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INTRODUCTION

Throughout the paper, K denotes a fixed commutative field. Let F be a field
containing K in its center such that F is finite dimensional. A finite (partially)
ordered set .# together with an order preserving mapping of % into the lattice
of all subfields of F containing K is called a K-structure for F; thus, for i € &,
there is given a subfield F; of F and, moreover, K CF,CF ; for each 1 <{j
of &. For a fixed subfield G of F containing K and a natural number n,
the symbol £,(G) will be used to denote the K-structure defined by the chain
{1 <2 < » <n} of n clements such that F, = G for all elements ¢ of
the chain. Furthermore, #°(G) will denote the K-structure given by the
ordered set {{ <j >k <I} with F,=F, =F, =F, = G. Given a
K-structure & for F, the weighted width of % is defined as the maximum
of all possible sums Y ;.; dim F r,» Where [ is a subset of mutually unrelated
elements of &,

An S-space (W, W,) is a right vector space W over F together with an
F.-subspace W, for each {€.%, such that i < J implies W, C W,. The
weighted dimension of (W, W)) is the maximum of all dim Wk, . For a given
K-structure %, the .#-spaces form an additive category in which the
morphisms (W, W,) — (W', W) are F-linear mappings ¢: W— W’
satisfying oW, C W', 1 € . Therefore, the concepts of a direct sum and of
an indecomposable #-space are defined. A K-structure .% is said to be of
finite type if there is only a finite number of finite dimensional indecomposable
& -spaces. In the case of a classical K-structure, that is F ;s =Fforallie &,
L. A. Nazarova and A. V. Roiter [15] and M. M. Kleiner [11] have charac-

terized the structures of finite type. Their results are extended in the following
theorem.
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THEOREM A. Let & be a K-structure for F. Then & is of finite type if and
only if & is of weighted width <3 and does not contain, as a Sfull ordered subset,
any of the following structures:

(i) JF) u A(F) u S(F);
(i) A(F) 0 S(F) u S(F);
(il)) S(F) u S(F) v S(F);
(iv) S(F) u A (F);
(v) JG) u S(F) with[F:G] = 2;
(vi) S(G) u S (F) with [F: G) = 2;
(vii)  S(G) with [F: G] = 3.
Here, u denotes the direct sum (disjoint union) of ordered sets. If & is of finite
ype, then every indecomposable -spaces is of weighted dimension <6.

Following P. Gabriel [8], a K-species (K; , ;M,); ;e is a finite set of fields K
which are finite dimensional over a common central subfield K, together
with a set of K; — K; — bimodules ;M; such that K operates on ;M; centrally
(thatis km — mkforallk e Kandme :M;} and every ;M is finite dimensional
over K. The diagram of the K-species (K;, ;M,;); jer is defined as follows:
The finite index set I is the set of vertices and there are

dimg (;M;) x dim(;M;)x, -+ dimg (;M,) X dim(;M,)x,
edges between the vertices 7 and 7. If ;M; = O and dimy (;M;) < dim(;M,)x ,
we shall mark this fact by an arrow ; i A representation (V,;, jp;) of the
K-species (K;, M) is a set of right vector spaces V; over K; together with
K;-linear mappings
P Vz ®Ki iMj — Vj fOl‘ aﬂ f,jGI.
The representations of a given K-species (K , ;/M;) form an abelian category
in which a morphism (V;, ;) — (V/, ;') is given by a set of K-linear
maps a;: V; — V' satisfying
i (0 @ 1) = oy 59, -

Again, we have the concepts of a direct sum and of an indecomposab.le obj(?ct
and we say that the K-species is of finite type if the number of its finite
dimensional indecomposable representations is finite. In the case when all X
are equal to a fixed field F and (;M;)r = (pF¢)™* for some natur.al numb(?r
;5 » P. Gabriel [7] has characterized K-species of finite type. His result is
€xtended in the following theorem.
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TuroreM B. A K-species is of finite type if and only if its diagram is a
finite disjoint union of Dynkin diagrams.

Recall that the Dynkin diagrams (which occur for example in the theory
of simple Lie algebras) are

(A) o—o—0——-—0, np1;
(Bn) [l ] , -

£ .

{Cﬂ) azx - - 6— - - -0 y p:?

(Dn) :)3'_9—“' -0, nN24;

(Eg)

© —O—I--—o—--o
(E)) .

