

fact that YicPZl € C(Ml) implies
[, (Ex, Y19, = ZOHx ) (Y,9))) = T¥ (x Y, 9) = O

And, since M, cogenerates M, it follows that tz(fxi Yi) =0 .

Furthermore., ¥, belongs to the double centralizer of MZ . This is an

2

immediate consequence of the relation
”’2(5"1 Y I®y, = DO, %, )y, @y = D (x; Y, 9y5) = Y, [Zx ¥)%,]

where 9y, € Hom (M2 , Mz) . Also, for x € M, and for Exi Yi € M, with

X, € Ml and Yi € Hom (Ml . Mz) , we have
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(¥ 29, = ¥,(x0,,) and (2%, Yoy = 4 (Ex v, 9,))

with arbitrary P € Hom(Ml, MZ) and ¢51 € Hom(H2 ,)ﬁ) - This shows that

*1 &) WZ belongs to the double centralizer of M @)Hz .+ Since Hl @>M2 is

balanced, *1 D *2 is induced by multiplication by an element p ¢ R . Therefore,

Wl is induced by multiplication by p , and Ml is balanced, as required.

LEMMA 1.2.3. Eveny generator of gM ie balanced.

Proof. If M is a generator of RM » then RR is an epimorphic image

of the direct sum M(n) of n copies of M . Since RR is projective, we can

find a complement g such that RR<® K == M(n) .
u(®

Applying Lemma 1.2.1, we get that

is balanced; for, RR is balanced and RR is a generator for K . Now,

is a direct sum of copies of M , and we can therefore apply Lemma 1.2.2 to

conclude that M ig balanced, as well.

Under certain assumptions, a similar Statement can be proved for

Cogenerators. 1In what follows, we shall need the following result -

LEMMA 1.2.4. Bvery cogenepgtop of M which {g finitely generated
over its centralizer ig balanced.

Proof. Let M be g cogenerator of RM * Then, for any element ¥ of

the double centralizer D of M and any x g M

» we have ¥x ¢ Ry . For, assuming
¥x £ Rx , we can find an R-homomorphisn @®: MRx >M with (Vx + Rx)® # 0 . And,

denoting by € the canonic epimorphism ¢ ‘M S M/Rx , and observing that e

belongs to the centralizer C of M s we get
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0= #[x(e®)) = (4x)(ep) # 0 ,

a contradiction.

Now let «x be elements of M which generate M as a (-Module.

1* e xn
If we form the direct sum M(n) of n copies of M , then it is easy to see that

v(n) (n)

every element § ¢ D defines an element of the double centralizer of M

t(n)(ml, NN mn) = (vml, e tmn) for m, €M.

But M(n) is again a cogenerator of _M , and we can apply the first result of our

R

proof for M(n) and the element (xl’ vy xn) € H(n) . In this way, we get
n
(txl, ey ‘xn) = ‘( )(xl’ e, xn) = p(xl, iy xn) ™ (pxl, cees pxn) s

for some p ¢ R . But, since the element x, sgenerate the C-module M% » the

relations txi = Px, yield that ¥ is induced by multiplication.

i

The above result can be applied, in particular, for an injective

Cogenerator of RM y when the ring R 1is left artinian.

LEMMA 1.2.5. Let R be a left artinian ring. Then any injective

Cogenergtop of RM 18 balaneced.

Proof. Let M be an injective cogenerator of s and (¢ its

téntralizer. Ffor any left ideal L of R , denote by r(L) the following
C‘Submodule of M
r(L) = (meM | Lm=0} .

1 '
f1 C L, then we have a C -homomorphism
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o : r{L") HHmR(‘L/L' , HC) s

where, for m € r(L') , the R-homomorphism mx maps A+ L' ¢ L/L' into Ja .

The kernel of this morphism is just r(L) , and therefore r(L')/r(L) can be

considered as a C-submodule of HomR(L/L', HC) .

If S 1is a simple R-module, then HomR(S s MC) is a simple C-module.
For, HomR(S ’ MC) # 0 in view of the fact that M is a cogenerator and, given
any two elements Y and Y' in HomR(S s MC) with Y # 0 , we see easily that
vy is a mwonomorphism and that there is an R-endomorphism ¢ of M with

¥p = Y' ; the latter conclusion follows from the injectivity of M .

Since RR is artinian, we have a composition series

= [ c a4 C =
0 Lo Ll Ln RR

of left ideals L. of R . Since L,/L, ;| is & simple R-module,

Hom o (L. /L, _ 1 MC) is a simple C-module, and thus the C-submodule r(L, _ 1)/1’(Li)

of Hom R(Li,Li P MC) is either trivial or simple. Hence

Mo = r@) 2r) 2... 2 (L) =10

defines a composition series of the C-module M In particular, HC is finitely

generated and Lemma 1.2.4 yields the result.

1.3. UNISERIAL RINGS ARE BALANCED

The purpose of this section is to offer a brief proof of the statement
in the title.
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LEMMA I.3.1. If R {8 g local witserial ring, then R 18 injective.

Proof. Let L be a left ideal of R . Consider an R-homomorphism

:L - R . If L=Rx, then O(Rxp) < O(Rx) , and thus xo belongs to Rx = xR ;

R

consequently, we can find r € R such that x¢ = xr . Then, the right multiplica-

tion by r gives a homomorphism RR —»RR which extends ¢ .

LEMMA 1.3.2. Any direct sum of left balanced rings is left balanced.

n
Proof- Assume R = B Ri » where all Ri's are left balanced rings.
i=1
Every R-module M has a unique decomposition as a direct sum of submodules M,
where Mi can be considered as an Ri-module- The centralizer C(M) of M is the

direct sum of the rings C(Hi) , and because R, map surjectively onto the double

i
centralizers D(Mi) » R maps surjectively onto D(M) (which is the direct sum

of the D(Mi)'s), as well.

PROPOSITION 1.3.3. (C. J. NESBITT AND R. M. THRALL [2]) Every uniserial

ring is both left and right balanced.

Proof. Because of Lemma 1.3.2, it is sufficient to consider the case,
Where R is 4 full matrix ring over a local uniserial ring R . If L is a
Principal indecomposable left ideal of R, then L 1is the image of RR under
Category isomorphism from ModR to Mod R . Therefore, Lemma I.3.1 implies that
b is an injective R-module.
Assume that M is a faithful §-modu1e. Since L 1is a generator and 4

uni . . :
Serial module, there exists a monomorphism L —M ; furthermore, since L 1s

ini :
nJeCtiVe, we have M=>=L ®K for some B-modu:le K. Now, L ® K is also a

14
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generator, and thus Lemma 1.2.3 yields that M 1is balanced.

Finally, an arbitrary R-module can be considered as a module over some

factor ring of R , which again is a full matrix ring over a local uniserial ring.

Hence, R 1is left balanced.

R And, similarly R is right balanced. The proof is

completed.



1. LOCAL RINGS

I1.1. A NECESSARY LENGTH CONDITION

In this section, we shall get the first information on the structure

of the local left balanced rings.

PROPOSITION 1I.1.1. Lgt R be a local left finitely balanced ring

with the radical W . Then, for each natural T

n+1

n
aﬂw/w ) €2 .

Proof . Obviously, without loss of generality, we can suppose that

n+ 1

W =0 and W" # 0 . Observe that (w“) is then completely reducible.

R
First, assume that Wn contains a minimal left ideal U which is not

28 two-sided ideal. Then
T={7|T€R and UT E U}

is a proper subring of R . It is easy to see that T 1is again a local ring
with the radical W . Therefore, Q = R/W can be viewed as a right vector space

over T/W and we have
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dimQ(T/W) >2

let 1+W and r+ W be linearly independent elements of Q(T/W)

Now, consider the monogenic left R-module X = R/U ; X is obviously

faithful. For every «x €R ,write x=x + U € X . The elements of the centra-

lizer ¢ of X can be lifted to endomorphisms of RR {that is to say,

to right multiplications by elements of R ) and, in this way, we get just those

elements T ¢ R which satisfy Ut CU . Thus, the ring C 1is isomorphic to

T/U and its radical W corresponds to W/U in this isomorphism. Consequently

the C-module Q= R/W=3x/ (W/U) has the same structure as Q(T/W) ; let

€ : XC —+QC be the canonic epimorphism. Also, observe that, given an arbitrary

element 2 ¢ Wt

oz belongs to Soc (XC) ; denote by ¢ the inclusion of

Soc (XC) into XC

Now, consider a ( -endomorphism

€ V' L
*:XC —-)QC —-)SOC(XC) -»XC

of XC such that

(L+WY¥'=0 and (r+wy' =72

Since X ig balanced, ¢ is induced by the ring multiplication, say by an

element o €R :

VX)) = PX  for all ;EX .

Then, o+ 1=7 implies P €U and p;=; implies z €Epr+vcC
U+ ur . Hence,

W CU 4+ gy ,

as required.
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In order to complete the proof of Proposition II.l.l, we are going to
show that if all left ideals of R contained in W' are two-sided, then
n
aR(W )= 1 . For, assume the contrary and let Ru and Rv be non-zero two-sided

ideals of R such that

RuC W' , RvCW and RuNRv=0.
Consider the finitely generated faithful left R-module

Y = ((ROR)/D with D =R(u V) .

Every endomorphism of Y can be lifted to an endomorphism of R(R @®R) and,

In this way, we get just those endomorphisms of the left R-module R(R @ R)
o

which map D into D . Let 11 "12 . the matrix representation of such
%21 %22

an endomorphism of R(R B R) ; here a; denote endomorphisms of RR , that is

]

to say, right multiplications by elements of R . For (u, v) €D , we get

[0 ¢ [+
w, v B2

+ vor uy, . + vo,,) = (A, hv)
' 22
0121 022 1 12

11 2

for a suitable A € R . This yields that both &, and o, belong to W .

