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Decomposition of Modules
over Right Uniserial Rings

Vlastimil Dlab and Claus Michael Ringel

One of the fundamental problems in the theory of rings is to charac-
terize the rings of bounded representations type in terms of their structure.
The problem has been solved for some classes of rings (for references, see
Gabriel [8]); however, in general, it is still open. In the present paper, we
give a complete solution of the problem for the class of (local) right
uniserial rings with a commutative residue field.

Theorem. Let R be a right uniserial ring with a commutative residue
field Q=R/W. Then R is of bounded representation type if and only if R
is also left uniserial or if W?=0 and W is of length <3. Moreover, if R is
not uniserial and W is of length 2 or of length 3, then there are just 3, or 5,
isomorphism classes of finitely generated indecomposable left R-modules,
respectively, and every left R-module is a direct sum of these. Similarly, if
R is not uniserial and W is of length 2 or of length 3, then there are just 3,
or 5, isomorphism classes of finitely generated indecomposable right
R-modules, respectively, and every right R-module is a direct sum of these.

Here, by a right uniserial ring R we understand a right artinian ring
whose right ideals are linearly ordered by inclusion. In particular, such
a ring is local.

A ring R is said to be of bounded, or finite, representation type if the
lengths of the finitely generated indecomposable left R-modules are
bounded, or if there is only a finite number of finitely generated inde-
composable left R-modules, respectively (cf. [4]). The apparent asym-
metry in this definition is removed by Proposition 1.1. The fact that, for
a semi-primary ring R, the number of the finitely generated indecompos-
able left R-modules equals the number of the finitely generated indecom-
posable right R-modules, implies in conjunction with a recent resylt
of Tachikawa and Ringel [11] that, for a right artinian ring R of finite
representation type, every right R-module is a direct sum of finitely
generated indecomposable right R-modules, that the last statement of
Theorem is a consequence of the preceeding one. We remark‘ t'hat Tachi-
kawa-Ringel theorem is not used to derive direct decompositions of left
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R-modules, but that these decompositions are constructed directly. Also,
if W2 =0 and the length ¢ ;W =3, five finitely generated indecomposable
right R-modules can be described explicitely and an alternative | .oof of
the fact that they are the only ones, based on Tachikawa’s duality theory
[10], can be given (Remark 6.4).

Now, semi-primary rings of finite representation type are necessarily
left artinian, and thus of bounded representation type. And, Theorem
asserts that, for right uniserial rings with a commutative residue field,
also the converse, i.e. the Brauer-Thrall conjecture, holds. The proof of
the essential part of this statement is given in § 5 and involves an extension
of Roiter’s method in [9]. There, Roiter proved the Brauer-Thrall con-
jecture for finite-dimensional algebras.

Throughout the paper, R denotes a right uniserial ring, W its radical
and Q =R/W the residue division ring which is always assumed to be
commutative. Considering W/W? as a left or right vector space over 0,
it is easy to see that if R is not left uniserial, Q must be infinite. In §2,3
and 4, we consider the case when W?2=0. First, the indecomposable
injective left R-module is shown to be of length 2 in §2. Then, in the case
when the length W of W is greater than 4, we construct an infinite
family of non-isomorphic local left R-modules in §3. And, in §4, we give
the description of the five indecomposable left R-modules in the case
0gW=3, and show that every left R-module is a direct sum of these
modules. Let us remark that the case 8 ,W=2 was treated in [53]. Finally,
in §6, the investigation of rings R with W20 is reduced to the case
W2 =0, which completes the proof of Theorem.

We conclude the introduction with a brief remark on our notation.
If A is a ring (with unity), all 4.-modules are assumed to be unital. The
symbols ,M or M, will be used to underline the fact that M is a left or a

right 4-module, respectively. The length of M will be denoted by oM,
the socle of M by Soc M.

§ 1. Correspondence Between Left and Right A-Modules
In [2}, Auslander and Bridger have defined a duality functor by using
projective resolutions of finitely presented A-modules, Starting with a
finitely presented left A-module ,M and a finite presentation f of ,M,
that is a morphism which gives rise to an exact sequence
P—I— 0 M0

with P, ,Q finitely generated projective, they apply the functor

*=Hom,(,—, 4A4)



Decomposition of Modules Over Right Uniserial Rings 209

to f and consider the cokernel M), of f*,
Q:—ﬁ‘_’PA*“’MA—"()'

Obviously, this is a finite presentation of the right A-module M. Also,
starting with a finitely presented right A-module and its finite presenta-
tion g, the application of the functor Hom,(—,, ,A4 ,), which we denote
again by =, leads to a finitely presented left A-module, namely Cok g*.
For a finitely generated projective module ,P, we have ,P**= P, and
also for a finite presentation f: ,P— ,Q of M we get f**= f (as mor-
phisms). Thus, ,M =Cokf=Cokf**, that is to say, it is possible to get
M back. However, it should be noted that starting with M, the module
M is not uniquely determined, since we may use another presentation;
it is only determined up to a “stable equivalence” [2].