(Eg)

(Fy)

(G) omm

Given a Dynkin diagram, it is easy to construct a corresponding K-species.
Also, P. Gabriel has shown that the numbers of indecomposable representa-
tions of the K-species of type A,, D, , Eq, E,, and E; are, respectively,
In(n -+ 1), n(n — 1), 36, 63, and 120. We shall prove that there are n?
indecomposable representations of the K-species of type B, or C,, , whereas
the numbers of indecomposable representations of the K-species of type Fy
and G, are 24 and 6, respectively. Thus, also in each of these remaining cases,
the number of indecomposable representations of a K-species of a given type
coincides with the number of the positive roots of the corresponding quadratic
form (cf. [2]).

To every K-species 2 = (K;, ;M;); o1, We may associate the tensor
algebra J(2) = @7, M™, where MO = [, K;, MY = @, je1 {M;
and M is the n-fold tensor product MV G MM ) -+ @ MW over M?;
besides, the multiplication is induced by the tensor product. Then the
category R(2) of all representations of 2 is equivalent to the category of all
right T(2)-modules.

A K-algebra &7 (an associative algebra with unity, finite dimensional over
K) is said to be of finite type if there is only a finite number of indecomposable
finite dimensional A-modules. Two classes of K-algebras of finite type,

namely hereditary K-algebras and K-algebras with zero square radical, are
characterized in the present paper.
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Tueorem C. A finite dimensional K-algebra of is a hereditary algebra
of finite type if and only if of is Morita equivalent to the tensor algebra 7 (2),
where 2 1s a K-species of finite type.

We can attach easily a K-species to an arbitrary finite dimensional
K-algebra o#. Let # be the basic algebra of &7; thus, % |Rad 4 is a product
K, X K, X -+ x K, of fields. We can write

Rad #/(Rad B = @D M;
1Liign

with K; — K;-bimodules ;M;. Then 2, = (K, M) i<iicn is called
the K-species of o/. The fact that # is often a quotient ring of 7(2,,) allows
to apply Theorem C in one direction.

Given a K-species (K, ;M,); jer, define its separated diagram as follows.
The finite set I x {0, 1}is the set of all vertices, and there are dim k(:M;) X
dim(; M) K, edges between (i, 0) and (f, 1); in addition, there is an arrow

i == provided dim(;M;) < dim(;Mj)x, . Note that there are no edges
between (7, 0) and (j, 0), nor between (£, 1) and (J, 1).

TueoreM D. Let </ be a finite dimensional K-algebra with (Rad &7)? = 0.
Then of is of finite type if and only if the separated diagram of its K-species
is a disjoint union of Dynkin diagrams.

In the case when the K-species (K; , ;M) of &/ has the property that all K;
are equal to a fixed field F and (;M)r = (¢FF)"™ for some natural n,; , the
characterizations given in Theorems C and D are due to P. Gabriel [7, 8]
who improved previous results of T. Yoshii [17] (cf. also S. A. Krugljak [12]).
Also, P. Gabriel has shown that the structure of 2 K-algebra & of finite type
with (Rad .2#)? = 0 can be recovered from the known results in the case
when K is a perfect field. In this way, he has determined for example all
R-algebras of finite type, where R is the real number field. However, his
method does not seem to work in the general case.

An additive category 2 will be called a dimension category if there exists
a mapping dim: % —N U {0} satisfying the condition

dim(X @ Y) = dim X + dim ¥ forevery X,Ye¥.

The category (&) of all S -spaces with the weighted dimen'sion dim.( W, T/If,-),
the category R(2) of all representations of a K-species 2 with the dunen?lon
defined by dim(V; , ;p;) = L dim Vi s well as the category M f’f all right
modules over a K-algebra & with the dimension defined by dim M o =
dim My are examples of dimension categories. Generalizing the previously
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discussed notions of finite type, we define a dimension category U to be
of finite type if there is only a finite number of indecomposable objects of
finite dimension in A. Also, ¥ is said to be of strongly unbounded type if it
possesses the following three properties:

(1) 2 has indecomposable objects of arbitrarily large finite dimension;

(i) If A contains a finite dimensional object with an infinite endo-
morphism ring, then there is an infinite number of (finite) dimensions d

such that, for each d, A has infinitely many (nonisomorphic) indecomposable
objects of dimension d.

(i) A has indecomposable objects of infinite dimension.