For, if @, £ W , then
- )a'l € Rv
u= (Av - v, ),
and, similarly, if o, £W , then
_ -1 Ry
v = (}\u - UUll)o’z]. € !

& contradiction in either case.
n . s
Now, take a non-zero element 2z ¢ W and define an additive

homomorph i s ¥ :R®R R DR by
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i(rl, r2) = (zrl, 0) for all (rl, r2) ERDR .

Evidently, ¥ is a non-zero morphism, ¥(D) = 0 and

11 %12

[¥(r,, )]
1727 ey, 0,

= (zrlall, zrlalz) = (zrlall’ 0) =

Nt Rty
2oy dyy -

= (zrla'l1 + zr2021, 0) = #—(rl, r

because both zrlof12 and zrzaz1 belong to w“w =0 . Thus, ¥ induces an

element ¢* of the double centralizer of y Since Y 1is balanced, ¥* is
induced by an element ¢ € R ; moreover, since ¥* is non-zero, g # 0 .

However, this results in an immediate contradiction; for,

¥*[(0, 1) + D] = p = o((0, 1) + p]

implies that (0, 0) €D, and thus g=0.

The proof of Proposition 11.1.1 is completed.

11.2. RINGS WITH W = g
=2 RINGS Wi w" =79

Let R be a local ring with the radical y

the skew field R/W by Q , and considering Y a4 al

such that W2 = 0 . Denote

eft or right vector space
Q * TFespectively,

that every such left balanceq ring is efither

uniserial or satisfies the dimension
relation

In thig Section, we are going to show

dim y i -
Q X dlmWQ 2
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together with some conditions binding the elements of W ; these are formulated
in Propositions I11.2.3 and II.2.4. In the next section, the latter rings will be

termed exceptional.

LEMMA 11.2.1. Let M be a balanced indecomposable R-module of finite
length and m an element of M such that Ann(m) = 0 . Then, denoting by C

the centralizer of M , mf = M .

Proof. Let (y be the radical of C . Since M is of finite length,
W is nilpotent and MC has a non-trivial socle Soc MC and a non-trivial
radical My . Now, M/(mC + MW) is a completely reducible right C-module;

therefore, if we show that any C-homomorphism ¢ of the form

€ [

MC - M/(mC + MW) — Socb‘b - MC

(where ¢ is the canonical epimorphism and ¢ the embedding) is trivial, then

we have

M=ml + MW

But M is balanced, so §x = px for some 0 € R and any x € M . It follows
from pm = ym =0 and Ann(m) = O , that p = 0 ; therefore ¥ is trivial.
The equality M = m¢ + My yields M= mC + (mC+ MWW= wC+ M , and by

induction,
M=mC+ MUF .

Since g is nilpotent, M = m(C , as required.
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LEMMA 11.2.2. Let R be a local left artinian ring, W its radical
and Q=RMW ;o6 W =0. po [Wilin._. 1 be linearly independent elements of
the vector space WQ + Then

- pin) . -
In—R /D with D-R(wl, -.wn),

where R(™ 18 a direct sum of n copies of g} 18 an indecomposable R-module

of finite length. If, mereover, 15 18 balanced, then

WYipcrit, 0, L 0y 4 D]

Proof . First, there is no homomorphism of In onto RR + For
assuming the converse, we g€t a homomorphism
!
2
t
n
(n) .
R ——
? RR
n
such that D is mapped into 0 . Thus Wi¥; =0 and, in view of our
i
i=1

hypothesis, ail T,

In order to shoy that 1 g indecomposable, assume that 1 = A®B . Then,
n

are finitely generated ang A/Rad A @ B/Rad B
vector space over Q

both A and B

is an n-dimensional
The well~known fact that elements of Rad A
es that

and RadB
are non-generators impli

p q
A< )Re, and g anj
i=1 j=1
for some e}
elements 8, and bj’ where p 4 q=n . Therefore, applying a length



93

argument, either A or B is a direct sum of copies of _R , and consequently

R
either A =0 or B =0 , because there is no homomorphism of In onto RR .
To prove the second assertion we may assume n > 2 . We lift every
element ¢ € C to an endomorphism of R" and write it as a matrix (aij)
where the aij are endomorphisms of RR . First we show, that for an element

% of the radical ¥ of ( , all aij belong to W . Denote by e, the element
0, ..., 0,1,0, ..., 0) + D with 1 at the i-th position. Then

&%= (a . ain) +D . If €W for some (i, j) , then e, together

il’ aij
with all the elements e K * j , generates I . If Ann(eiw) # 0 , then a
length argument shows that R(eiw) is a direct summand, contradicting the fact
that In is indecomposable. So Ann(ei¢) =0 . An application of Lemma II.2.1
leads to the equality e.®C =1I_, and, a fortiori, I W =1 . Since this is
impossible, we conclude that for we W, all elements aij € W . From this it
follows that (w(“)/D)m =0 for all ¢ € (¥ ; thus Wn/D is contained in the
socle of IC , where we abbreviate In by I . Also, according to Lemma 11.2.1,
(1, 0, ..., 0) + D does not belong to IW . So for any x € Ww/D , we can find

8 (-homomorphism ¥ of the form

€ L

IC - I/IW —>SocIC - IC

( € the canonic epimorphism, ¢ the inclusion), mapping (1,0, ..., 0)+0D

nto x . But ¥ is induced by left multiplication and thus there is p €R

with x = p[(1, 0, ..., 0) + D] . This proves the second part cf Lemma 11.2.2.

Now, in order to facilitate formulations of the following Propositions
11.2.3 and 11.2.4, let us define, for a given ring R and an element v € R ,

the following two subrings of R :

T,= (7|t €R and vr €Rv} and S = (o|lc €R and ov € R}
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PROPOSITION 11.2.3. Let R be a local ring and w its radical
such that

W= 0 and dimQH=2-

If R 1i8 left finitely balanced, then dimuQ =1 and, for any two linearly

independent elements u and v of Qw )

W=Rv+ur .
v

Proof. First, we shall prove that dimW_ =1 . Assume the contrary

and choose 0 # L €w. Since the set-theoretical union of Rwl and wlR

is a proper subset of ¥ » there is an element w, € W which is neither in

Rwl nor in wlR - Consider the indecomposable R-module I of Lemma 11.2.2.
Since I2 is balanced R(W!D W)/D S R[(1, 0) + p] Therefore, taking
o, wl) + D , there is T € R such that (-ro, wl) €D . Thus, in particular,
v = sz for some X €R . Byt 1s necessarily a unit and thus

-1 R .,
W, = A W) » in contradiction to v, t Rw1 .
Now, to complete the proof

» take two linearly independent elements u
and v of QW and verify that y = Rv + uTv * To this end, consider the
R-module N = R/Rv ; 1et C be its centralizer, Obviously, the rings C and
TV/RV are isomorphic, apg thus (Rv + uTv)/Rv is a non-zero C-submodule of

N . Therefore, there is a non-zero C-homomorphism ]

: NN mapping N into
(Rv + uTv)/Rv + Since N 45 4 balanced R-module, y

is induced by the ring
multiplication:

¥o = pn for all n €y with a suitaple non-zero p € R ,

Consequently, c i i
q ¥» PR CRv + uTV and, since dipy = 1,w

= Rv + uTv , as
required.
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PROPOSITION 11.2.4. Let R be a local ring and W its radical

such that

E
1]

0 and dimQW =1.

If R 1ig left finitely balanced, then either dimwQ =1 or dimwQ =2 and,
for any two linearly independent elements u and v of Wq

W=vR+ S5 u.
v

Proof. First, we are going to show that dimWQ < 2 . Assuming the
contrary, choose three linearly independent elements Wis Wy Wq in WQ , and
consider the indecomposable R-module 13 of Lemma II1.2.2. Since I, is

balanced, R(W ®w@w)/pCRr((l, 0, 0) + D] . Taking (O, vy 0) + D , we get
(ro, 0,0)+p= (0, wys 0) + D for a suitable r_€R , and thus (-t w5 0) €D.
This is impossible, and therefore dimW, <2 .

2 and take

Now, in order to complete the proof, assume that dimW

Q

two linearly independent elements u and v of W_ . Writing u = vy and

Q

V= ¥, and denoting by ( the centralizer of the indecomposable R-module 12

°f Lemma 11.2.2, we have = [(1, 0) + D] ; this follows from Lemma II.2.1,

I
because Apn [(, 0) + D] = 0 . Therefore, taking an arbitrary r € R , there

s pe € such that

[(1, 0) + DJo = (r, O) +D .
Lifting P to

<°'11 °’12)
%1 %2
R(R@R) —-———>R(R®R) ’




9%

, o _-r €W and
we get that (all-r, alz) €D and thus, in particular 1

@, €W . Also, applying this homomorphism to (u, v) € D, we obtain
12

(v + vo, s v, +ova,,) = (ur + Va8, V,,) €D .

Hence,

ur + ve,, = \u  and vazz = Av for some \ £ R .

Therefore ) € S, and wr € vR + §,u - Consequently

W=uR+ vRCW+ Svu )

as required.

11.3. EXCEPTIONAL RINGS
o2V RINGS

Let R be a local ring with the radical W suych that W2 =0. If
vV is a non-zero element of W , then the subrings

T, = {Tlr €R and vT € Rv)

and Sv = {glo €R and gv € VR}

contained obviously w ,

Moreover, if T

is a unit belonging to T, » then

VT = rv for a Suitable r ¢ R

-1 -1 -1
implies r “y = vT and thus 1~ ¢ Tv » as well. Consequently, TV/w is
a division subring of Q=R/W . 1f )

is a unit of R, then

Tvp = (r|v ep and ypr € Rvp} =

- -1
(it €R and vp7p 1 ERv}=1p Tvp
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and thus, in particular,

dimQ = dimQ
(Tv/w) (Tvo/W)

In a similar fashion, Sv/U is a division subring of Q and, for an

arbitrary unit A of R ,
dim Q = dim Q
(s,/W) (SKV/U)

DEFINITION I1.3.1. 4 local ring R with the radical W ig said to

be exceptional if

2
W =0, dim W X dimW_= 2
"q Q

and, if dim W = 2, then

d““Q(TV/W) -

vhereas, if dime = 1, then

dim Q =
(s,/W)

for q non-zero element v € W .