Auslander and Bridger usually assume that A is noetherian, but the
above procedure works obviously for arbitrary rings. Moreover, for a
semi-perfect ring A, the existence of projective covers [3] enables us to
define a one-to-one correspondence between finitely presented inde-
composable left A-modules and finitely presented indecomposable right
A-modules. For, if ,M is finitely presented, we consider only minimal

resentations

that is p and f are projective covers of ,M and Kerp, respectively. Two
such minimal presentations f; and f, of ,M are isomorphic (as mor-
phisms); therefore also f*=f3* and Cok f*=Cokf;*. Moreover, if ;M
is indecomposable and not projective, then it is easily seen that f* is a
minimal presentation of Cok f*. Now, M is indecomposable if and only
if f cannot be decomposed as f=f, @ f5, fi: F— Qi with P=PF, @ P, and
a non-trivial decomposition Q=0, @ @,. In this case, in view of the
minimality, there is not even a decomposition f=f, @ f; with, say,
fo: P,—0 and P,+0. We have f=/, @ f, if and only if f*=/*® f1*;
thus, if ;M is indecomposable, also Cok f* is indecomposable. Altogether
we get a one-to-ome correspondence between the finitely presented
indecomposable left 4-modules which are not projective and the !‘mit‘ely
presented indecomposable right A-modules which are not projective.
But the finitely generated indecomposable projective left A-modules aqd
the finitely generated indecomposable projective right A-modules are in
a one-to-one correspondence using the functor *. By means of this
correspondence we can easily sharpen the result of Eisenbud and

Griffith [7] to the following

Proposition 1.1. Let A be semi-primary.

(a) The lengths of the finitely generated indecomposable_ left A-modules
are bounded if and only if the lengths of the finitely generated indecomposable
right A-modules are bounded.
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(b) There is only a finite number of finitely generated indecomposable
left A-modules if and only if there is only a finite number of finitely generated
indecomposable right A-modules and, in this case, the numbers are equal.

Moreover, if (a) or (b) holds, then A is left and right artinian.

Proof. (a) If the lengths of the finitely generated indecomposable left
A-modules are bounded, then A is obviously left artinian. Assume that A
is not right artinian, and write A, =P, @ P,, with an indecomposable P,
which is not artinian. For every natural n, we find a submodule K, of P,

which is generated by n elements and cannot be generated by less than n
elements. Let

Q,—~Z—P,— P/K,—0

be a minimal presentation of P,/K,. Calculating a bound for the length
of the left A-module Cok f¥, we get

8Cokf*28 ,0*—d P*>n—3 P*,

and thus (since @ ,P* is finite), n—0 ,P* can be arbitrarily large. This
shows that A is right artinian. It remains to prove that also the lengths of
the finitely generated indecomposable right 4A-modules are bounded.
But these modules are finitely presented (because A is right artinian), and
therefore they occur as Cok f*, where f are minimal presentations of
finitely generated indecomposable left A-modules M, say

I_’—r Q - M.

In particular, every Cokf* is an epimorphic image of P¥. But, by
our assumption, there is a bound m such that every ,Q is generated by
less than m elements, and consequently there is also a bound m’ such that
every submodule of ,0 is generated by less than m’ elements (take, for

example m' =m- @ ,A). Therefore, also ,P and P} are generated by less
than m' elements. This proves (a).

(b) Now, assume that there is only a finite number of finitely generated
indecomposable left 4-modules. Then there is only a finite number of
finitely presented indecomposable left A-modules, and therefore also
only a finite number of finitely presented indecomposable right A-
modules. Consequently, the semiprimary ring A is both left and right
artinian. For, assume that 4 is not left (or right) artinian and let 4P
(or F,) be an indecomposable direct summand of ,A4 (or 4 ) which is not
artinian. If Q is a submodule of P of finite length then P/Q is obv1ously
finitely presented and P— P/Q is its projective cover. Now, every iso-
morphism P/Q — P/Q’ can be lifted to an automorphism of P which
maps Q onto Q' and thus P/Q = P/Q’ implies Q@ =0Q'. Since P is not left
(or right} artinian, there are submodules of P of arbitrarily large length
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and therefore there is an infinite number of non-isomorphic finitely
presented indecomposable left (or right) A-modules, in contradiction to
our hypothesis. Finally, finitely generated modules over an artinian ring
are finitely presented, and hence (b) follows.

§ 2. Rings with W2=0

As stated in the introduction, R stands always for a right uniserial
ring, W for its radical and Q for its residue division ring R/W which is
assumed to be commutative.

Here, in addition, we assume that W2 =0. Consequently, W can be
considered as a left or a right vector space over Q. One of the main tools
of our paper is the following generalization of the concept of an algebra
over the field Q (cf. [5]).

Definition. A bimodule ,V,, over a field Q with a multiplication o is
said to be an algebra, if (V, o} isa ring and if, forall x,, k,eQ and v, v,€ ¥,

(1, v)) o (v, K) =K, (L) 0 0,) K.

Thus, if W2=0 and w, is an arbitrary (fixed) non-zero element of W,
we can define a Q-isomorphism ¢: Q,— W, by pe=w, p and define a
multiplication - on W as follows

(W, p)ow, p)=w, p p, forall p,,p,e0Q.

One can see immediately that ,W, is an algebra with respect to t_he
operation - and that (W, o) is isomorphic to Q; it is therefore commutative
and w, is its identity element. The proofs of the statements which follow

will illustrate the use of this concept.
Lemma 2.1. Let W?=0 and 0+ w'e W with

iw=wp forsome A peR.

Then Aw=wp for all we W.

Proof. Obviously, we can assume that 4¢W and peé.l/‘V. Then, we
consider the algebra (W, o) with the identity w; =w’ and, writing

l=A+WeQ, p=p+WeQ,
calculate

iw=iw=—-(}:w)ow’=i(Wow’)=]:(w’ow)=(}:w’)ow

:(W’ﬁ)ow=wo(w' ﬁ):(wow’)ﬁ:wp,

as required.
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Lemma 2.2. Let W?=0 and

T={teR|wteRw for all we W}.
Then 0 xW=00Q,.