R. Brauer and R. M. Thrall have conjectured (see [9]) that a K-algebra is
either of finite type or of strongly unbounded type (in the sense that at least the
properties (i) and (i1) are satisfied). A. V. Roiter [16] has proved the property
(i) for the category M, , where &7 is a K-algebra which is not of finite type;
and, in this case, L. A. Nazarova and A. V. Roiter [14] have announced
a proof of (ii) provided K is, in addition, a perfect field. The proof is based
on their result of [15] that a classical K-structure &% for an infinite field is

either of finite type or that (%) possesses the properties (i) and (11).
Extending this result, we can formulate

‘TueoreM E. (1) A K-structure is either of finite or of strongly unbounded
type.
(2) A K-species s either of finite or of strongly unbounded type.
(3) A finite dimensional K-algebra of which is hereditary or which
satisfies (Rad /)? = 0 is either of finite or of strongly unbounded type.

Thus, Brauer-Thrall conjecture is proved here for two special classes of
K-algebra. Using the ideas indicated in [[4], it should be possible to extend
‘Theorem E (3) to arbitrary K-algebras.

The methods used throughout the paper are rather intrinsic. In the case
of nonclassical K-structures %, we give explicit constructions of all in-
decomposable .#-spaces and describe a procedure how to decompose all finite
dimensional #-spaces. Also, in the critical cases of K-structures and
K-species of infinite type, we either construct indecomposable objects of
arbitrarily large finite dimensions directly, or we reduce the problem to
a known situation by identifying a full subcategory with a module category
of infinite type. Besides, some facts from algebraic geometry concerning group
action on affine varieties are used, mainly to prove the statements concerning
the categories of strongly unbounded type (Theorem E). An algebraic
geometry argument is used in the proofs of the structure Theorems A, B, C,
and D only once, namely in Lemma 4.1, Let ys remark that the statement of
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Lemma 4.1 is obvious for a commutative field F and that it would be of
interest to provide a direct argument also in the general case.

This work was initiated by a course of lectures on “Indecomposable
Representations of Artinian Algebras” given by P. Gabriel in the summer
of 1972 at Carleton University. Also, he provided the arguments from
algebraic geometry used in this paper. For both, the authors wish to express
their gratitude to him.

1. Preliminaries

In addition to the notation introduced earlier in the paper, we would like
to point out that rings are always assumed to be associative with unity, and
modules to be unital. If &7 is 2 ring, the symbols M or M will be used
to underline the fact that M is a left or a right module, respectively. It should
be noted that homomorphisms always act on the side opposite to that of
the operators, which means usually on the left-hand side, because we consider
mostly right modules. Homomorphisms are often denoted by Greek letters,
in particular, zero homomorphisms, by 8. We denote by £/ the ring opposite
to &, and sometimes we will consider left sf-modules just as right
o7%modules. Also, &% denotes the multiplicative group of the invertible
elements of the ring .27. The letters F, G, and H stand for (noncommutative)
fields throughout the paper. If, for GCF, dimFg = dim GF, then this
common dimension is called the degree of F over G and denoted by [F: GJ;
this is for example in the case when G is finite dimensional over a central
subfield of F. If HCF and GCF, we always assume that the bimodule
#F¢ and module F are endowed with their natural structure. The symbol
M ® M’ will frequently stand for the tensor product of Mg and M’
over G. Also, the image of ¢: X ® Y — Z in the natural isomorphism
Hom(X ® Y, Z) ~ Hom[X, Hom(Y, Z)] will be always denoted by
@*: X — Hom(Y, Z). Finally, the symbol X is used to denote the cartesian
product (of sets or vector spaces) and the symbol U the disjoint union (of
ordered sets). Thus, M’ x M” stands for the external direct sum of two
vector spaces, whereas M’ @ M” = M stands for the internal direct sum
(that is, M’ and M" are two fixed submodules of M such that M M =M
and M’ M" = 0).

Let W be a vector space over F and U an (additive) subgroup of W. Then
U denotes the largest F-subspace of Wj contained in U and U the least
F-subspace of W containing U. Thus,

U={xcU|sFCU = ) Vs

and
U: Zsz n Vp.
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The construction of U and U is used throughout the paper, mainly in the
following situation: There are given two fields G CF, and Ug is a G-subspace
of the F-vector space W . In this case, U and U always refer to the field F.
Also, if U is a subgroup of Wy and W; = X; @ Y, then U is said to be
compatible with this direct decomposition if

U=UnX)SUnNY)

Of course, given a K-structure .% for F and an S -space (W, W)), Wg =
Xr @ Y defines a decomposition of #-spaces if and only if all W;,7¢ %,
are compatible with the decomposition,

The following simple observation will be used repeatedly: If U and V
are subgroups of a vector space Wy, then every direct decomposition of W
which is compatible with U and V is also compatible with U, U, U + V, and
U N V. The proof follows easily from the fact that, if We=X;@ Yrpand
U=({UnX)D(UnNY), then

UCUNX+UNnYC(UNX)+(UNnY)=UnX)DUNY).