Let us point out the fact that the notion of an exceptional ring is

self-dual ; 4 ring R is erceptional if and only if the opposite ring R* is

eZceptional,

PROPOSITION 11.3.2. Let R be a local ring, and W its radical with

2 )
=0, di =2 and dimW_ =1.
W 0 dlme a Q
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Then the following statements are equivglent:
(1) R ig exceptional;

(11)  there exist two linearly independent elements u, v of W
such that

W= Rv+ uT
v

(iii) ¢the indecomposable injective left R-module ia of length 2.

Proof. 1In order to prove the implication (i) ~(i1) , let v be a

non-zero element of W, T = Tv and let dimQ(T/w) = 2 . Thus, there exists

r € R\S such that R = T+rT+w. Taking u = yr , ope gets

W=9vR = vwT+ 1T + W) = vI + uT = Rv + uT ,

because T = Ry in view of dhnWQ =1 ,

Conversely, if

vR=w=Rv+uT=vT+uT,

then R = y(T + rT) for a Suitable r ¢ R and hence

R=7T4 T ¢ W.

Now, r £7T; for, Otherwise ¥ = g = VI = Rv in contradiction to
dimQW =2 . As a consequence,

dimQ(T/W) =2, and e get the equivalence of
(1) and (ii) .

In order to shoy that  (i{) implies (iii) , 1let u, v be the element$

R/Rv

given in (i) We are going to prove that is an injective R-module.
To this end, let ®: W SR/Ry be a non-zerq homomorphisn.

Since right
multiplication by elementsg of R

1s transitive °n W , we can evidently assume
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that Ker@ = Rv . Thus, o is determined by the conditions v =0 and
up = w + Rv for a suitable w ¢ W . 1In view of the relation W = Rv + u’I‘v >

we have
w=rv+ut for some r €R and T € Tv

Consequently, the homomorphism

T €
RR — RR - R/Rv
maps Rv into 0 , u into w - rv+ Rv=w+ Rv, and is thus a required

extension of ® to RR .

To complete the proof, let us verify the implication (iii) - (ii)
Let M be an indecomposable injective left R-module of length 2; hence
M=R/Rv for some non-zero element v €W . Let u € Qw so that u and v

are linearly independent. Take an arbitrary element w € W and consider the

homomorphism @ : Rw ~+M such that
up=w+Rv and vp =0 .

Since M ig injective, ¢ can be extended to a homomorphism from RR to M,
T

and therefore lifted to R - R . From here, it follows that vt € Rv , and
thus T ¢ Tv ; moreover, w - uT € Rv . Consequently,

ngV"‘UTV:

completing the proof of Proposition II.3.2.

In a similar way, we can formulate
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PROPOSITION 11.3.3. Let R be a local ring and W ite radical with

w2=0, dime=1and dimHQ'Z-

Then the following statements ave equivalent:
(i) R is exceptional;

(i1)  there exist two linearly independent elements u, v of W
such that

W=vR+Su,;
v

(1i1) the indecomposable injactive left R-module ig of length 3.

Proof. Both statements (1) and (ii) are dual to those of

Proposition II.3.2. and thus they are equivalent. In order to establish that

(ii) implies (iii) , we are going to show that the indecomposable R-module
(cf. Lemma 1I1.2.2)

1= R(R @ R)/D, where D = R(u, v)

is injective. Thus, assume that a homomorphisn 9P : Rw -1 1is given and we

are required to extend it to a homomorphism from

RR to I . Obviously, @
is determined by the image of v o

Vo = (Vl’ v2) + D for some 1’ Yy of w.

But v2 = v and thus, for some yw €y

3

(vl-xu, 0) + (), W) + D= (y, 0) + D .

T €R, 0 € Sw and
r, €R such that

Bl "
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w=vr1+ou and qv=-vr2‘

We claim that the homomorphism
(rl, rz) ¢

RR —_— > R(R@R) -2 1,

where € is the canonical epimorphism, is an extension of ¢ . Indeed, the

element v is mapped into
V(rl’ rz) +D=(w-ou, -gv) +D=(w, 0) +D=vo,

as required. Consequently, 1 is injective and, being of length 3, necessarily
indecomposable.

To complete the proof, let us verify the implications (iii) - (ii) .
An indecomposable injective left R-module I of length 3 is necessarily an

amalgam of two copies of RR over its socle. Thus,
1= R(R ® R)/D with D = R(u, V)

for suitable u and v of W . Now, take an arbitrary w € W and consider
the homomorphism ¢ : Rw -1 mapping v into (w, 0) +D . Extend ® to a

h°m0morphism from RR to I and lift the latter to

(r1’ r2)
gR —_— R(R@R) .
Hence,
(vrl, vrz) - (w, 0) €D,
and thyg

(vr1 - W, vrz) = (ou, gv) for some o €R .
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Therefore,

0€5 and w = vry - ou € wR + Svu ,

as required.

I1.4. EXCEPTIONAL RINGS ARE BALANCED

First, in order to Prove that every R-module over an exceptional ring

R with dimQW =2 is a direct sum of indecomposable R-modules, we formulate

the following two technical lemmas .

LEMMA IT.4.1. Let R be q loeql ring with the radical W euch that
2 .
W =0 gnd d1mwQ =1l . Let F pegq free left R-module qnd s #0 an

element of the socle of ¥ . Then s belonge to q monogenic submodule which

ie isomorphic to R

Proof.- The elements of F can be Tepresented by indexed families (ri)

i € R and the restriction that al} but a finite number of the
zero. An element

with r Ty's o b
i
(ri) belongs to the socle

SocF of F is and only if
ri €W for all i.

Let

s = (wi) € SocF

Let u#0 be s fixed element °f W . Since uR =

W, there exists p, €R

such that = ;

W, UP; ;5 here, we take P, =0 if Wi =0 . Now, right multiplica-
tion by p yields a homo

. mo :

i rphism o . RR «eRR » and thus the family (pi)

it W
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defines a homomorphism

Clearly, wp = s , and hence s € Imop . Furthermore, since s # 0 , there is

a unit pi such that w, = upi ; 43 a consequence, Im® = RR .
[¢) [ (o]

LEMMA 11.4.2. Let R be a local ring with the radical W such that

Wz =0, dime = 2 gnd dimwQ =1 . Let M be an Rmodule with submodules

X and Y isomorphic to gR such that X + Y =M and X NY 18 a minimal sub-

module. Thenm M contains an indecomposable submodule of length 2.

Proof. M is obviously isomorphic to the pushout P of the following

diagram

U
N
RL > RR
A J/ ! ’
gR > P

vhere L is a minimal left ideal of R , ¢ the inclusion mapping and u a

monomorphism. If x # O is an element of L , then
xp = (xz)p for some P E€R,

because xR = W . Thus right multiplication by ¢ is a mapping from gR into
RR satisfying ¢p = u . But this implies, in view of the properties of a pushout,
that ' splits and that the complement is just the cokernel R/L of ¢ which

is obviously of length 2.
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Now, we are ready to prove the following

PROPOSITION I1.4.3. Let R be a local ring with W =0, dim W = 2

and dimwQ = 1. If the indecomposable injective R-module is of length 2, then

every indecompogable R-module is either simple, injective
and any R

or igomorphic to gR

~module ig a direct sum of thege indecomposable modules.

Proof. To prove our proposition, we shall show that every R-module can

be expressed as a direct sum of modules of the isomorphism types Al’ AZ' A

R(R/W). R(R/Ru) with a non-zerec u € W and

3
represented by the R-modules

RR s Tespectively. Here, A2 is the injective indecomposable type.

Let M be a left R-module. Take & submodule X of M which is

maximal with respect to the property of being a direct sum of modules of type Az )
Since X 1is injective, M =X @ ' » where M' is a submodule of M which

.

contains no submodules of type A

Now, let Y be a submodule of M'

which is maximsl with respect

to the property of being a direct sum of modules of type Ay . Let Z bea
complement of Socy in SocM' . Then, 2 is5 a direct sum of modules of

type A; and, evidently, Yy Nz = We want to show that

Y@z =pu

To this end, assume that there ig an element

m €M \(Y®z) . Then
Rm must be of type A

3 » because m £ goc M’ and M' contains no submodule of

type A, - The submodule Y N Rm

s non-zero; for, otherwise Y 4+ Rm would

be a direct g i
um of modules of type A3 > contradicting the maximality of Y .

Since s € gocy

a submodule y SY of type 4

Tak i
© $¥0 of YNRg. » Lemma 17.4.1 implies that there 18

3 containing s . 15 yyey of Lemma I11.4.2,
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N NRa camot be simple and therefore the length of N NRm is 2 .

1f we now assume that Soc (N + Rm) is of length 2, then N + Rm
is isomorphic to the injective hull of Soc (N + Rm) (because both modules are
of length 4). However, since M' has no submodules of type A2 » this is

impossible. Thus, Soc (N + Ram) has to be of length 3, and therefore
N+ Rm =N+ Soc (N+ Rm) .

But this means that
RmC Y + SocM' CY®2Z,

and we get a contradiction to our hypothesis. The proof is completed.
In analogy to the preceeding result, we shall prove also that every

R-module over an exceptional ring R with dim W =1 is a direct sum of

Q

1 Bz and B3 represented by the

R-modules g (R/W) gk and the injective module I, of Lemma 11.2.2. Here

indecomposable R-modules of the types B

again, the index of Bi refers to the length of the respective module. Note
hovever that, contrary to the previous situation, B3 is not a monogenic module.

