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QF — 1 RINGS OF GLOBAL DIMENSION <2

CLAUS MICHAEL RINGEL

R. M. Thrall [10] introduced QF — 1, QF — 2 and QF — 3 rings as generali-
zations of quasi-Frobenius rings. (For definitions, see section 1. It should be
noted that all rings considered are assumed to be left and right artinian.) He
proved that QF — 2 rings are QF — 3 and asked whether all QF — 1 rings
are QF — 2, or, at least, QF — 3. In [9] we have shown that QF — 1 rings are
very similar to QF — 3 rings. On the other hand, K. Morita [6] gave two
examples of QF — 1 rings, one of them not QF — 2 and therefore not QF — 3,
the other one QF — 3, but not QF — 2. The global dimension of the latter
ring is 2, and the following theorem shows that under this assumption a
QF — 1 ring must always be QF — 3.

THEOREM. A QF — 1 ring of left global dimension <2 is a QF — 3 ring.

In order to classify finite dimensional algebras, T. Nakayama [8] defined the
dominant dimension dom dim R of a ring R. Since dom dim R = 1 if and only
if R is a QF — 3 ring, and, in this case, dom dim R = 2 if and only if the
minimal faithful left R-module is balanced, we may reformulate the theorem
as follows: a QF — 1 ring R of left global dimension £2 has dom dim R z 2.
It was proved by K. R. Fuller [4] that for a ring R with domdim R = 2,
every faithful module which is either projective or injective has to be balanced.
Naturally, the question arises whether it is possible to characterize those
rings R of left global dimension <2 which have dom dim 2 2 by the fact
that certain faithful R-modules are balanced. This question seems to be
interesting in view of the importance of the class of rings of global dimension
<2 and dominant dimension =2, recently demonstrated by M. Auslander [1].

The proof of the theorem uses besides the socle conditions of [9] a result
concerning the right socle of a QF — 1 ring, and the methods to prove this
are similar to those developed in [9]. The assumption in the theorem on the
global dimension can be replaced by the (weaker) condition that the right
socle, considered as a left module, is projective.

1. Preliminaries. Throughout the paper, R denotes a (le.ft and right)
artinian ring with unity. By an R-module we understand a unital R-moc!ule
and the symbols zM and My will be used to underline the fact that M is a

left or a right R-module, respectively.
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The length of the module M will be denoted by dM. For every module A/,
Rad M is the intersection of all maximal submodules. The radical of R is by
definition RadgR; it will be denoted by W. It is well-known that for an
artinian ring, W is nilpotent. The submodule of M generated by all simple
submodules, is called the socle, Soc M of M. Since R is artinian, we have for
every left R-module, Rad M = WM and Soc M = {m € M|{Wm = 0}.
Considering pR, we get the left socle L = Soc zR, considering Ry, we get
the right socle J = Soc Ry of R.

If ¢ is an idempotent, Re always will be considered as a left R-module, and
the R-homomorphisms Re — Re’ (where ¢ is another idempotent) will be
identified with the elements of eRe’. Also, it should be noted that Re and Re’
are isomorphic if there are elements x € eRe¢’ and y € ¢’Re with exy = e.
The ring R is called a basis ring if for orthogonal idempotents e and e’, Re and
Re’ never are isomorphic. Basis rings can be characterized by the fact that

eR(1 — e) € W for every idempotent e, If R is an arbitrary artinian ring
and we write
1= Z €3

1%

with primitive and orthogonal idempotents e,; such that Re,; = Re;, if and
only if ¢ = &, then, for E = 3, e, the ring ERE is a basis ring which is
Morita equivalent to R.

The ring R is a QF — 3 ring if R has a unique minimal faithful left R-module
X (that is, gX is faithful, and is a direct summand of every faithful left
R-module). A QF — 3 ring also has a unique minimal faithful right R-module.
The ring R is QF — 3 if and only if for every primitive idempotent e with
Je 5% 0, the socle Le of Re is simple, and similarly for every primitive idem-
potent f with fL # 0, the socle fJ of fR is simple [2, Theorem (3.6)].

Module homomorphisms always act from the opposite side as the operators;
in particular, every left R-module zM defines a right € -module M, where 4
is the centralizer of M. The double centralizer & of zM is the centralizer
of M, and there is a canonical ring homomorphism R — &. The module g M
is called balanced if this morphism R — 9 is surjective. If every finitely
generated faithful (left or right) R-module is balanced, then R is said to be
a QF — 1 ring. Until now, no internal characterization of QF — 1 rings
seems to be known, but in [9] certain necessary socle conditions were proved.
For the convenience of the reader and for later reference, we recall these

conditions: If Ris a QF — 1 ring and e and f are primitive i b
ive idempotents wit
FL N J)e 5 0, then p P

(1) either dzJe =1 0or ofLp =1,
(2) we have dzLle X fp £ 2,
(3) drLe = 2 implies Je C Le, and
(3*) ofJr = 2 implies L C fJ.