And, a similar argument shows that the decomposition is compatible with U.

If, in addition, V = VNnX)y®d ([ n Y), then every ue U and ve V can
be written in the form

u=u+u, uclUnNXuelnyY
and

v=y 4+, 0elVnX el Ny,

and it follows easily that

UV =[(U+V)nXI@[U+ F)" Y]

and
UnV=@Un FnX)®Un Fny).

Let A and B be dimension categories. An additive functor T: W — B
is called a dimension functor if there exist positive real numbers 7, s such that

rdim A < dim T4 < sdim 4

for all objects 4 of . In particular, this implies that 4 is finite dimensional
if and only if T is finite dimensional. If T is an equivalence and T’ is inverse
to T, then T is a dimension functor if and only if T’ is a dimension functor.
If A is an additive category, then two dimensions d, d’ on 9 are called
equivalent if the identity functor idy is a dimensjon functor (A, d) — (U, d').
For example, if . is a K-structure for F, and [F: K] = n, then the weighted
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dimension dim(W, W,) == max;. e dim W is equivalent to the K-dimension
d(W, W,) = dim Wy and the F-dimension d'(W, W;) = dim W, because
(1/n) diim(W, W,) < d'(W, W)) < d(W, W,) < n dim(W, W,). Similatly,
for a K-species 2 —= (K;, ;M,); je1 , the dimension dim(V; , j9;) = 2 ser (Vi)
is equivalent to d(V;, ;¢;) = Sier (Vi) , because the number of indices
in I, as well as all degrees [K;: K] are finite. An abelian category U becomes
a dimension category using the length function I: If 4 € 2 has no composition
series, then 4 = co; otherwise, I4 is the length of a composition series of 4.
Obviously, if & is a finite dimensional K-algebra, then the K-dimension and
the length dimension in M, are equivalent.

Now, assume that A and B are two dimension categories such that either
none or both of them have finite dimensional objects with infinite endo-
morphism rings. Then, if T: 20 — B is a full embedding, and A is of strongly
unbounded type, then 8B is also of strongly unbounded type. For, T maps
indecomposable objects to indecomposable objects and nonisomorphic
objects to nonisomorphic objects. Thus it is easy to see that B satisfies the
conditions (i) and (iii) of the definition of strongly unbounded type whenever
A does. Moreover, if W has infinitely many nonisomorphic indecomposable
objects A4; of dimension d, then rd < dim TA; < sd for some positive
real 7, s (determined by T) and all £ and therefore, since there is only a finite
number of integers between rd and sd, there exists d' € N satisfying
rd < d' < sd and such that there are infinitely many nonisomorphic inde-
composable objects of the form T4, in B with dim TA,; = d’. Consequently,
if 2 is of strongly unbounded type, then the unbounded sequence of natural
numbers d of the condition (i) produces an unbounded sequence of natural
numbers ¢’, and thus B satisfies (i), as well. In particular, if 4 and d" are
equivalent dimensions on U, then A is of strongly unbounded type with
respect to d if and only if 2 is of strongly unbounded type with respect to d’.
Let us point out that nearly all functors constructed in the paper are dimension
functors; the proofs are usually rather obvious and are left to the reader.

This paper is divided into three sections. The first section consists of
three subsections dealing with particular types of K-structures & of finite
type and the decomposition theories in the corresponding categories S(%)
of all % -spaces. In this section, we assume that all vector spaces are finite
dimensional. For GCF and [F: G] = 2, the structures S (G) and
H(G) u F(F) are investigated in Section 2 and the structure J(G) u HA(F)
is dealt with in Section 3. In these two sections, we do not use the existence
of the central subfield K; we assume the weaker condition that dim gF =
dim F; = 2. Let us remark that a shorter proof could be given using duality
arguments in the case that a central subfield K exists. For KL G CF and
[F: G] = 3, the K-structure J4(G) is studied in Section 4; here, the
existence of K is used heavily.
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The second section comprizes again three subsections. In Section ?,
a criterion for objects in a Grothendieck category to be indecomposable. is
described and it is used in showing that two elementary types of K-species
are of strongly unbounded type. In particular, a very useful dimension
condition for a K-species to be of a strongly unbounded type is given. The
next two subsections deal with K-structures of strongly unbounded type.
In Section 6, it is shown that certain full subcategories of a category of all
S-spaces are abelian, and in Section 7 such subcategories are identified
with full module categories over a K-algebra of strongly unbounded type. In
this way, it is proved that the K-structures J4(G) u JF(F) u J(F),
JHG) u I(F), and F(G) u F(F) with [F: G] = 2 and also F(G) u F(F)
with [F: G] = 3 are of strongly unbounded type.