Proof. First, notice that
6,,W=6QW and 6QT=6QT,,,,=6T,WQ,

where T/W is obviously a subfield of Q. Thus, in order to establish the
lemma, it is sufficient to show that

O rw@=0,W.
Notice that, in view of Lemma 2.1,
T={reR|w,1eRw, for a (fixed) non-zero w eW}.

Now, writing p=p+ WeQ, 1=1+WeQ and T=1+ We T/W, define the
morphisms a: Q— Wand g: T/W— Q by

pa=w, p
and

TA=4 with i satisfying wyT=Aw, .

Clearly, both « and g are well-defined bijections. In fact, it is easy to
verify that « is an isomorphism between the additive groups of Q and W
and f is a ring isomorphism of T/W and Q. Moreover, if peR, e T and
AER withw, 1= w,,then (T pla=Tpa=w, Tp=Aw,p=Aiw, p=(Tf)(pa),
and this implies the required equality.

Proposition 2.3. Let W2=0 and dim oW=s. Then the injective in-
decomposable left R-module (E is of length 2.

Proof. First, let us show that the right action of Q on W is transitive
on hyperplanes, i.e. on (s—1)-dimensional subspaces of oW. Let us

choose a basis
Wis Wy, W, of W,
take the hyperplane H generated by the vectors w,, Wy,...,w,_, and
show that, for any given hyperplane H' generated by s —1 vectors
0= Ww, 1Zk<s—1,
i=1

there exists e Q such that Ha=H’; let
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Notice that

s 3
wia=(wiow ) a=(w a)ow;= Y a(w;ow)=73 B;w,
j=1 j=1
where f8,; are Q-linear combinations of «;s. Now, for each 1Siss—1,
o is required to satisfy

5 s—1 s-1 s
Zlﬁij j=wi°‘=kzl'<ik U= 2 Z’Cik Hy; Wy
i= =

k=1 j=1

yielding a homogeneous system of s(s — 1) linear equations

s—1

Bij *"kZ K ;=0
-1

for unknowns a; and k;, over Q. Since the number of the unknowns is
s+(s—1)2=s(s— 1)+ 1, the system has a non-trivial solution. Moreover,
it is easy to see that all a;’s cannot be zero and thus there exists a (non-
zero) o with H a = H’, as required.

Finally, in order to prove that ;E=R/H is injective, it is sufficient
to show that every morphism

@: RW—gE

can be extended to a morphism from pR to gE. In view of the first part
of our proof, we can assume that

w,p=0 for 1SiSs—1 and w,e=Alw,+H.

Then, taking peQ such that w; p=2Aw, and making use of Lemma 2.1,
it is easy to check that the right multiplication R —2, .E is an extension
of . The proof is completed.

§ 3. Rings with W?=0 and dim ,W 24
The objective of this section is to prove the following
Proposition 3.1. Let W?=0 and dim ;W =s24. Then there is an
infinite number of non-isomorphic local left R-modules of the same length
(equal to 0 xkR—2).
Proof. In order to prove Proposition 3.1, we are going to investigate
the right action of the field @ on the two-dimensional subspaces ,P

of ,W. Observe that two local R-modules of length 0 xR—2, say R/P
and R/P’, are isomorphic if and only if there is e Q such that

Pa=PFP,
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this follows immediately from the fact that an isomorphism between the
modules can be lifted.

First assume that s=4. Consider the algebra (oW, °) and choose a
basis for ,W. Obviously, there are two cases to be considered: We may
assume that the basis is either of the form

4
—w? w w3 wr a_
Wi Wy, Wy=wi,w,=w3 with wi=Y mw,
i=1

or of the form
2 4
Wi, Wy, Wy, Wo=wyowy with wi=) p,w, and wi=) mw,.
i=1 i=1
Let us observe that there is an infinite subset {x,, «,, ...} of non-zero
elements x; of the field Q such that
Kiti;+x,kn,+0  for every i=+j.

Correspondingly, there is an infinite number of distinct planes F,c ,W
generated by the vectors

w, oand w4k, wy, i=1,2, ...

We are going to show that all R/F, are non-isomorphic.

Assuming the contrary, take i+j and aeQ such that Pac B;let

4
wia=Y a,w;, with aeQ.

i=1

We are going to show that necessarily «=0. First, since w, aeP, we
have o, =0 and

3
Z o wi= U, w, +v1(w2+KjW3)-

i=1

From here, u, =a,, v; =a, and, consequently,

%3 =0 K;.
Furthermore,

3 4
(W, +K; wi)o= (_Zlai Wi) oWy +x;,wiy)=13 B, w,eF,
i= 1

i=

and thus
Ba=ayKi+ay+oayx,my=0.
Therefore,
o, (K + K+ K; K;my)=0,
and hence,

a, =0.

S ;‘p.‘ t,
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Thus, also a3 =0. Consequently,

(wy + K wa)a=ay wy+ay K; waEPR.

Therefore,

A Wy 0 KWy =y Wy +V, (W, +K; W),
and we get

u,=0, v,=a; and o,(x;—x;)=0.
Thus, a; =0 as required.