In particular,

: (2) shows that a QF — 1 ring is very similar to a QF — 3 ring.
If g3 is an

indecomposable module of finite length, then the centralizer €
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of M is a local ring. Consequently, all simple % -modules are isomorphic.
Moreover, the radical ¥ of % is nilpotent, thus the radical of M is a proper
submodule, and Soc M, is essential in M . If xM and gN are modules, then
elements in the double centralizer of (M @ N) can be constructed as follows:
Let % be the centralizer of xM, and let M’ and M"’ be % -submodules of M,
such that the image of every R-homomorphism gN — zM is contained in M’,
whereas M is contained in the kernel of every R-homomorphism gM — gN.
Then, given a % -homomorphism ¢ of the form

M‘K—G)M/M’—-)M"—%Mg

(where € is the canonical epimorphism, ¢ the inclusion), the trivial extension

y 0],
I:O 0].M(—BN—>M@N
of ¥ belongs to the double centralizer of z(M @ N).

If, for a module M, there exists an exact sequence of R-modules

0O-M—-D—>Dy—...—D,

with D, both projective and injective, then the dominant dimension dom dim M
of the module M is =#. Now dom dim zR = 1 if and only if Ris a QF — 3
ring [5]. In this case, dom dim gR = 2 if and only if the minimal faithful
left R-module is balanced [7]. Since the minimal faithful left R-module of a
QF — 3 ring is both projective and injective, all faithful left or right modules
which are either projective or injective are balanced [4, Theorem 5]. In
particular, also the minimal faithful right module is balanced, and
dom dim R; = 2. So we simply may say that the dominant dimension of R
s 22,

If there exists a natural number m such that for every exact sequence of
left R-modules

0>K—Pp1—...2P1—=Pi—M-—0
with P, projective for 0 < ¢ < m — 1, K is also projective, then the smallest

such m is called the left global dimension of R. It is easy to see that the }eft
global dimension of R is 2 if and only if the kernel of every R-homomorphism

rF — RF’, with F and pF’ both free, is projective.

2. The aim of this section is to prove the following general result on QF — 1
rings.

ProposITioN. Consider a QF — 1 ring R with left socle L and rz:ght socle J.
Let ¢ and f be primitive idempotents. If y is an element of fJe which does not
belong to L, and if fL # 0, then Ry = Je.

Proof. Obviously, we may assume that Risa basis ring, because if the propo-
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sition holds for a basis subring of R, it is also true for R. Also, we may assume
that y € W, since otherwise the conclusion is trivial.

Let e: be a primitive idempotent such that e; and e; = e are either orthogonal
or equal, and which satisfies f(L M J)e, # 0. Let x be a non-zero element in
fCL M J)ey. Since xR M yR = 0, the left R-module

rM = (Rei @ Res)/R(x, v)

is indecomposable [9]. The endomorphisms of M are induced by matrices

with entries r,; € ¢;Rey, for 1 £ 4, j £ 2, operating on Re, @ Re; from the
right. If (ry;) induces an endomorphism of zM, then 7 belongs to the radical
W of R. For, consider the image of (x, ¥) under (r:;). We have

(ris + yroy, 2112 + yrag) = (Ax, Ay)

for some N € R. Thus yrs = Ax — xry, € L, and, since y ¢ L, we conclude
that 5, € W.

Also, if (r;;) induces a nilpotent endomorphism of zM, then r.y € W. For,
consider the image of (0, y) under (r,,). We have

r r
©, y) [r: r:] = (yra, yraa) = (0, Yra2),

1

since y € J and ry; € W. By induction, we get for natural »

(0, y) [711 r12:|n = (O! yrnn).

Y21 Paa

Since, by assumption, (r,;) induces a nilpotent endomorphism, there is some 7
with

(Oi yr22n) = (er Ay)v

where X\ can be chosen in Rf. But xx = 0 implies A € W, thus ) is nilpotent.
If \» = 0, then yry* = \y yields yrypm = A"y = 0, and consequently, 72
cannot be invertable in esRes.