The three subsections of Section 3 are devoted, respectively, to & -spaces,
to representations of K-species and to modules over K-algebras. Proofs of
Theorems A and E(1) are presented in Section 8. A translation of the
results on &-spaces to K-species, including a proof of Theorems B and E(2),
is given tn Section 9. And, the final Section 10 contains a further translation

to the representation theory of K-algebras and offers proofs of Theorems C,
D, and E(3).

I. K-Structures oF FINITE TYPE
2. Structures S,(G) and J(G) u F(F) with F: Gl =2
Throughout this section, G is a subfield of F such that
dim Fg = dim F = 2.

Let {1, f} be a basis of F;; (and thus of ;F ). First, we shall introduce several
lemmas which will be needed in the sequel.

Lemma 2.1. Let UgC Ug' be two G-subspaces of a vector space W . Then

UNnU =UnU  and U4+ U =U+ U

Proof. 1In order to prove the first equality, only the inclusion
UnU'CUANT"

requires a verification. Let x ¢ U N U, Since F = G + Gf, x = uy + uf
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with suitable %, , u, € U. Thus, uyf € U’; for, xe U'C U’ and ¢y € vcv.
Consequently, u, € U 0 U’'. Moreover,

wf?r=—u+af el

hence, %, € U N U’ and the inclusion follows.
Similarly, we can easily prove that U + U'C U + U'. Let x€ U+ U.
Then

x=7v+z and xf =y +af =y +7
with y, ¥ € U and z, 2" € U'. Hence,
w=zf —5 =y —yfel,
and thus w = w, + w,f with w, , we U. Therefore,
(z—w)f =w + el
and consequently, z — w, € U’. We conclude that
x=y+z=(y+tw+@E@—welU+U.

This completes the proof of Lemma 2.1.

LEvMa 2.2. Let X¢, Y, Ug be three G-subspaces of a vector space Wy
such that

XAnY=0 XnU=X, YnU=Y o UCX.
Then

Proof. Let
Xy + af =y, - yof  With x;e XnU and y,eYNnU, i =12

Then x, — y; = (yp — %)f, and thus y, — %€ U C X. Consequently,
¥:€ X N'Y and therefore y, = 0. But then

fo == yl -_— xl € U,
and thus x, € U, which implies that also 3, — % € U C X. Hence,

and we conclude that X N Y = 0, as required.




[ .

316 DLAB AND RINGEL

As an immediate consequence of Lemma 2.2, we may formulate the
following

Remark 2.3. If U=U® ®;C, is a direct decomposition of the
G-subspace U of W, , then U = U® ®,C,is a direct decomposition of
the F-subspace U. In particular, if Uy C Wy such that U - - W and U =0,
then every G-basis of Uy, is also an F-basis of We . Consequently,

dim W5 = 2 dim W, = 2 dim U,

LemMA 2.4, Let Ug be a G-subspace of W such that U = W and U=0.
Let Vi be an F-subspace of We such that UNV = 0. Let {vy, 0y,..., 9}
be a basis of V. Then there exists a basis

B ={x;,%,.,%,,% s Y2 ey ¥n s By s Zp yeury 24}

of Wrsuchthat BC U, v; = x, + yif for 1 <i < n. Moreover, the G-subspace
U’ generated by {x, , x, ,..., x, , y, » Y2 seees Yu} has the property U' = U’ + V.
Also, if U” is a G-subspace of U and v, € U for some i, then x; , y; € U".

Proof. As additive groups, U@ Uf = W. For, if ucUN Uf, then
u =u'f for some #' € U, and thus u'F — (G + fG) = v'G -+ uGC U.
Since U = 0, this implies that #’ — 0, and therefore U N Uf = 0. On the
other hand, every element of F has the form g, + g,f with g, € G, and hence
(g1 + g2f) € U + Uffor every u e U, This showsthat W == U = U @ Uf.

From here, it follows that every element v, can be written as v; = % + yif

with x,, y,e U. Moreover, the elements X;, ¥; are uniquely determined.