Now, if s >4, then we can always choose a basis of ,W which contains

a subbasis of one of the following three forms:
either (i) w,, w,, wy=w3, w,=w3, ws=wj3,
or (ii) wy, Wy, Wy, Wy =w, o wy with wi=p, w, +p, w,,
or (i) w,,w,,ws, W, =W,0w;, Ws=W5.
In either of these three cases, it is a matter of routine to check that the
above method applies and to complete the proof of Proposition 3.1.

§ 4. Rings with W2 =0 and dim ,/W =3

Throughout this section, we shall always assume that the ring R
satisfies the conditions W2=0 and dim ,2W=3. And, {w;, w,,w;} will
be a fixed basis of ,W.

In view of Proposition 2.3, we can formulate

Lemma 4.1. Let W?=0 and dim ,W=3. Then there are just 4 iso-
morphism classes of local left R-modules Ly, L,, Ly and L,, represented
by the simple module xR/W, injective module gR/(Rw  +Rw,), by gR/Rw,
and by gR, respectively.

Lemma 4.2. The left R-module
Xs= (RR('BRR)/(R (w;, 0)+R(0, w )+ R(w,, w3))
does not possess epimorphic images of types Ly or L; consequently, X 5 is
an indecomposable module of length 5.
Proof. First, let ¢: X5 — gR. Then, ¢ can be lifted to
R@®zR ————>(:;) R
R R R

with w,«, =w, o, =0. Hence, @, and a, lie in W and ¢ cannot be sur-

jective.
Second, let : X, — xR/Rw,. Again, § can be lifted to

(5,)
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with
w,Bi€Rw;,  w,f,eRw, and w,B +w;B,eRw,.

Now, in view of Lemma 2.1,

therefore, w, f; =w, f, =0 and we deduce again that B, and B, belong
to W. Thus  is not surjective.

Finally, the fact that X is indecomposable follows easily. For, if X,
were decomposable, then it would be a direct sum of two local left
R-modules one of which would be of type L, or L,.

Lemma 4.3. Let N be a simple submodule of a direct sum M of modules
of type L. Then either M/N contains a submodule of type L, or M/N is
a direct sum of a copy of X s and several copies of L,.

Thus, in particular, if {x, y, z} is another basis of oW, then
X =(rR® zR)/(R(x,0)+ R(0, x)+ R(y, 7)== X,.
Proof. Obviously, we may assume that M is a finite direct sum. Let
M=(® (R)D
with D= ® R w,, be a representation of M. Let

N=R[(x,x,,...,x,)+D].

Observe that the left ideal L=Rw,+ Y Rx, satisfies the relations
Rw,+LcW, =1

First, assume that L.+ W and write, without loss of generality,

L=Rw,+Rx,.
Then, for 2<i<n,

X;=kKk;w;+4;x; with suitable K, LER,
and we have

M/N =(® gR)(D+R(x,,x,, ..., X)) =(D RR)/(D"-R(xl,)»z Xysares ApXy))

Take p;e R such that

X pi=—4Ax, for 2<i<n,
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and consider the isomorphism ¢: @ xR — @ R given by the following

triangular matrix of right multiplication

1 py p3 o Pa
! 0

Clearly, in view of Lemma 2.1,

D1=[D+R(x1siz xla"',inxl)](P:D-i-R(xl)O’ "'10)5

and thus
M/N =(® zR)/D;

contains a submodule of type L,, namely
R[(1,0,...,0)+ D]=gR/L.
Thus, let L= W and let
L=Rw +Rx;+RXx,.
Then, there are elements ¢;, y;, v,;€R such that
EwWy X VX =W for j=1,2.
Moreover, take «;, f; (j = 1, 2) such that
xpop=p;x; and  x; f;=v;x,,
and consider the isomorphism ¥ : G"-) rR -—>€n-) <R given by the matrix

o, o, O
B, B, O
o 0 1 0
0 1
Again, using Lemma 2.1, observe that
D’=[D+R(x1,x2,x3,...,x,,)]l/1=D+R(w2,w3,x3,...,x,,).

Now,
x,; =g w, +pw,+v,wy for 3=i=n;



S, TR T A P e T

218 V.Dlab and C.M. Ringel:
take, for 3<i<n, a; and B, such that
Wr ;= —p;wy, and w;fi;=—vw,,

and consider the isomorphism n: @ R — @ &R given by the triangular

matrix "
10 ay ... «a
1 ﬂS ’ [jn
1
0
0
1

It 1s easy to verify that
D,=D'n=D+R(w,,w;,0,...,0),
and, consequently, that
M/N=(® xR)/D,=X.®K,
where K is the direct sum of n— 2 R-modules of type L,.

The final statement of Lemma 4.3 follows trivially.

Lemma 4.4. Let xeSoc X. Then there exists a submodule of type L,
in X containing Xx.

Proof. Without loss of generality, assume that the basis {wi,w,,ws}
of ,W satisfies with respect to the multiplication of the algebra (W, o)
the following conditions: w, is the identity, Wi=w,ow, and wyow,=
3

Y m;w;; notice that 1, +n, 1, +0.
i=1

Refer to Lemma 4.2 for the definition of X s and put
x=(x,,X,)+ D
with D=R(w;,0)+R(0, w,)+ R(w,, w,), Xp=Kwy and x,=puw,+vws,.
If « =0, then
x€R[(0, 1)+ D]=yR/Rw,.