Let ¥ be the centralizer of M. It follows from the considerations above that
0 @ Jex) + R(x,y)/R(x,y) is contained in Soc M. For, if # denotes the

x:adical of €, the elements of ¥ can be lifted to matrices (r,;) with 7,1 and 72
in W. Thus, for z ¢ Jes, we have

(Ov Z) [::i ’12] = (2?‘21, Zr22) = (01 0)1

[£1)

and thus (0, ) + R(x, y) € Soc M.
Also, (0 ® Jex) + R(x, y)/R(x, ¥) belongs to the kernel of every homo-
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morphism pM — R(1 — e). For, we may lift such a morphism to

l::!:] : Re; @ Re; — R(1 — &)

2

with 7; € e,R(1 — &), mapping (x, y) into 0. The last condition gives us the
equality x71 + yr, = 0, thus, since x € J and r; € e;R(1 — ¢;) C W, we get
yra = 0. This shows that not only r; but also r, belongs to W, and, as a conse-

quence, the image of (0,z) € 0 @ Je; under [:1] iszry + zrp = 0.
2

Since x, y € J, every matrix

[’“ “2] with 7,; € e,We,

Y21 7o

induces a nilpotent endomorphism of g M, thus We; @ Wex/R(x, y) T MY
Moreover, if e; and e, are orthogonal, we have the equality

Wey @ Wey/R(x,y) = MW

¥a1  Taz
rM; then ry, € e;Rey; & W, and, if ¢ is nilpotent, we conclude similarly to a

proof above that

r : . .
For, assume that [m 12] with r;; € ¢,Re; induces an endomorphism ¢ of

(xv O) [711 712]n = (xru", 0):
o1 T2

and that therefore also 7;; € W. This shows that for ¢ € ¥, all r,;’s belong

to W,so MW C We, @ Wex/R(x, ).

Next, we claim that (e;, 0) + R(x, ¥) does not belong to M¥ = Rad M,.
This is obvious in the case where e, and e. are orthogonal. So, we only con-
sider the case e = ¢, = e,. If we assume that (e, 0) 4 R (x, y) belongs to M¥,
then, since M¥ is a proper R-submodule of zM also containing
We @ We/R(x, y), we have MW = Re @ We/R(x, y). Also, Soc M, is an
essential % -submodule of M, thus (Je @Je) + R(x, y)/R(x, v) intersects
Soc M, nontrivially. Therefore, there is a non-zero % -homomorphism ¢ of

the form

MeS M/MW — (Je @ Je) + R(x,9)/R(x, 3) = Me,
where ¢ is the canonical epimorphism, ¢ the embedding. The image of every
R-homomorphism R(1 — e) — gM is contained in We @ We/R(x,y) T MW,
since we may lift such a morphism to

r,r
R(1 —e) —————*( 1 73) Re @ Re
with 7, € (1 — ¢)Re € W. On the other side, (Je @ Je) + R(x, y)/R(D_C,?’)
is contained in the kernel of every morphism gM — R(1 — e). Thus the.tr ivial
extension ¢ of ¥ to M @ R(1 — ¢) belongs to the double centralizer of
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=M @ R(1 — e). But this morphism ¢’ vanishes on M# @ R(1 — e) which
is a faithful module since Re is embeddable in (Re @ We)/R(x,y) = MY
This shows that ¢’ cannot be induced by multiplication, a contradiction. So
we have shown that (¢, 0) + R(x, y) cannot belong to M ¥ .

There is a € -submodule M’ of M which contains M ¥ and also the images
of all R-homomorphisms R(1 — e;) — zM, but which does not contain the
element (e;, 0) 4+ R(x, y). For, in the case where ¢; and e, are orthogonal,
choose M’ = (We, @ Res)/R(x,v). Since all matrices [r” rw] which

21 T2z
induce endomorphisms of M satis{y 712, 721 € W, we see that M’ is actually a
% -submodule. Obviously, M’ D MY = We, ® Wey/R(x, ), and given an
R-homomorphism R{1 — e;) — M, we may lift it to

R(A — e) M Rey @ Res
with 7, € (1 — e1)Rey. But 7, € (1 — ¢))Re; € W, thus the image of (1, 72)
is contained in Wey, @ Re,;. Secondly, consider the case e; = e.. In this case,
let M’ = M¥ . Since every R-homomorphism R(1 — e;) — zM again can
be lifted to (r1, 72) where now both 7; and r; belong to (1 ~ e;)Re; & W, the
image of R(l1 — &) — zM has to be contained in

We, @ Wee/R(x,y) ST MW = M'.

So we see that also in the second case M’ satisfies all conditions.
Also, there is a € -submodule M’ of M, contained in Soc M, and in the
kernel of every R-homomorphism g} — R(1 — ¢;), and containing

0 @ Jes) + R(x, y)/R(x, 9).
For, we simply may take the intersection of Soc M, and the kernels of all
maps g M — R(1 — ¢,).