As a result, we get the following consequence: If v, e T and UsC Us,
then o; = &7 + y/f with x;, ¥; € U" because of U°® — UJ" @ U"f; and,
in view of uniqueness, x; — x; and y; = y”.

Now, consider the G-subspace Ug’ and the F-subspace W,  generated by

{x1 ’ x2 seeey X ;J’1 ’,y2 yerey yn}; thUS LJ' = 0 and U’ == W’. Fil‘St, we Sha11
show that

W=U4vr.
Trivially, x,€ U’ + ¥ and

X f1 == —Yi+ v, fle U -+ v.

Hence,

xF = x(G +OCU SV for every 1 <i<nm.
Similarly,

W =y(G+fCU + 1 forevery 1 <i<n,
and therefore U' C U’ 4 V' C W,
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From here it follows (see Remark 2.3) that
2dim U7 = 2dim W'g = dim W = dim U'g + dim V¢

- dim U’G 4+ 2 dim I'F ,

resulting in dim L’ == 2 dim V. Therefore {x;, %5 ,..., Xn, )1, Ya»eoes Ya) 1S
a basis of L' and we may complement it by {2 , 2 ,..., 3} toabasis of Us.
The lemma follows.

ProposiTiON 2.5. Let & = S,(G) be a structure such that dimFg =
dim oF = 2. Then there are exactly ¥m + 1)(m -~ 2) nonisomorphic inde-
composable S -spaces.

Proof. We are going to prove that every finitely generated #-space
(Wy, Ul)eC U(2)g C - C Ulm)g) is a direct sum of indecomposable
S -spaces

L, = Ul)=Ffors+r+1<i<mU@i)=0G6
for s + 1 < i < s + r and U(f) = O otherwise),
0<s, 0ZLr, s+r<m

Proceed by induction. Obviously
W =U(l)® W',

where W’ is an arbitrary F-complement of U(1) in W, is a decomposition
of the #-space (W, U(s)). Here, U(1) is a direct sum of Lyy’s. Assume that,
Assume that, for a certain £, 1 < k << m,

U(k) = 0.
Thus, W, contains no copy of L,, forr +s < k. Consider the G-subspaces
Uy Uk + 1) C U(I) foralll <1<k,
and assume that for every [ <<t < &,
UlhnU@E +1)=0.
T'his means that Wy contains no copy of L,, with s < 1. Write
Uk)e = (Ut + 1) N Uk + 1)) ® Ut)e @ Cq,

where the direct summand C has the property that (C 1 U(#))e complements
the other two direct summands in U()g for all £ 41 < t << k. Let Dg be
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an F-complement of U(k) in W . Then, applying Lemma 2.1 and Remark 2.3,
we have

We=(Ult+ 1)nUk+1)B W, with W,=[[(1)®C®D]

—

This is a decomposition compatible with all U(r) for 1 - 1 < t, because
U(@) C W, and with all U(i) for b + 1 < ¢ << m, because

Ut + 1)n Uk + 1) C Uk + 1)C Uk + 1) = L),

Moreover, it is compatible with all the remaining U(i) (t < | < ¢ < k) in
view of the construction of the G-complement C in U(k). Consequently,
Uit +1)n Uk + 1) is a direct sum of L,_, s and we may assume that
the #-space satisfies U(t + 1) N Uk+1) = 0.

In this way, we split off successively all L, _, ¢ for t -~ k and may assume
that U(k41) = 0. For & = m — | this yields a complete decomposition
of the “-space (W, U(f)), because Um) = W and thus the condition
U(i) n U(m) = 0 simply means that U@) = 0.

A case similar to that of Proposition 2.5 for n = 1, was investigated in [4];
it can be treated by the method introduced here.

PrROPOSITION 2.6, Let ¥ — JUG) u S (F) be a structure such that

dim Fg = dim GF = 2. Then there are exactly }(n 4 1)(n — 6) non-isomorphic
indecomposable . -spaces.