First, let us prove by induction the following

LEMMA I1.4.4. Let R be a local ring with the radical W such that
2
W = 0) di w = 1 = .
mQ and dimWQ 2
(a) Let M be an R-module of length 2n+1 generated
by n+1 monogenic submodules. Let N be a submodule of M which is a direct
8um of n  copies of modules of type B, If, furthermore, M does not eontain

@ submodule of type B then

3 3

M=N+ SocM .

28
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(b) The only indecomposable R-modules of lemgth

<20+ 1 are modules of type B,, B

1’ B, and By .

Proof. 1f the length of M is 3 , and if M contains a monogenic

submodule N of length 2 , then either SocM is simple in which case the

injectivity of B, yields that M is of type 53 » or SocM {s of length

> 2 ; in the latter case, evidently

M=N+ SocM .

This establishes the validity of both (a) and (b) for n = ] .

»

Now, assume that both assertions hold for all m<n -1

(a) Without loss of generality, we may assume that the n + 1 monogenic

submodules which generate M are all of length 2. We can consider M as the

amalgamation of N with a monogenic module of length 2 with simple submodules

identified. Thus, M is isomorphic to the pushout P of the following

diagram
M
~
Y SRRO RO ...D R
L\[ T]' \I/Ll ’
RN —> P
where

is the inclusion of W in R, N is a monomorphism and &' corresponds
to the inclusion § ¢ M,

Let us take 4 non-zero element w €y ; hence, wil
is of the form (x

17 X950 oy xn) with at least one non-zero x.

Assume that
and distinguish three Ccases:

X £0
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(i) Let X €wR for all 1 <i<n . Then we can find elements -

such that xi = woi , and thus the morphism

(0'1, Uzp “ ey O‘n) H RR -)RR@RRQ ce @RR N

representing right multiplication, maps w into (xl, Xyp oo xn) = wll . But
this means that R ® R ®...8 R is a direct summand of P . Consequently,
the complement is simple and therefore M = N+ SocM

(ii) Let Xy £ wR and X, € le for a11 1 <i<mun . Then, we can
find elements oi with X5 = xloi ; observe that cl is a unit. Now, both

11" and (Uls Oy vves on)L' generate submodules of length 2 and the equality

W(lT") = wh' = we)' = wle' = (xl, Xy ees xn)L' =

= (xlol, x os xlcn)L' = xl(ol, Ty wees Un)b'

10'2, .

shows that

wh' € R(IMH N R(cl, CSIREER cn)L'-

Let X = r(1M") + R(o;, @ . c’n)r,' . Assuming that R(T;, Oy +-es o’n)b'

g
is & direct summand of X , we deduce that there is a morphism

R(1T) —9R(cl, Tys woes Gn)b' mapping wl' into (xlcl, X055 +een xlcn)b' s
and thus a morphism R R® R®... & R mapping w into

(xlol’ x1°2’ ceey xlon) . 1In particular, there is a morphism RR —aRR mapping
W into xlcl = x
cation we get that X € wR , contradicting our hypothesis. Thus, X has to be

and since such a morphism must be induced by right multipli-

an indecomposable R-module of length 3 and therefore of type B, . Since M

has 1o submodule of type B3 , we conclude that the case (ii) cannot happen.
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(1ii) Let X, £ wR and there is X such that X, 4 xIR . We may

asgume that X, £ xlk + Thus, W= le + xzk and therefore there are elements

o,, ¢, such that

1’72

WOE X0 T X0,

In this case, the pushout P can be considered as the quotient module of n + |

copies of RR by the submodule generated by (w

- - oo, = - Under
Y Xy xn)
the morphism
. = "
(1, s Oy 0, «.., O .RR@RR@... 7 ok RR
representing right multiplication, the element (w, -xl, -xz. ey -xn) is

mapped into w - wlol " Xy0, = 0 and thus the morphism factors through P . As

a consequence P has a homomorphic image of type B

2 + The latter splits off
and ve deduce that M 1s a direct sum of & module of type 52 and a module M’

of length 2pn - 1 ,

Now, using the induction argument, M' {is a direct sum of modules of

types B,, B

1’ B, and B, - However, since K has no submodules of type B M’

3 '
is a direct sum of monogenic modules of length 1

and 2 . In particular,
SocM' has to be of length at least

n and therefore SocM has to be of length

at least n+ 1 . Consequently, M= N+ SocM , ag Tequired.

The statement (a) is established.

(b) Given an indecomposable R-module M of length <2n+ 1 , we

deduce immediately that M hag no proper submodule of type 33 ; this follows
from the f t ig 1 .
act that B3 1s injective. Now, take g submodule N which is

maximal with respect to the Property of being a dir

of ¢
ype B2, and let K pe 4 complement of goc N
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verify (b), it is sufficient to show that M = N &K , i.e. to show that every

element x € M generating a submodule of length 2 belongs to N@®K . Let

M'= N+ Rx . If x £ N, then the length of M' 1s 2m+ 1 , where m is the
number of direct summands of tyve 82 in N . Since m < n , we get by
induction

M' = N+ SocM'

But this means that x < N+ K .

The proof of Lemma I1.4.4 1s completed.

2 .
PROPOSITION 11.4.5. [gr R be a local ring with W =0, dlmQW =1
and dim¥y = 2 - If the indecomposable injective R-module is of length 3, then
every indecomposable R-module is either aimple, injective or igomorphic to LI

and any R -module is a direct swn of these indecomposable modules.

Proof. It is sufficient to show that every R-module M can be
€xpressed as a direct sum of modules of types Bl' 82 and B3 .

Following the method of proving Proposition 11.4.3, we denote by X a
submodule of M which is maximal with respect to the property of being a direct
Sum of modules of type B, and observe that M=X®PM' . In M', take a

submodule Y which is a maximal direct sum of modules of type B, , and denote

by 2 a complement of SocY in SocM' . We intend to show that
M=X®Y®z .

Assume the contrary, i.e. that there is an element m €EM'\(Y D2)
which generates a submodule of length 2 . Clearly, because of maximality of

Yh YORe # 0 . Thus, there is a direct sum Y' of a finite number of copies
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of B2 contained in Y such that
Y'" TRm#0 .

]
Now, applying Lemma II.4.4 (a) to the module Y'+ Rm and the submodule Y' we

get readily that

Y'+Rm=¥'+ Soc(Y'+ Rm)

Consequently, m € Y' + Soc(y' + Rm) S Y + SocM' = YDA, acontradiction.

Proposition II.4.3 follows.

FROPOSITION 11.4.6. Every exceptional ring is both left and right

balanced,

Proof. Because the opposite ring of an exceptional ring is again

exceptional, it is sufficient to prove that exceptional rings are left balanced.

Both in the case when dileW =2 , as well as vhen dileW =1 , it

is easy to verify that all indecamposable modules are balanced. This is trivial

for modules of the types A3 and B2 and also for modules of the simple types
4, and B, ;5 and, it follows for modules of the injective types A2 and B,
immediately from Lemma 1.2.5,

Now, in view of Propositions-II-4.3 and 11.4.5, ye can apply Lemma 1.2.1

and complete the proof,

I1.5. s

TRUCTURE OF LOCAL BALANCED RINGS

LEMMA 11.5.1. 1op R be a local left finitely balanced ring with the
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, ]
radical W such that W = 0. Let R be right uniserial and not left uniserial.

Then R 18 exceptional.

Proof. First, observe that, according to Proposition II.l.1,
aR(W/WZ) =2 . Thus. in order to prove our Lemma, it is sufficient, in view of
Proposition 11.2.3 and Definition IL.3.1, to show that Uz =0 .

Assume that H2 4 0 . Pirst, we can see that Rw is the direct sum of
two monogenic submodules Ru and Rv , where u and v belong to W\Wz
This follows from the fact that Rw can be considered as a left R/Wz-module
and, according to Lemma I1.4.3, it is a direct sum of monogenic modules. And,
since radical of Rw is R(wz) and since R(W/WZ) is of length 2 , it is
a direct sum of two monogenic modules.

Now, since u and v belong to WwW’ and R is right uniserial,
there is p € R such that uo = v . Thus, in particular, Ru =Rv . Therefore,
in view of Proposition 11.1.1, aR(wz) < 2 and hence, d(Ru) = O(Rv) = BR(WZ)'=2
Write L = Ann(u) . Then R(R/L) = Ru and thus aRL = 3 . But R is right

uniserial and therefore
IW = L(uwR) =0 ;

Consequently, L is contained in the right socle w2 of R . We arrive at a

Contradiction and conclude that w2 =0 .

LEMMA 11.5.2. Let R be a Local left finitely balanced ring with the
radical W syech that W =0. Let R be left uniserial and not right untserial.
Then R g exceptional.

: 2,
Proof. 1In view of Proposition II.2.4 and Definition II.3.1, R/W" is
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2 0
an exceptional ring and thus it is sufficient to prove that W .

Let us give again an indirect proof. Assume that w2 ¥ 0 and consider

the right R/Wz-module WR/wz + Applying the dual statements of Proposition I1.3.3

and Proposition II.4.3 to this right R/Wz-module and taking into account the

2
fact that wR/wz possesses a completely reducible quotient (W/W') of

R/W
length 2 , we can easily conclude that there are elements u and v in W

with uR NvR = 0 gsuch that u + w2 and v + U2 are linearly independent in

= (w/wz) .

2
W) Q

Now, let us construct two non-isomorphic R-modules M, and M, of
length 4 such that M, @M.z is not balanced.