Thus, assume k +0. Consider the homomorphism

@: RR-=Es \ROR -5 X,
where

wio=(Kn,—v)w, +kw,,

wiB=(u—km)w +xw,,
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and ¢ is the natural epimorphism. Obviously,
w o=[kn;—v}w, +xw,, (U—Kkr)w, +Kxw;]e=0,
W, @=[(KTy V)W, +KW;, KT, W, + W, +KTyWw;]¢
=[kwi+(kny—v)w,, (uw,+vwy)+rm w, (kK —v)w;]e

=(x,,x,)+D,
and

wy@=(..., 4, w, +K(n, +7, n;)w,+ A3 w3)e+0,

because k(m, +m, m;)+0. Consequently, R¢ is of type L, and xeR ¢,
as required.

Lemma 4.5. Let xeSoc(P@®Q), where P~ X, and Q=L,. Then there
exists a submodule of type L, in P@Q containing X.

Proof. Again, assume that the basis {w,, w,, w;} of ;W satisfies with
respect to the multiplication o the same conditions as in the proof of
Lemma 4 .4.

Consider the following representation of P@Q:
POQ =(xROR®zR)/D,
where D=R(w,,0,0)+ R(0, w;, 0)+ R(w,, w;,0)+R(0,0, w,); let
x=(X;, X5, %3)+D.
In view of Lemma 4.4, we may assume that x; 0. Furthermore, we may

3
obviously assume that Rw, + Y R x;=W. But then it is easy to follow

i=1
the method of the proof of Lemma 4.4 and to verify that there is an
automorphism ¢ of xkR@zR@®gR such that

D'=D@=D+R(0,w,,w,).
Thus,
M’ =(POQY/R x=(:R®R®R)/D'.

Now, consider the following mapping
RR (x, 8, V) RRC'BRR@RR‘_E“)M’,

where wya=w,, w,f=n3w, +W,, W 7= —T, W, +W, and ¢ 1s the
natural epimorphism. Obviously,

w, @ =(Wy, T3 Wy + W3, T, Wy + T3 wy)e=0

- e e+
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and

Thus, kRR@=R(m+Rx) is an injective submodule of (P@®Q)/R x. But
since P@Q does not contain any injective submodule, xeRm and Rm
is of type L, as required.

Lemma 4.6. Let M be a direct sum of copies of X,. Then every socle

element of M is contained in a submodule of type X, and for that matter,
in a submodule of type L,.

Proof. First, consider the case when M = P@®Q is the direct sum of
two copies P,Q of X . Let x=(p, q) be an element of Soc M. By Lemma 4.4,
q belongs to a submodule Q' of Q@ of type L, and thus x belongs to
P@Q'. Consequently, in accordance with Lemma 4.5, x belongs to a
submodule N=M of type L,. Therefore, M/R x contains an injective
submodule N/R x (of type L,). It follows that

M/Rx=N/Rx®C

for some complement C. We want to show that C also contains a sub-
module of type L,. Let P=Rm, +Rm,, Q=R m;+Rm, with dRm;=3

for all 1=i=<4. Then three of the m’s generate together with N the
entire module M, say

M=Rm +Rm;+Rm;+N=P+Rm;+N,

and thus C is an epimorphic image of P+ Rm,. Since 8(P+ R m,)=8
and 0C=7, there is a socle element yeSoc(P + R m,) such that

C=(P+Rm,)/Ry.

But, by Lemma 4.5, y belongs to a submodule of P+R m; of type L,,
and therefore C contains a submodule of type L, . Summarizing,

M/Rx=I,®1,®&C  with I, and I, of type L,.

If we lift the homomorphism
rRR® R 1, DI, > M/R x,

with the canonic epimorphism ¢ and imbedding 1, to a homomorphism
grR @ gR— M, then both copies of zR are mapped onto submodules of
type L, which intersect in R x; this follows from the fact that M has no
submodules of type L,. Now, according to Lemma 4.3, the latter two
submodules of M generate a submodule of type X, which contains x.

And, the lemma is proved in the case that M is the direct sum of two
copies of X.
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In the general case, we may assume that M is a finite direct sum;
for, every element of M has only a finite number of non-zero components.

Thus, let
U e X=(X;, Xp,..., X,)JESOC M=Soc(®Xj).

Assuming, by induction, that (x,, X, ..., x,_;)€Soc( @ X,) belongs to a
submodule P'S @ X of type X, -t
n—1

X =((X0, X5, .05 X,_ 1 s X,)€SOC(P' D X5).

But then, by the first part of the proof, x belongs to a submodule of M
of type X, as required.

The last statement of Lemma 4.6 is an immediate consequence of
Lemma 4.4.

Lemma 4.7. Let xeSoc(P@®Q), where P is a direct sum of modules of
type X and Q is a direct sum of modules of type L. Then there exists
either a submodule of type L, in P®Q containing x or there is an auto-
morphism ¢ of P@Q which is the identity on P and which satisfies x € Q.

Proof. Since x has only a finite number of non-zero components and
since an automorphism of a direct summand extends to an automorphism
of the entire module, we may assume that both P and Q are finite direct
sums. Write x=p+q with pe P and ge Q. Then, by Lemma 4.6, p belongs
to a submodule P’ of P of type X . Assuming that the lemma is true for
P’ @ Q, then either x belongs to a submodule of type L; inPP@eQsP PO,
or else there is an automorphism ¢ of P'@Q which is the identity on P’
and which satisfies x €. Obviously, we can extend ¢ to an auto-
morphism of P@Q which is the identity on P. It follows that it is sufficient
to consider the case when P is of type X and Q is a finite direct sum of
modules of type L, . Let

POQ=(® zR)/D,
with D=@Rw, +R(w,,w;,0,...,0). In view of Lemmas 44 and 4.5,
we may as's'ume that n=4. Let
X=(X{, Xz, ..., X))+ D.
Without loss of generality, assume that
x;eRw,+Rw; for 1=isn.