Proof. We shall prove that every finitely generated .#-space

(We, Ug, V(1) CV(2)sC - C V(n)s)

is a direct sum of indecomposable & ~spaces

My = (F,0, V(i) = Ffors + 1 < i < nand V() = 0 otherwise),
0<s<m,
Ny = (F, G, V(i) = Ffors - 1 <i < n and V(i) = 0 otherwise),
0<s <,

P, = (F,F, V(i) = F for s + | <t < mand V(t) = 0 otherwise),

0<s<Kn
and

Q:=FxFGxgG, V() =F X Ffors+r 4+ 1 <i<n,
IﬁyzﬂJﬁﬁn%+1<£<s+rdei:0
otherwise), 0<s, 1<y, s+7r < n
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First, we reduce the problem of decomposition to the case when U = 0.
Write W = V(n + 1). Obviously,
wW=[UnV(1)]& W

with an arbitrary F-complement W’ in W, yields a decomposition of the
SF-space (W, U, V(1)); here, U N V(1) is a direct sum of copies of P;. Thus
we assume inductively that

UnVk)=0 for some | <k < n
Consider the decomposition
W={UnVEk+ 1] S W,

where W’ = V(k) @ C with an arbitrary F-complement C. This decomposi-
tion is compatible with U because of UN V(k + 1) C U, with V(i) for
I < ¢ <C k because of V(1) C W', and with V() for B + 1 < i < n because
of U V(k + 1) C V(). Of course, UN V(k + 1) s 2 direct sum of copies
of P, . Consequently, we may assume that

U=UnW=UnVn+1) =0.
Proceeding dually, we can decompose
W=[U+Vn]&C,

with an arbitrary F-complement C, . Here, C, is a direct sum of copies of
M., . Thus, write ¥(0) = 0, and assume that

U-+VE =W  forsome 1 <ks<n
Consider the decomposition
W=[O+ Vk—1)]® Cr,
with a complement C;,_; of
[T VR + Ve—1) = [T+ Vit — D10 V)
in I/(k). This decomposition is compatible with U because of
UCU+ V(k—1),

with V(i) for 0 < i < k — 1 because of V(i) C U + V({k — 1), and finally
with V(7)) for £ << 7 < n because of C,_; C V(i). Here, C;_; is a direct sum
of copies of M,_, . Thus, in addition to U = 0, we may assume also

U=W.

481/33/2-11
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Let
Us=[UnV))] &S C

be a G-decomposition of U. Then, in view of Remark 2.3,
W=U=UnVQ1)® C,

which yields obviously a decomposition of the .#-space (W, U, V(¢)). And,

U N V(1) is a direct sum of copies of Ny . Hence, assume that

UnNnVk) =0 forsome 1 <k <<n+ 1.

Consider the F-subspace U N V(k + 1) of V{(k + ). Let B, = {v;, V3 ,..., ¥}
be an F-basis of UN V(k + 1) N V(k) such that B; N V(l) is an F-basis
of UNnV(k+1)nV(I) for each 1 <l < k Furthermore, choose
By, = {Uy11, Upyg reeer Upiot © V() such that, for each 1 <<I<k4,
(By VY By) N V(I) is an F-basis of V(l). Now, applying Lemma 2.4 (with
V = V(k)), we get the existence of an F-basis

B = {x;, %5,y Xpig s Y1 Yo reees Voitas B1» B 1eer 3t}

of Wsuch that BC U,

v=x;+yf for 1<j<p+y,

and x; and y; belong to U N V(k + 1) for 1 < j < p. From here, it follows
that

D
W= xFyF)e W,

i=1

where W' is generated by {x,,; ,..., £5.0 5 Y11 000y Vpig» 21 9eeer 24} 1s & direct
decomposition of the #-space (W, U, V(i)). Moreover,

Dw

(WF @ y,F)2UNTVk T 1) V(k)
1

¥

is a direct sum of copies of Q,, with r 4- s = &. Thus, we may assume that

UnVET )N V(R =0.

‘Then, using the above notation, B, is a basis of V() and denoting by U’

the G-space generated by {%,,;,..., X5,0, Vpiq »oeer Vpiof We have in view
of Lemma 2.4, U'C U and U’ = U’ + V(k). Hence,

UnUNVE+1)] =UnVES1) =0,
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For, if U' N V(k + 1) £ 0, then, again by Lemma 2.4 (applied to U = U’,
I” == V(k)), we would have that U’ n V(k + 1) N V(k) # 0, a contradiction.
Therefore, there is a decomposition of the G-space U:

U=U®[UnVE-+1]+C

with an arbitrary G-complement C’. And, according to Remark 2.3, this
decomposition induces the following decomposition of the & -space
(W, U, V(i)

W=UnVk+1)®W with W=U®&C.

Here, U N 1'(k + 1) is a direct sum of copies of N, . Thus, by an induction
argument, after splitting off the copies of N, , the remaining complement
satisfies the condition

0=UnVm=UnW=10,

which implies that W = U = 0.
The proof of Proposition 2.6 is completed.