First, consider

Ml = R(R C’] R)/Dl’ where D1 = R{u, v)

The R-module M, has no monogenic quotient of length 2 . por, given a

homomorphism @ Ml -»R(R/WZ) » we can lift 1t to a homomorphism

(1)

R
R( @R) ~—> RR

Since D, is mapped into W » Uy + vr, belongs necessarily to W . But

2 2
U+ W and v+ W are linearly independent ip (W/Wz)

1 and vr, belong to WZ

both
R/W and therefore

1.smdr

ur

Consequently, both r 2 lie in W and

From here it follows easily that Soc M, is
simple; for, otherwise R(R GBW)/D1 E

hence ¢ cannot be sur jective.

RR would be g direct summand.

Secondly, take a non-zero element €EVwR N w2 and define the R-module

M2 = R(R @R)/Dz, where D2 = R(u, w) .
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Again, SocH2 is simple. For, if Sc«:H2 is not simple, then R(W @R)/D2 ERR
is a direct summand of HZ and "2 possesses an epimorphic image which is a
monogenic R-module of length 3 . But a homomorphism © : M, — R can be lifted

to a homomorphism

2-’
—
R(R @ R) RR
mapping D2 into 0 . Therefore, ur; + wr, = 0 . This relation shows that
both r, and T, belong to W and thus the homomorphism ¢ cannot be

surjective.

Now , Hl and M, are two non-isomorphic R-modules of length & . This
follows from the fact that M, has a monogenic quotient gRAB/(R ® VZ) of
length 2 . Consequently, any homomorphism between Ml and H2 must have a non-
trivial kernel. Since both Soc Ml and SocM2 are simple, such a homomorphism
mij : Mi —>Mj (with i ¢ §) satisfies (Soc Mi)tp =0 . But then the R-module

L Ml ® Mz is not balanced. For, represent the elements of the centralizer

°f M by the matrices

(”11 12

), where @ : M, oM
%1 %22

S B S T

Take a non-zero element z of Soc RR , and define an additive homomorphism

*(ml’ mz) = (zml, 0) for (ml, mz) in M1 @M,z .
Now,

zm, belongs to SocMi ; so, for 1 # j , we have

z(m® ) = (zm)@y =0
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This implies, that ¥ belongs to the double centralizer of M » because of

%11 “’12)

e mz)](“’21 22

= (zm1¢11’ 20,9 ,) = (zm1:p11 + m,9,,, 0) =

D1 %
¥[(m,, m) ]
1 ("’21 "zz)

Assuming that ¥ 1{is induced by left multiplication by p € R , the equation

(zml, 0) = (Dml, pmz) for all m, € Mi implies p = 0 , because M2 is
faithful. But le # 0 , because Ml is faithful. Hence M 1is not balanced.

We conclude that wz =0 completing the proof of Lemma II.5.2.

Now, we are ready to formulate the following

PROPOSITION I1.5.3. Let R be q losal ring with the radical W such

that W' = 0 for some naturql n .

Then R is left finitely balanced if and only
if it is either unigeriql op exceptional.

Proof. Let R be left finitely balanced. Obviously, without loss of

generality, we may assume that w3 =0 .

Then the conclusion follows immediately
from Proposition I1.1.1 and Lemmas I1.5.1



II1I. GENERAL THEOREMS

T1I.1. MORITA EQUIVALENCE

In this section, we shall give a short proof of the fact that the ring
property of being balanced is Morita equivalent. We start with two technical

lemmas .

LEMMA IT1.1.1. Let Py be a finitely generated projective right

R-module. Let RMC be an R-C-bimodule. Then the homomorphism

o PR ® Hom MC ) - Hom

C(RMC R C(RMC, PR®RMC)

given by

[Q(_:)@C.P)]m:p@(cﬁn) for pGPR ,(PEHOmC (RMC&RMC) and m €M,

s an igomorphism of right R-modules.

Proof- 1t is easy to see that o(p ® ) is a C-homomorphism of MC
into PR ® RMC , and that & is an R-homomorphism. For PR = RR , the
homomorphism & is trivially an isomorphism. It turns out that & is also an

isomorphism for a direct summand P, of a finite direct sum of copies of RR

R
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LEMMA 111.1.2. [e¢ Py be a finitely generated projective right

R-module. [Let g? be a balanced R-module with the centralizer C* Then the
morphiem

T PR —.HomC(erC . PR QRMC)
defined by

(BP)N=P®m for pEPandm‘Hs

18 an epimorphiam of right Rmodules,

Proof . The morphism B is the composition of

B B o
1 2
PR - PR ® RRR -5 PR ® Hout (RHC, RHC) - HDmC(RHC, PR ® RMC) '

vhere Blp=p®1 for p€p, B

o 15 induced by the canonic homomorphism
RRR —»Homc(RMc, RMC) mapping r € R onto the left multiplication by

r , and
o

is the morphism defined in Lemma IIT.1.1. 1In fact, szlp =p®¢, vhere U
is the identity automorphism of MC » and thus (aﬂzﬂlp)m =[a(p@2)lm=p ®c(m "
=p®m . It ig well-known that B

1 is an isomorphism, and the fact that RM
is balanced means that 82 is an epimorphism. Consequently, we deduce that B
is an epimorphism, ag required.

PROPOSITION I11.1.3, Let P

R be a finitely generated projective right

If an R-modyie L balanced, then also

R-module with the centrglizer A

the B-modyle APR ® Y s balanced.

Proof. Let (¢ pe the centralizer of

RM' Then € induces endo-
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“+ - -
morphisas of APR ® RH and, in this way, we get a right C -module PR ® RHC
We shall show that all endomorphisams of PR ® RHC are induced by left multipli-
cation by the elements of A , as an immediate consequence, we obtain that the
canonic mapping of A into the double centralizer of A?R ® RM is surjective.

Since PR 15 projective, the epimorphism 8 of Lemma I1I.1.2 induces

an epimrphism
!' H P P — o] N @ N
: HOMR( R’ R) HomR(PR , R I!‘C (RHC PR RMC)

vhere B' 1s given by [(B' Mplm = (B(Ap)jm = (Ap) ®m for \ € Hom  (Fp » PR) »

PEP and m £ M . Also, we have the canonic isomorphism
. , ®
Y : Hom (P, Hom, (;Mos Py @ (M) ->Homp (P @ pMoy Py M0

defined by (YP)(p ®m) = (Pp)m for @ € HomR(PR » Homp (RMC’ P ® RMC)) ,pE€P
and m € M . Therefore, under B' and Y , an element A € HomR(PR , PR) is

mapped onto the (-endomorphism vYB'A of PR ® RMC , which, by definition, equals
(YB'V(r ®m) = [(B")plm = (Ap) ®m .

But ) 1is an element of the centralizer A = HomR(PR ) PR) , and hence YP'A
s just left multiplication by the element X € A on Py @ e - The fact that
B') s sur jective shows that every C-endomorphism of PR @ RMC is induced by

an ele . . i 1 d.
ment of A Consequently, PR ® g is balance

A
PROPOSITION I11.1.4. (K. MORITA & H. TACHIKAWA [21]). Let S be a
category igomorphiem from ModR onto ModA . If the R-module M 1is balanced,
then the A-module S(M) is balanced.
In particular, let R be a full matriz ring over a ring R . Then R
i8 left balanced, or left finitely balanced, if and only if R ie left balanced,

of left finitely balanced, respectively,
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Proof. 1Indeed, there is a bimodule AFg tuch that s(m) = APR ORH .

But PR is finitely generated and projective, A 1{is its endomorphise ring, and
hence S(M) is balanced by Proposition II1.1.3.

As a consequence, the existence of a category isomorphism between

ModR and Mod A 1implies that the ring R 1is left balanced, or left finitely

balanced, if and only if A is left balanced, or left finitely balanced,

respectively.

IIT.2. LEFT BALANCED RINGS ARE LEFT ARTINIAN

In order to facilitate the Proof ve are going to prove first several auxiliary
results.

LEMMA 111.2.1. et R pe q left balanced ring. Let M be a

faithful and s 4 simple R Then there exists eithep an injection
L .

‘S oM or a surjection € : M g .

“module.

In particular, every module over a left

balanced ring poseesses eithep a minimal or a mazimgl submodule.

Proof. 1f there is no non-zero homomorphism between M and § , then

the elements of the centralizer of ¥ @0

DS have the form (0 p) , where o € C(M)
and B € ¢(s) . Hence, the morphigy

*:M@S-eM@S

d =
efined by Y(m, s) (0, s) ig an element of the double centralizer of M@ S
which 15 not induced by the ring multiplication, The lemma follows.
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PROPOSITION 1II.2.2. (V. P. CAMILLO (3])- Let R be a left balanced

ring with the radieal W - Then R/W ig artinian.

Proof. Without loss of generality, assume that W = O . Consider the

direct sum N= D VvV of all non-isomorphic simple R-modules Vw . The module
we

N is obviously faithful and thus R 1is isomorphic to the double centralizer D
of N . It is easy to see that D is a cartesian product of full endomorphism
rings of vector spaces over the centralizers of the Vw's . In particular,

SOCRR is essential in _R . To complete the proof it suffices to show that

R
R = SocRR . Assume the contrary. Then there is a maximal left ideal L of R
containing Soc RR . Since Soc:RR is essential in R , the annihilator of the

simple R-module S = R/L 1is essential and therefore S cannot be isomorphic to
4 submodule of M = Sockg . Since R 1is left balanced and M is faithful we

arrive at a contradiction of Lemma III1.2.l1.