First, suppose that there are two linearly independent elements
among X,, X, , ..., X,; say, x3 and x,. Then
x;=Kk;x3=4;x, for j=1,2,
16 Math. Z..Bd. 129
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and there are elements p;, g€ R such that

xyp;=—k;x; and x,0,=-4ix, (j=12).

Consider the automorphism of @ 4R defined by the triangular matrix

1
0 1
Py P2 1 0

g, 05 0 1

0
1

acting from the right. In view of Lemma 2.1, it maps D into D and thus

induces an automorphism ¢ of P@Q. It is easy to see that ¢ acts as the
identity on P and that

[(x;, %2, .., X, )+ D] @=(0,0, x4, ..., x,)+DeQ.
Second, if all x5, x,, ..., x, are multiples of a certain x,, then
x;=Ax,=x,p; withsuitable i,,p.eR for 3<i<n.
We may assume that not all p’s belong to W. Consider
m=(0,0, p3,p4,...,p)+D.
Obviously, by Lemma 2.1,
x,m=(0,0,x, p3, % p,, e X P) +D=(0,0, x5, x,, v X))+ D,

and thus xe P+ R m. Since, again according to Lemma 2.1, w, m=0 and
since P@Q contains no injective submodule, necessarily 6R m=3; hence,

Rm is of type L,. Consequently, in view of Lemma 4.5, x belongs to a
submodule of type L,, as required.

Lemma 4.8. Let M be a direct sum of submodules of types Ly, L,

and Xs. Then every socle element of M is contained in a submodule of
type Lyor L,.

Proof. Write
M=((';3RR)/D, where Do GIBRW with an index set 1.
Since, Soc M =Rad M, we have
Soc M =(® W)/D,

I
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and thus xe Soc M can be written in the form

x=(w)+D with (w)e® W.
i

Take a fixed non-zero we W and define the element

(Pf)E@RR

as follows: If w;=0, then p,=0; if w,;+0, then p, satisfies the relation
w p,=w,. Obviously,
W(P,-)'—‘-(Wi),
and thus
wl(p)+D]=(w)+D=x.

Since M contains no submodules of type L,, the submodule
R{(p)+D]=M

containing x must be of type L, or L,.

Proposition 4.9. Let W2 =0and 0 ;W=3. Then there are 5 isomorphism
classes of indecomposable left R-modules L,, L,, Ly, L, and X;, defined
in Lemmas 4.1 and 4.2. Moreover, every left R-module is a direct sum of
these modules.

Proof. To prove our proposition, we shall show that every left
R-module M can be expressed as a direct sum of modules of types L, L,
Ly,L,and X,.

First, take a submodule I of M which is maximal with respect to the
property of being a direct sum of modules of type L,. Since [ 1s injective,
M is a direct sum of I and a submodule of M which contains no sub-
modules of type L, .

Thus, assume that M does not contain any submodule of type L,
and let X be a submodule of M which is maximal with respect to the
property of being a direct sum of modules of type X,. Then, let Y; be a
submodule of M which is maximal with respect to the property of being
a direct sum of modules of type L, which intersects the submodule X
trivially. Furthermore, let ¥, be a submodule of M which is maximal with
respect to the property of being a direct sum of modules of type L, which
intersects the submodule X @ Y, trivially. And finally, let Z be a comple-
ment of the socle Soc(X @ Y; @ Y,) in Soc M. We want to show that

XeYV,eY, ®Z=M.
Assume the contrary, i.e. that there is an element

meM~X®Y, @Y, ®Z).

16*

T
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Then Rm must be of type L, or L,, because m¢ Soc M and M contains
no submodules of type L,.

First, consider the case that Rm is of type L, and that
X ® Y5nRm]=1.
Then, the submodule N =(X @ Y,)+ Rm< M is isomorphic to
XD Y@ Q)/Rz,

where Q is of type L, and zeSoc(X @ Y; ® Q). Hence, by Lemma4.7,
N either contains a submodule of type L, , which is impossible, or there

is an automorphism ¢ of X @ Y; @ Q which is the identity on X and
which satisfies zg e Y; ® Q. In the latter case,

XS, DQ)/Rz=2X ® [(Y;D Q)/R(z9)];

however, in view of Lemma 4.3, (Y; ® Q)/R (z¢) contains either a sub-

module of type L, which is impossible, or a copy of X, in contradiction
to maximality of X.

Thus, consider the second case when R m is still of type L,, but

(XD Y,)nRm]=2.
Writing

N=(X@Y)+Rm=(X®Y,;® Q)(Rz;, ®Rz,),

where @ is of type L; and z;,z,eS0¢(X @ Y, ® Q), we deduce from
Lemma 4.7 that there is an automorphism ¢ of X @ Y, @ Q which is the
identity on X and which satisfies z, €Y, @ Q. This follows from the

obvious fact that z, cannot belong to a submodule of X @ Y,®Q of
type L. Now,

N'=[(X ® Y, ® Q)/R{z,9)}/R(z, ).

By Lemma4.3, (X @ Y; @ Q)/R (z, ¢) contains either a submodule of
type L, or a submodule of type X . By passage to the quotient module N’,
a submodule of type L, cannot avoid the kernel R(z, ¢); but then it
produces a simple direct summand of N, a contradiction. Thus, the only
possibility is that (X @ Y; @ Q)/R (z, ¢) contains a submodule of type X
which, in view of maximality of X, cannot avoid the kernel R(z, ).
Thus, N' contains a submodule isomorphic to a quotient module of X 5
by a simple submodule. But such a quotient module contains, according
to Lemma 4.4, a submodule of type L,. This contradiction completes the
first part of the proof.