By construction, M/M’ and M" both are semisimple % -modules. Given
z € Je,, there is a € -homomorphism ¢ of the form

MeS M/M — M"Y M,
(where again e denotes the canonical epimorphism, « the embedding) mapping
(e1, 0) + R(x, y) onto the element (0, z) 4+ R(x, ). Since the image of every
morphism R(l — e;) — gM is contained in M’ and the kernel of every
morphism g}M — R(1 — ¢,) contains M", the trivial extension of ¢ toO
rRM @ R(1 — e;) belongs to the double centralizer of M ®R(1 — e1)-

}Jsing the fact that R is a QF — 1 ring, we find an element p € R which
induces this extension. In particular, we have

p(elv O) - (Ov Z) € R(x’ y)'

Thus s € Ry, as we wanted to prove.
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3. The main theorem. The result of the previous section can be considered
as a forth socle condition for QF — 1 rings. Using these socle conditions we
can show

THEOREM. Let R be a QF — 1 ring and assume that the right socle J of R,
considered as a left module, is projective. Then R is a QF — 3 ring.

Proof. Obviously, we may assume that R is two-sided-indecomposable, i.e.
that there are not two two-sided non-zero ideals I, and I, with R = I @I
Let e and f be primitive idempotents with f(L M J)e 3 0. Then according to

the second socle condition
dale X 0fJ < 2.

We have to show that in our case the product actually is equal to 1. So, assume
drLle = 2 and consider first the case Le C Je. The third socle condition
implies Le = Je. Since Je is a projective left R-module, and Je is properly
contained in Re, we find a non-zero idempotent ¢ such that e and &' are
orthogonal, Re’ is isomorphic to a direct summand of Je, and fLe’ 5 0. Then
L2 f(LMNJ)e @ fLe and therefore afL, > 1, a contradiction to the first
socle condition. If Le & Je, take a primitive idempotent f’ and an element
x = f'xe € Le\Je. Let ¢’ be a primitive idempotent and w = we’ € W with
0 = xw & LM J. Then af 'Ly > 1, thus, using the fact that f'(L N J)e # 0
the first socle condition implies dzJe’ = 1. As a consequence, Rxw = Je¢' is
projective and since it is isomorphic to Rf '/Wf’, we conclude Wf’ = 0, thus
f ' belongs to L. But since x € f’Le\J and Je # 0, we may apply the Propo-
sition of section 2 to the opposite ring of R in order to conclude that xR = 'L,
and therefore we find p € R with f’ = xp = f’xp. Right multiplication by x
gives an isomorphism Rf’ — Re. But obviously Re & L, whereas Rf’ C L.
This contradiction proves that dgLe = 1.

Secondly, assume dfJz = 2. If fJ C fL, then according to the first socle
condition we have dzJe = 1 for every primitive idempotent e with fJe # 0.
Thus fJ is a direct summand of zJ, and therefore also projective. This yiel.ds
that Rf is of length 1, that is f € L. But the socle condition (3*) implies
fL € fJ, thus Rf € L N J.Since R is assumed to be two-sided-indecompo_sa'hle,
we have R = RfR, and R is semisimple; but then dfRp = 1, a contradiction.
Next, assume fJ & fL, and take a primitive idempotent e 'and an element
¥y = fye' € fJe'\L. By the result of section 2, Ry = Je', since we assume
FCL N J)e # 0. Now, if J¢' is a proper submodule of Re’, then using the fact
that Je' is projective and local, we find a primitive idempotent e’, orthczgonal
to ¢/, with Je' = Re”’. If f' is a primitive idempotent with f"(L M J)e' # 0,
then also f’Le’ 0, thus df 'Lz > 1. But since Je' & L, we also have
drJe’ > 1. Together with f'(L M J)e¢' this gives a contrafilctlon to thg first
socle condition. So, we have to assume that Je' = Re’. Since Ry = Je' and
y = fye’, we may assume ¢’ = f. Now Rf € J, and f ¢ l.’,, .thus no simple left
ideal can be isomorphic to Rf/Wf. But this is a contradiction to fL # 0, and
therefore we have shown dfJ = 1.
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CorOLLARY. A QF — 1 ring of left global dimension <2 is a QF — 3 ring.

Proof. Let R be a QF — 1 ring of left global dimension <2. lIf wy, ..., u,
are generators of Wpg, consider the maps

¢ gR— @ R

=1

with 1¢ = (wy, ..., w,). Then the right socle J of R is just the kernel of ¢, so
»J has to be projective.

4. Remarks. If we consider the class of rings of left global dimension < 2,
we asked in the introduction for a characterization of those rings R with
dom dim R = 2. The following example shows that not all rings of global
dimension =£2 and dominant dimension =2 are QF — 1 rings.

Let R be a generalized uniserial ring with the Kupisch series
1,22 3,2.

Then, according to [3], R is not a QF — 1 ring, but since R is generalized
uniserial and coincides with its complete ring of left quotients, dom dim R 2 2.
Also, the global dimension of R is 2.

On the other side, the QF — 1 rings of global dimension <2 are not all of
dominant dimension 23, as Morita’s second example in [6] shows. It can
easily be seen that the dominant dimension of this algebra is precisely 2.
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