PROPOSITION 111.2.3. (K. R. FULLER (16]). Let R be a left finitely

balanced ring with the padical W . Then, for every natural n , the quotient
3 n . . . R . s .

rMng R/IW {8 g finite direct sum of full matriz rings over local left finitely

balanced rings. Moreover, if R 1is left balanced, the local rings are also left

balanced,
n .
Proof Without loss of generality. assume that W =0 . In view of
t
Lemma 111.2.2, we may choose a direct decomposition R = ® L, of (R into
i=1

indecomposable left ideals. 1In order to establish the lemma, we want to show that
the simple composition factors of every L, are isomorphic.
For n =2 , this follows from the fact that an extension of a simple

R-module §; by a non-isomorphic simple R-module S, always splits. Indeed,
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t the
assuming that such an extension M does not split, we can see easily tha
space and
centralizer of M 1is a skew field. However, then Hc is & vector spa
d and
(- homomorphisms act on it transitively. Therefore, since M 1is balance

S 1s a proper R-submodule of M , we arrive at & contradiction. If n > 2 ,
1

we proceed by induction. If we agsume that every composition factor of Lil i

n-l, homoaor phisa
is isomorphic to LIIWL1 » We may define for any x € ¥ L1 \UnLl a

LWE Li/uzr_l -.L1/Hn+ ]Li

with x € (L,/WzLi)T]x + The fact that the images of all these homomor phisms
i

+1 ooty
cover WnLi/Wn L1 implies that also the composition factors of W {

are isomorphic to Li/WLi

i

This proves that the composition factors of L, are

isomorphic.

Therefore, R is 4 finite direct sum of rings 51 which are full

matrix rings over local rings Rj - If R is left balanced, or left finitely

balanced, also the rings 51 are left balanced or left finitely balanced,
Tespectively. For, any R

i~module Mi

can be considered as an R-module and 18
balanced as an R-module if ang only if it {g balanced as an

Bi-module. 1f Ei

is left balanced or left finitely balanced

» then, by Proposition 111.1.4, R,

has the respective PLOPerty. too. Thig completes the proof .

LEMMA TIT.2.4. Lor W, a module with gn endomorphiem <« such that

M® C Rad M Then the direct 1imqit X of the diagram

P 9 ¢
MM LM R

has no maximgl submodyleg,
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Proof. lLet K=« U Ker® . Then K9 CK , and % induces an
n>l

endomorphism ®' : M/K M/K . It is easy to see that @' is a monomorphism.
Moreover, (M/K)®' C RadM/K and X can be considered as the direct limit of
the diagram

@' 9’ P
M/K -+~ M/K - MK

This shows that we may assume that @ is a monomorphism. We denote by t M- X

the canonic homomorphisms; for these homomorphisms we have commutative diagrams

]
M—M

Ln \ / bn+1

X

Let M, = My .and @ M M ., be induced by @ . Then M is a submodule

of X and X is the union of the M 's .
Assume that Y is a maximal submodule of X . Because Y # X , we

find n such that M €Y . Take x € un\Y . Then we have

(Y nun+l)+nx- (Y + Rx) nnn+1-xﬂun+1-xn+l-

but x = (Wn) belongs to Rad M and therefore Y N M o1~ Mas1 " This

+1

implies that M SM CyY , a contradiction.

+1

PROPOSITION I111.2.5. (V. P. CAMILLO [3]). The radical of a left

balanced ring ig a nil ideal.

Proof- let R be a left balanced ring, and W its radical. For

vew, consider the direct limit X of the diagram



122

where w denotes the right multiplication. According to Lemma TII.2.4, X
n
has no maximal submodule. If we assume that w ¥ 0 for all natural n , then

X#0, and every non-zero factor module of X has minimal submodules. This

follows from Lemma I11.2.1. Thus, if we define by transfinite induction a

- on-
sequence of submodules X, » with X, =0, xa/xa_ L = Soc (X/XQ‘_I) for n

limit ordinal & and X = U X

: a for a limit ordinal o , then X = U X, -
<o

For each x € Xa

» let h(x) be the least ordinal o such that x € Xa .
Note, that for x # 0 and r € » we have h(rx) < h(x) . Let x be the image

of 1€ gt under the canonic homomorphism “y ' gR 2X . Then WX =X W S X Ly
and therefore we have, for some n X = 0 . Indeed, otherwise ve would get

a strictly decreasing sequence

h(x)) > h(x,)) > ... > h(x ) > .

But X, =0 implies that 1 € gR 18 mapped under some morphism w" : RR "RR
into 0 , that is " = O . This contradiction shows that W is, in fact,

a nil ideal.

LEMMA 111.2.6. Lot R e a ring with the radieql W . Assume that,
for some ngturql n Wt o=yt #0.

Then there exigts a mom-sero module which

hag neithep 4 minimal nop g maximal submodule,

Proof. Define ¥ = (r € wn|w“r = 0) Then X is a left R-module
and has the Property W% = g . The module M

R(Wn/X) is non-zero, because
otherwige wn = X would imply Wn = w2n = w“x

submodule, For

O . Also, M has no maximal

» 8ssuming the contrary, we get that R(wn) has a maximal

n
submodule. But y . W' is contained ip every maximal submodule of R(Wn) , and
therefore Wn+’1 =yt

W' implies that R(Wn) has no maximal submodule. Let s+ ¥
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+1
be in the socle of M . Then W(s + X) €X , and thus Ws ©X . But W= Wt

implies
W' = " Ws CW'X =0 ;

consequently, s £X , and M has no minimal submodule. This shows that M

has the required properties.
PROPOSITION 111.2.7. A left balanced ring is left artinian.

Proof. Let W be the radical of the left balanced ring R . Our

n n+l
first aim is to show the existence of a natural n with W =W - Let w,

2
be finitely many elements in W such that the set of the elements vi + W

generates R(W/Wz) . Such a set exists because R/W2 is a finite direct sum
of full matrix rings over local left balanced rings Ri (Proposition III.2.3),
and {f W, is the radical of R, , then (W) s finitely generated
(Proposition I11.5.3). Observe also that the same references show that the set
[wi + wn} generates R(W/w“) , for any n . According to Lemma I111.2.5, the
elements Wi are nilpotent; therefore, there is a natural n with win =0

for all {1 . 71t remains to show that w“/wn+'1 = 0 . But this follows from the

fact that len+1 is a direct sum of full matrix rings over local rings and

n+ 1 .
that itg radical w/wn+1 is generated by the elements v, + W which

Satisfy (wi + wn+-l)n -0 .

Now, W' =0 . Otherwise, according to Lemnma II1.2.6, there exists

8 non-zero module which has neither minimal nor maximal submodules. But this is

impossible, because of Lemma 111.2.1.
er application

Finally, the fact that R is artinian follows from anoth

°f Proposition 111.2.3 and Proposition IL.5.3.
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111.3. THE STRUCTURE OF BALANCED RINGS

The preceeding investigations allow to give a complete description of

left balanced rings. The following theorem summarizes these results.

THEOREM 1I1.3.1. The foZZowing ppoperties of a ring R agre equivalent:

(1) R ig left balanced.
(11) R <{e left artinian and left finitely balanced.

(111) R 1s q direct eum of a uniserial ring and finitely many full
matriz ringe over exceptiongl rings,

Proof. The fact, that (1) implies (ii) is shown in Proposition II.2.7.
The implication (ii) - (1ii) follows from the Propositions 11I.2.3 and II.5.3.

Finally, in order to prove (iii) - (i) 1

et R be a direct sum of a uniserial

and finitely many full matrix rings R

(with 1 <1 <)

ring R over exceptional rings R

i
According to Proposition 1.3.3,

R, 1is left balanced. Each
of the rings R1 1s left balanced because of Proposition 11.4.6, and therefore

Proposition 111.1.4 implies that the rings

51 are left balanced. Since R 1is
the direct sunm of R0 and the rings 51 » also R 1ig left balanced. This
establishes the theorem.

A ring is left balanced if ang only if it ie right
balanced,
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Proof. The opposite ring of a uniserial or an exceptional ring is again
uniserial or exceptional, respectively. Therefore, if a ring R satisfies the
condition (iii) of Theorem II1.3.1, also the opposite ring of R satisfies this

condition.

Thus, we may simply speak of a balanced ring and drop the adjectives

"left" and "right" in the notion of a balanced ring.
Another corrollary is the following statement.

THEOREM I111.3.3. A ring R with the radical W i8 balanced if and

only if R {8 left artinian and R/w3 i8 balanced.

Proof. According to Theorem ITI.3.1, we have to show that a left
artinian ring R satisfies the condition (iii) , if R/W’ satisfies the
condition (iifi) . But if R 1is left artinian and R/w3 , Or even R/W2 ,
is a direct sum of full matrix rings over local rings, then also R itself is
4 direct sum of full matrix rings R, over local rings R, - If W, is the
Tadical of R, , then the condition (iii) for R/W3 implies, that for all i,
Ri/wi3 is either uniserial or exceptional. In the first case, Ry itself has
to be uniserial. But if Ri/wi3 is exceptional, then Wizlwi3 =0, so

2
i i Because Ri is left artinian, we may conclude wi = 0 and Ri

i
tself is exceptional. This proves the theorem.

It should be noted that contrary to the case where R 1is finitely
generated over its centre (see below), it is not enough in general to assume here

t 2 .
hat WS s balanced. In fact, it is easy to construct local left artinian




&
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2 . 0
rings R with radical W such that R/W’ is exceptional, whereas w2 #

’

i lanced.
this will be done in Section 111.7. Such a ring is, of course, not bala

. i R
REMARK III.3.4. The assumption in Theorem III.3.l (ii) on the ring

incipal
to be left artinian is essential. It is well-known (see [2]) that every princilp

i i t if
ideal domain is finitely balanced. In fact, it is not difficult to show tha

i i ly if
R 1is a noetherian integral domain, then R 1{s finitely balanced if and only

R is a Dedekind domain. Or, more generally, g noetherian commutative ring 18

finitely balanced if and only tf it is aq direct sum of a unigerial ring and a

iti , in
finite number of Dedekind domaing. The sufficiency of the condition follows

f s -module
view of Lemma 1.2.3, from the fact that every faithful finitely generated R-mo
over a Dedekind domain R Possesses a direct summand which is isomorphic to a

fractional ideal (see [7}) and a fractional ideal is always a gemerator. And,

an R-module gver a Dedekind domain R which is not faithful can be considered

. . . . rsely’
45 a module over a uniserial ring and ig therefore balanced, as well. Conve

every finitely balanced ring is arithmetical, j.e. has a distributive ideal
]'_2 is,
lattice. *) For, if I is a maximal ideal of such a ring R , then R/

by Proposition I1.1.1, uniserial.