Second, consider the case when Rm is of type L,. Since

(X®Y,® Y, )nRm=0,
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there is, according to Lemma 4.8, a submodule RacsX @ Y, ® Y, of

type L, or L, such that
RanRm=%0.

Let r,a=r,m=+0 for some r,, r,eR. Obviously, r, and r, are non-zero
elements of W and thus, since R is right uniserial, there exists pe R with
r,p=r,. Put b=m-pa. Then

r,b=r,m—r,pa=0,

and thus @R b<3. Consequently, in view of the first part of the proof,
RbSX®Y,® Y, ®Z, and thus

RmcRa+RbcX®Y, @Y, ®Z,
as required.

§ 5. Brauer-Thrall Conjecture

We have seen in § 1 that, under certain assumptions, R 1s not of finite
representation type, and we want to deduce that R is not even of bounded
representation type.

Roiter [9] has shown thatevery finite-dimensional algebra of bounded
representation type is of finite representation type. In his paper, he
remarked that the same conclusion holds for an arbitrary left artinian
ring and that, to prove it, only the proof of a certain lemma requires
slight modifications. However, in order to exclude at least the case where
one of the indecomposable injectives is not finitely generated, it is clear
that already the statement of that lemma has to be modified. And thus it
remains open whether there are left artinian rings which are of bounded
representation type, but not of finite representation type.

Here, we shall show that, for a right uniserial ring R with W?2=0and
commutative R/W, Roiter’s method can be used. To this end, the following

lemma is crucial.

Lemma 5.1. Let R be left artinian and W* =0. Given a finitely generated
left R-module M, there is a local ring Tand a bimodule structure gM such
that, for every finitely generated left R-module gN, the left T-module
Extl (M, gN) is finitely generated and is annihilated by the radical

Rad T.
Proof. Assume that ;M =0 and put
T={teR|wteRw for allwe W}.

We will show that M can be considered as a right _T-module and, more-
over, that M, is finitely generated and <M is a bimodule. For, let

M={(@® gR)/D, where Dg(? W
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Then the scalar n x n matrices

T
T with 1eT,
o .
T

form a subring of End(@® rR) isomorphic to 7, and all these endomor-

n
phisms map, in view of Lemma 2.1, D into D. Now, according to our

assumption, J x W is finite and thus R is finitely generated by Lemma 2.2.
Consequently, also

M;=(® R;)/D
is finitely generated. "

Now, we want to prove that, for an arbitrary finitely generated
R-module gN, the left T-module Ext} (M, ¢ N) is finitely generated and
annihilated by the radical Rad T of T. Denote by E ;N the injective hull
of xN and consider the exact sequence

0—gN—-EiN—(EiN)/N -0,
which gives rise to the exact sequence of left T-modules
Homyg (M, (E gN)/N)— Exth(xMy, (N)— Extp(xMy, EgN).
Obviously, since E ¢ N is injective, the last term is zero. Consequently, the
left T-module Exty(, M, pN) is an epimorphic image of
rH=Hom,(zM,, (E gN)/N),

and therefore it is sufficient to prove the assertion for +H. Since the
injective indecomposable module E 4Q is of finite length, also (E rN)/gN
is of finite length; hence, (E ¢ N)/;N is isomorphic to a finite direct sum
® Q. Also, using the above representation M =(@ .R)/D, one can see

easily that every homomorphism
rRM — (ExN)/iN
factors through @ (xR/xW)=@® RQ, which is again an R-T-bimodule

n
decomposition. Thus, we get the T-isomorphisms

THEHomR(? rR9T, ? #Q)=® Hom, (@71, rQ),

where the last T-module Homg(zQr, Q) is obviously annihilated by
W=Rad T and, according to Lemma 2.2, finitely generated.

Now, having proved that, for any two finitely generated left R-modules
rM and gN, always Extg(xM;, xN) can be considered as a finite-dimen-
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sional left vector space over T/Rad T, only a slight modification of the
proof in [10] (consisting in replacing the base field by the division ring
T/Rad T) is required to establish the following assertion.

If, under the conditions of Lemma 5.1, M;, M,, ..., M,, N are finitely
generated left R-modules, then there exists a natural number n, such that,
for every exact sequence of left R-modules

!
0O->N—-X—® ®M—0 with n,z0 and dgX>ny,

fm1 n

there is a direct decomposition of the left R-module X of the form X =Y@® M,
for some i.

Now, using this assertion, the method of [9] yields that R is in this
case of bounded representation type if and only if it is of finite representa-
tion type. Therefore, if R is left artinian, W?=0 and & ;W 24, then, by
Proposition 3.1, R is not of bounded representation type. But, if R is not
left artinian (and W2=0), then R has obviously local left R-modules of
arbitrary finite length. Consequently, we get

Proposition 5.2. If W2=0 and 0 W24, then R is not of bounded
representation type.

§ 6. Rings with W20
In this final section, we are going to reduce the investigation of rings
R with W20 to the case when W2=0. First, we need the following
Lemma 6.1. Let W20, W3 =0 and 8 (W/W?*)22. Then d xW? 2 4.