Thus, the ideals of the localization RI are

linearly ordered by inclusion and therefore R is arithmetical. But, a

noetherian arithmetical ring is a direct sup of a uniserial ring and a finite

number of Dedekind domains.
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!}I-Q- RINGS FINITELY GENERATED OVER THEIR CENTRES

In the case, where the ring R or at least the factor ring R/W ,
vhere W is the radical of R , is finitely generated over its centre, the

description of balanced ring becomes simpler.

THEOREM 111.4.1. Let R be a ring finitely gemerated over its centre.

Then R is balanced if and only if R 18 unigerial.

Proof . We first show, that an exceptional ring cannot be finitely

generated over its centre. For, assume R is exceptional with the radical W

and the centre Z . Clearly, (Z + W)/W is contained in the centre of Q = R/W .

Let F be the quotient field of (Z + W)/W , considered as a subring of Q -

Again, we consider W as a Q-Q-bimodule, so we get the equation
fw = wf for wé&W,

first for the elements f € (Z + W)/W , and therefore also for all f €EF . If
We assume that R is finitely generated as a Z-module, then R/W is a finite
dimensional vector space over F . Let n be the dimension dim.Q . If

dime = m, then dim W = mn . Since the dimension of W over F does not

depend on whether we consider the left action or the right action of F on W,

We conclude

dimQW = dimWQ

b

cton . s . .
trary to the definition of an exceptional ring.

——
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Let us now assume that R {s an arbitrary balacced ring. According

to Theorem III.3.1, R 1is a direct sum of a uniserial ring and & finite number

of full matrix rings over exceptional rings Ri - I1f R is finitely generated

over its centre, then any one of the rings R{ is finitely generated over its

centre, but as we have seen above, this is impossible for an exceptional ring.

So we conclude that R is uniserial.

Let us mention that Theorem I11.3.4 applies immediately to the case

of a finite dimensional algebra and to the case of a finite ring.

REMARK 111.4.2. Let R be q ring finitely generated over its centre;

let W be its radical. Then R 1is balanced if and only if R ia left artintan

2
and R/W {g balanced.

2 .
Proof- A left artinian ring R is uniserial if and only if R/W 18

uniserial. Therefore, the theorem follows from Theorem 111.4.1.

Our next aim is to consider the case, where R/W 1is finitely generated
over its centre. We will need the following lemma which establishes some
Properties of the subring T

v

of a local ring R (for the definition, see 1I.3):

LEMMA I11.6.3. 7.4 R be a local ring with the radieal y such that
2
W' =0 and dhan =1 . Let v bpegq non-zero element of w . Then
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Proof. WWrite T = Tv and define a mapping @ : Q —-W by
a(r + W) = vt for r €R .
Purthermore, define a mapping B8 : T/W .Q by
B("+ W) = s +W for - <T, where s € R satisfies vT = sv .

Obviously, both & and B are well-defined bijections because of Ann(v) =W
and VR = W . And, they are additive. Moreover, B is multiplicative; for, if

B(r. + W) =s +W for 7 and T, from T , then
i i 1 2
w T =
v‘TiTz slv 2 8,5,V

172

and therefore 9[(Tl +W) (T, W] = B(T1 + W) 8(12 + W) . This shows that

2
5 defines a ring isomorphism of T/W and Q . Now, the pair

(n, B) : (T/w)Q "Qw

satisfies, for any r €R, * €T and s € R with vT=sv,

(T 4+ W(r + W] =a(r+ W) = vir =

= gvr = (3 + W) « vr = 8(r + WA(r + W) ,

which implies the required equality of dimensions.

If R 1is a local ring with

2 . .
W =O,d1mwQ=2 and dlme= 1,

then the Lemma III.4.3 shows that dim T /W)Q =2 . But R is exceptional if
v

a
nd only if dimQ(T /W) = 2 . Therefore, if Q has the property that any
v
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: : { oht
division subring of left index 2, which is isomorphic to Q , has also rig

ticular,
index 2, then the above conditions imply that R 1is exceptional. In par

this leads to the following theorem.

. . W
THEOREM ITI.4.4. Let R be a ring with radical W . Asswme that R/
. N y 'az

is finitely generated over its centre. Then R is the direct sum of a uniger:

ring and finitely many full matriz ringe over local rings R, with

2 . .
= d W. Xxd W,
Wi. 0 and 1mQ' i imW, Q

i i

L}
N

where LA is the radical of R, and Q = Ri/wi

.

. : ecause,
Proof . 1t is sufficient to prove the statement for local rings b

if R is a direct sum of finitely many full matrix rings over local rings R,

i
and if R/W ig finitely generated over its centre, then Ri/wi is finitely

generated over its centre for all i

.

But if R is a local ring with radical W and R/W is finite

dimensional over itg centre, then for any division subring of Q = R/W , its

right index is 2 if and only if its left index is 2 ([17], p. 158). So R

is exceptional if and only if W2

=0 and dim W X dimy_ = 2
Q Q

The last section will deal with the question whether there are rings
2 , _
with W™ = 0 apg dLme X d1mwQ = 2 , which are not exceptional.

111.5. THE MODULE CATEGORY OF BALANCED RING

It is shown ip Proposition IIT.1.4 that the property of being left




i

balanced is Morita equivalent. This means that, if the category ModR of all
left R-modules is equivalent to the category ModR' of all left R '-modules,
then R is balanced if and only if R' is balanced. Here, we characterize

explicitely the balanced rings R in terms of the module categories Mod R

LEMMA II1I.5.1. Let R be a local left artinian ring. Them R 18
balanced if and only if any two indecomposable left R-modules of length 3 are
isomorphic and all other indecomposable left R-modules are unigertal. In this

case, any two indecomposables of the same length are 1gomorphic.

Proof . 1f R 1is balanced, then according to Proposition 1I.5.3, R

either uniserial or exceptional. For a local uniserial ring R , every indecompos -

ale module is uniserial and any two indecomposables of the same length are

isomorphic. For an exceptional ring, we may apply Propositions 11.3.2 and II.4.3,

or Propositions 11.3.3 and 11.4.5 to show that every indecomposable module of
length # 3 is uniserial and that all indecomposables of the same length are
isomorphic. This proves the necessity of the conditioms, as well as the last
statement .

In order to prove the sufficiency, let us first assume that all inde-
composable left R-modules are uniserial. Them R 1is trivially left uniserial.
And, R g right uniserial, too. For, otherwise (RR‘@ RR)/D » where
D=R(u, v) + (W2 GDWZ) with linearly independent elements u, v in (W/WZ)R/W2 )
Is a non-uniserial indecomposable left R-module, according to Lemma II.2.2.

If there is a non-uniserial indecomposable R-module X of length 3
with 3 simple socle, then X is necessarily injective and R (being a monmogenic
indec"mposable R-module) is left uniserial. Consequently, RR can be embedded

! X and therefore WX =0 and dim i = 1, where Q = R/W . If dimW, >3,
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then Lemma II.2.2 would give us an indecomposable module 1. of length 5 which

3
is not uniserial. Hence dimwQ =2 . Proposition II.3.3 shows that R has

to be exceptional and therefore balanced.

If there is a non-uniserial indecomposable R-module Y of length 3

with a non-simple socle, then Y/RadyYy is simple and thus, necessarily, Y = R.
2

R
Consequently, W™ = 0 , dimQW 2 and the Indecomposable injective is uniserial

(and of length 2). If dimw 22 , then Lemma II.2.2 would give us an indecompos-

able module 12 of length 5 which is not uniserial. Hence we also have dimW_ =1

Q
Proposition II.3.2 shows that R has to be exceptional and therefore balanced.

As a consequence, we can describe the module category ModR of a

balanced ring. Here, we restrict to left artinian rings, because the property
of a ring R to be left artinian can easily be described in terms of the module

category ModR

THEOREM II1.5.2. [et R bpe a left artinian ring. Then R is balanced

tf and only if the category ModR of all left R-modules 18 equivalent to a
category K with the following properties

(1) the composition factors of any indecomposable object of K are
tgomorphie,

(i1) eveny tndecomposable objeot of K with length > 3 is uniserial,

(111) any two indecomposgble objects of X with length 3 and i gomorph'é
compogition factors gpe igomorphie,

Proof. First, note that R

1s the direct sum of full matrix rings over
local rings R
1

if and only if condition (i) ig satisfied in ModR . And
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then, ModR satisfies (ii) and (iii) 4if and only if, for all 1 , the
categories ModRi satisfy these conditions. Therefore, Theorem II11.5.2 is an

immediate consequence of Lemma III.5.1.

THEOREM 111.5.3. A4 balanced ring has only finitely many igomorphism

typee of indecomposable modules.

Proof. A balanced ring is left artinian, therefore the length of the
uniserial left R-modules is bounded. For any simple module § , all indecom-
posable left R-modules with composition factors isomorphic to 5 are uniserial
or of length 3, and any two of them are isomorphic, if there length is equal.
This follows from Lemma III.5.1. Since there is only a finite number of
non-isomorphic simple R-modules, the number of isomorphism types of indecom-
Posable left modules is finite. By considering the opposite ring, also the

Tumber of isomorphism types of indecomposable right modules is finite.

II1.6. CENTRALIZERS OF INDECOMPOSABLE MODULES

The main result of this section asserts that, if R is a balanced

ing, then the centralizer of every indecomposable R-module is balanced, as well.

This is obvious when R 1is a local uniserial ring; for, in this case an

indec°mposable R-module is isomorphic to R(R/I) for a certain ideal I of R
and the centralizer (C(R/I) is isomorphic to the uniserial (and hence balanced)

ting p/1 .
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PROPOSITION III.6.1. [Let R be a local balanced ring. Then the

centralizer of every indecomposable R-module M {8 a balanced wing.

Proof. 1In view of the remark preceeding the proposition, we can assume

that R is exceptional.

First, let W be the radical of R, Q = R/W , HZ =0 , dilQH =2,

dimwQ =1 and W=gRv+ UTv for two linearly independent elements u, v of

QW - According to Proposition I1.4.3, there are three types of indecomposable

R-modules, viz. A1 , AZ and A3 and, obviously, only the type AZ needs a

consideration. Thus, let M = R/Rv be the injective R-module. Clearly, its

centralizer ( equals to T,/Rv ; the latter is a local ring with the radical

W =WRv and thus w2=o.

X .

Denote the elements x + Rv of C simply by

Now, in view of Lemma I111.5.1, dim (T /H)Q =2 ; thus, let 1+ W
v

and r + W be a basis of (TV/W)Q + Obviously, it is also a basis of Q(Tv/w) '

Therefore,

R=T 4+ =
v Tvr+w Tv+rTv+w.

From here, Ru = Tvu + Tvru and thug,

W=@®Ru@Rv)/Rv=C y@( 5 .

Also, W =Ry + uTV implies readily that

Consequently, writing 0=cly ,

dim (y = 2
Q

and dimfy = 1
Q
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Now, for u € C , define

T;=@ﬁ?e C and ut € Cu)

and deduce from Ru = 1vu + rTvu that
W = WRv=Cu+rCuew CG+;GT; ,

as required. We conclude that ( is a balanced (exceptional) ring.
Secondly, in a similar manner, let the exceptional ring R satisfy

dim W=1 , dimW_=2 and W= wR + Svu for two linearly independent elements

Q Q

U, v of W_ . Again. this time in view of Proposition II.4.5, only R-modules of

Q
type 33 require attention. Thus, let M = R(R D R)/R(u, v) be the injective

R-module. Lifting the endomorphisms of M to endomorphisms of R(R @R) , we

deduce immediately that the elements of the centralizer C of M are induced by
: DR
04 0 gROR) 5 RDR)

with “ij €R, 1 <i, j <2 such that

um + vK = Ay and ur + vn = Ay for some A €R .

11 21 12 22

It is easy to see that the radical @ of the local ring ( consists of all

endomorphisms induced by such matrices with Kij €W . 1o fact, since in this

= sil
case there are o, €R,i=1,2, such that %, =P;v ,one can see easily

that

] 0
“11 M2 “11 7 PrMe
( ) and 0

- Y
"1 %22 21 7 P2"22

i -to- spondence
induce the same endomorphisms. Consequently, there is a ome-to-ome corresp

w, 0
1 i d thus, we
between the elements of W and the matrices (wz 0) with w, €W, an
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can identify them.

Now, put

R I N LTS

Obviously, given v, € W , there are Kil €R satisfying n,.v=w , i =1,2,

il 1
and there are uiZ € R such that

where A is determined by unx

"1 M cp="10
u21 K22 1 w, 0
and writing § = C/l} , we have
dim 4 = 1 .
)

Also, given wl €W, we can find ull €R and g€s such that
v
Y17 VBt Ou,and py € R such that VM), = -Ov . Moreover, it is easy to

determine

B1o and Wy, O satisfy the respective equation and thus

bp B Wy 0

21 By, 00

In a similar manner, given v, €y, one can show that

o (vll V15 (0 0)
= for it '
2 le Yy W, 0 suitable vij s
Hence,

diml), = .
0 2
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Finally, define

v 0 v 0

3@1 = {plp € C and L 0) € (O 0) C)

Thus, 1if %1 Ew, 92 € R arbitrary, %, €R and ko € S, satisfying

Yt 992 = Xov » and © such that X u = Wiy then obviously (Uij)

11
induces an element of S .
%
Now, € i = .
ow, given wl, w2 W , determine 622 by the relation 022u vy
Then
/°11 012>¢ ) ("12v 0)
\ 2 w o/’

%1 %22

Therefore, since we can choose ® € such that

w, -0,.v0
A0 SRS V: )
?C = ( o o/’

we conclude that

¢1C+S¢1 ¢2=ws

48 required. The proof of Proposition III.6.1 is completed.

THEOREM I11.6.2. Let R be a balanced ring and M an indecomposable

R ,
Mmodule. Then the centraliszer of M is a local balanced ring.

Proof. 1In view of Theorem III1.3.1 we may assume that R is the full

m s . :
8trix ring over a local ring R' , where R' is either uniserial or excepticnal.

T : ,
he rings R and R are Morita equivalent, so M and the image M' of M
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! i hic
under a categorical isomorphism of ModR onto Mod R have isomorp

th
endomorphism rings. Applying Proposition II1.6.1 for M' we see that the

centralizer of M' is a local balanced ring.

. . - d
THEOREM 111.6.3. Let R be a balanced ring and M a finitely generate

injective R-module. Then the centralizer of M 1is a balanced ring.

; i ini irect
Proof. A finitely generated injective R-module M is a finite di

sum of indecomposable injective R-modules. It follows from Theorem I111.3.1

+ : : 2 no
that any two indecomposable direct summands are either isomorphic or have

ism
non-trivial homomorphism from ope to the other. Consequently, the endomorph

ring of M is a direct sum of full matrix rings over endomorphism rings of

indecomposable injective R-modules. The latter are local balanced rings, and

thus, again by Theorem III.3.1, the centralizer of M is balanced.

Ti1.7. EXISTENCE OF EXCEPTIONAL RINGS

In this last section, exceptional rings are comstructed and it is

shown the relation to a problem in the theory of division rings.

LEMMA 111.7.1. 1, D be a divigion ring with gn igomorphic subring
Let vy :p - D!

D' such that dimD,D =2,

be an isomorphiem. penote by R
the ring of all pairg (2, B) of elements of D with component-wise addition

and the following multiplication

(al, bl)(aZ’ b2) = (alaz, 'Y(al)b2 + blaZ) .
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Then R 1ig a local ring, and denoting ite radical by W and Q = R/W , we have

2
W =0,dimn W=2 and dimW_ =1
) Q

Moreover, R is exceptional if and only if dimDy, =2 -

Proof. 1t is easy to see that (a, b) is a unit if and only if
a# 0 . Therefore, the radical W is givenby W= [(0, b)l b €D} and R is

a local ring. Obviously, WZ =0 . If (0, b) €W, then

R(0, b) = ((0, d'b) | d' €D'} and (0, B)R=W .

The first equation shows that dim W = dim _,D = 2 , the second that dimwQ =1.

Q D
Now let v = (0, 1) € W ; then Tv =(r €R |vT € Rv)} is given by

T, = ((a, b){a€D' and b € B) ,

and therefore, - dimD., . This implies that R is exceptional if

dimQ(Tv/W) D
and only if diunDD, =2 .

A division ring D with an isomorphic subring D' such that
dimD.D = dimDD, = 2 can easily be constructed: Let D" be an arbitrary
division ring and denote by D the ring of quotients of the polynomial ring
D"[x] in one (commuting) indeterminate. The ring endomorphism D"[x] - D"[x]
which fixes p"

and maps x onto x2 can be extended to an endomorphism

D 5D, and we denote its image by D' . Then, obviously, D and D' are
somorphic and dim D = dimD, = 2 . This yields the existence of exceptional
tings.

As a consequence of the remark above we get the following theorem.
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THEOREM 111.7.2. The following assertioms are equivalent:

; - = R/
(1)  There exists a local ring R with the padical W and Q = R/
2

such that W =0 and diQw X dimWQ = 2, which is not exceptional.

. . . s . D'
(ii) There exrists a division ring D with an tgomorphic esubring
such that dim D=2 gng dimD , # 2 .

Proof. If (ii) 1is satisfied, then the ring constructed in

LEMMA III.7.1 has all the properties mentioned in (1) . Conversely, assume

there exists a local ring R with the properties described in (i) We may

assume dimQW =2 and dimwQ = 1; for, otherwise we may consider the ring

opposite to R . If w is a non-zero element of W and TV = {1 €R]

vt € Rv) , then it follows from Lemma 11I.4.3 that Q and T /W are

isomorphic and that dim(T /W)Q = 2 . Since R {s not exceptional, we have
v

dimQ(Tv/W) $# 2.

Therefore, D =Q and p' = TV/W
(i1) .

satigfy the conditions

with a divigion subring D' sych that dimD,D =2 and dhnDD. $ 2 . Thus,
the question is whether such a subring p'

exists which is, in addition,
isomorphic to p .

3
The last remark shows that the condition ip Theorem II1.3.3 that R/W

is balanced cannot be replaced by the condition that R/w2 is balanced.

REMARK 111.7.3.

There exists q looql ring R with the radical W
such that w° < g

» which {ig not balanced, although R/w2 18 balanced.
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Proof. e start with a division ring D with an isomorphic subring

D' such that diuD.D 22 =dimD_, , and Y : D »D' is an isomorphism. Denote

D
by R the ring of all triples (a, b, ¢) of elements of D with component-wise

addition and the following multiplication
a,, b ¥ ’ ) - 4
(3, b, c) (8 by, cp) = (&), Y(a))b, + b)a, Yl v(a))]e, + Y(by)b, + c;3y)

Then the radical W is given by W = ((0, b, ¢) b, c €D) . It is easy to
see that Uz = {(0, 0, ¢) ‘ c €D) and H3 = ( . Since R/W2 is isomorphic
to the ring constructed in LEMMA 1II.7.1, R/w2 is exceptional. But H2 £0,

and thus Proposition I11.5.3 shows that R itself is not balanced.
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