Proof. Since R is right uniserial and W3=0, R has only two proper
right ideals, namely W and W2, and these are the only two-sided ideals

of R.
Now, for ae W~ W2, the left annihilator [(a) is just W?2. For, since

ae W, obviously W< I(a). On the other hand, if bel(a), then
bW=baR=0,

because W =aR. Thus b belongs to the right socle of R which equals W2
Let S=R/W? and consider W as a left S-module. Evidently

Rad JW=Rad ;W=W2
As we have shown, every element ae sW ~Rad ;W has zero-annihilator

in S and thus,
Saz=S.
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Therefore, if 65(W/W?2)=0 o(W/W?*)2 4, then

0Soc(Sa)=cSocS= 4
and hence
aRW2=65W2=c"SocsW;4.

As a consequence, we may assume that
Cs(W/W?3 =2 or 3.

But then, we can apply the decomposition theory to (W. Since for every
aesW~Rad W, SaxS, it follows from Proposition 3 of [5] or from
Proposition 4.9 that (W is a free S-module. Moreover, it is obviously a
free S-module on 2 or 3 generators, and thus & W2 =0JSocgW =4, as
required.

Now, our intention is to construct, for every local ring R with W20,
another local ring with radical-square zero and compare the indecompos-
able modules of both rings. This will be done in the following lemma
which modifies arguments of Auslander [1]. Recall that, given a bimodule
M, over a ring A, the split extension of aM by A is a ring whose
additive structure is that of the direct sum A4 @ M and whose multiplica-
tion is given by

(a,m){a’,m)=(aa’, am’ +ma’).

We shall identify M with the two-sided ideal O @ M. Notice that, if 4 isa
local ring, the split extension is a local ring as well.

Lemma 6.2. Let A bea local ring with radical J and S=Soc ,AnSocA,.

Let B be the split extension of 4S84y by AlJ. Then, if A is of bounded
representation type, also B is of bounded representation type.

Proof. We shall define a function F from the set of all isomorphism
classes of finitely generated left B-modules into the set of all isomorphism
classes of finitely generated left A-modules as follows. Given a finitely
generated left B-module ,M, we consider its representation

sM=(® ,B)/D with D= @ ,s.

If (® zB)/D’ is another such representation of ;M, then obviously m=n

equals the minimal number of generators of sM, and there is an auto-
morphism ¢eEnd (@ zB) with D o =D'. We can write ¢ asan n x n matrix
¢ =(by;), where b;;e B. If ¢’ =(b; ) End(@ ,B) with b, — bj;e S for all 1 <i,
J=n, then, in view of DS=0, also D¢'=D', Thus, we may take

bij:(aij+.], 0) for some a;eA.
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Now, consider (a;)€eEnd(® ,A4). Since D(a;)=D’, (a;) induces an
endomorphism of (® ,4)/D. It is easy to verify that (a;)) induces, in fact,
an isomorphism between the left 4-modules (@ ,A4)/D and (® ,A4)/D".

Denote the isomorphism class (or its representative) of these modules by
F(M). The above argument can be reversed which shows that F is an
injective mapping.

Now, assume that ;M =(@ gB)/D is indecomposable. Then also

F(M)=(&® ,A)/D is indecomposable. For, assume that F(M)= ,X @ ,Y.

We can write

X=(® 44)/D, and ,Y=(® ,A4)D, with n,+n,=n.

na

Thus, there is an automorphism ¢ =(a; )€ End(@® ,A4) mapping D onto
D, &® D,.Since DS @ ,S§, also "

D,® D2=D(P§(® AS)¢=®AS,

and therefore F(M) is also the image of

(@ BB)/DI @ (@ BB)/DZ

under F. Hence, the latter module is isomorphic to gM. It follows that
either n, =0 or n,=0. Consequently, the image F(M) of an indecompos-
able B-module M is an indecomposable A-module.

Finally, it is evident that d ;M <4 ,F(M), and thus, if 4 is of bounded

representation type, so is B.

Proposition 6.3. If W2 +0 and R is of bounded representation type, then
R is left uniserial.

Proof. Obviously, we may assume that W?=0.If Risnot qut uniserialz,
then 8 ,W?2=4, by Lemma 6.1. Denote by B the split extension .of QWQ
by O = R/W. Note that W2 =Soc xR =Soc Rg. Now, Bis a local ring with
(Rad B)?=0, B/Rad B=~Q and d ;Rad B=4. Thus, in view _of Proposi-
tion 5.2 and Lemma 6.2, R is not of bounded representation type, in
contradiction to our assumption.

Remark 6.4. In this final remark, we would like to supplement the
description of the indecomposable left R-modules given. in Lemmas 4.1
and 4.2 by a similar description of the indecomposable rlght R-modules.
It is easy to verify that, if W?=0 and 8 zW =3, then the simple module
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C, = Ry/W, the projective module C,= Ry, the module

Cy=(Rz @ Rp)/(wy, w,) R,
the injective module

C,=(Rg ® Ry ® Rp)/l(w,, w3, O) R+(w,, 0, w3)R)
and the module
Ys=(Rg @ Rz @ Rp)f(w;, wp, w3) R
are non-isomorphic indecomposable right R-modules.

Proposition 1.1 yields then that these are the only indecomposable
right R-modules. The latter statement can be also derived by means of
Tachikawa’s duality theory [10], using the following statement the proof
of which is rather technical: If W2=0 and 8 ;W =3, then the centralizer
% =End(C,) is a local ring with radical #" such that % 2=0,2=%/W"
is commutative, 0 J# =3 and #, is simple.
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