3. Structure J(G) u J(F) with [F: G] =2

Again, throughout this section, G is a subfield of F satisfying dim Fg =
dim cF = 2 and {1, f} is a basis of F; (as well as of GF). Also, all vector spaces
will be assumed to be finite dimensional. Two results will be proved in this
section: Proposition 3.1 asserting that J(G) u J(F) is of finite type and
Proposition 3.2 which is a consequence of Propositions 2.6, 2.7, and 3.1 and
will be applied to prove the main theorem on #-spaces in Section 8.

Proposttion 3.1. Let & = J(G)u SI(F) be a structure such that
dim F; = dim ¢F = 2. Then there are exactly 20 nonisomorphic indecomposable
F-spaces.

Proof. We shall show that every finitely generated #-space (W, (Uy)e &
(Uy)e, Vi) is a direct sum of the following indecomposable #-spaces:

A, =(F,0,0,0), B, = (F, 0,0, F),
A, =(F,0,G,0), B, = (F, 0, G, F),
A, =(F, G G0, B,=(FG,GF),
A, =(F,0,F,0), B, = (F, 0, F, F),
As =(F,G,F,0), B, =(F,GFF),
A, = (F, F, F,0), B, = (F, F, F, F);
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C,=(F xF,0x0,G x G,(l, /YF),
C,=(FxF,Gx0,GxG,(1, f)F),
C=FXFGxG,GxG,(,f)F),
C,=(FxXF, GxG,GXxF,(l,HF),
C,=(FxF,Gx0,GxF,(,f)F),
Ce=FxF,GxG,FxF(,f)F),

D,=FXFxF,GxGx0,GxG xF,(l,f, )F),
D, =(F xFxF,GxGx0,GxGXPF(f,1,0F + (0, f, 1)F).
The proof will be given in several “reduction” steps.
(i) First, decompose the #’-space (W, U, , V); thus, by Proposition 2.7,
W=oP,O®P,OW,

where W’ is a direct sum of copies of My, M;, Ny, N,, and Q,,. This
decomposition is also compatible with U, , because (& P,® @ P)C U,.
Thus, the &-space (W, U, , U,, V) is a direct sum of copies of Ay and By
and an %-space in which

Uu,=0. (l)
(i) Similarly, using again Proposition 2.7, decompose (W, U,, V):

where W’ is a direct sum of copies of Ny, N, , Py, P, , and Q,, . Obviously,
this decomposition is also compatible with U, , because U, C U,C W'.
Therefore, we may split off the direct sum of indecomposable .&-spaces
A, and B, and assume that that (W, U, , U, , V) satisfies

U, = W. @)

(i) Now, use again Proposition 2.7 and decompose the .#’-space
(W, Ul ] _U2m V):

W=®M1@®N1®W',

where W’ is a direct sum of copies of My, N, and Q,,; observe that, in
view of (1), W’ contains no copies of Py and P, . Since both U, and ¥ contain
® M, @ ® N,, this is a decomposition of the F-space (W, U, , U,, V).
Therefore, after splitting off the copies of B, and B, , we may assume that

UnU,NV=0 ad U,nVCU,. (3)
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(iv) Similarly, consider the decomposition of (W, Us, U+ V)
W=&N,o®® PO W,

where W' is a direct sum of copies of N, , P, , and Qyq ; in view of (2), W’ has
no summands of type M, and M, . Again, this decomposition is compatible
with U, and V, because U, + V' C W’. Hence, we split off copies of A, and A,
and may assume

U+ U, +V =W and U,CUO, 4 V. (4)

(v) Consider the '-space (W, UynV, U, U, and apply
Proposition 2.6:
W - @ L30 @ W’,

where W is a direct sum of copies of Lyy, Lgg, Loy, and Ly, . For, W' has
no summands of the types Ly, Lyy, and Ly because of (1), no summands
of the type Ly, because of (2) and no summands of the type Ly, because of (3).
Now, since (U, N V)N W' =0, U, VD Ly and thus

—r——

@ L30==U1ﬁ VQV;

this means that the above decomposition is compatible with V. Consequently,
(W, Uy, U,, V)is a direct sum of copies of B, and an %-space in which

Uu,nv =0. (5)

(vi) In a similar way, apply Proposition 2.6 to the '-space
(W, U, , U,, U, + V) and decompose

W:®L30@W’:

where, this time, W’ is a direct sum of copies of Lyg, Loy, Lags and byg 5
this follows from (1), (2), and 4). Now, Uy +V N Ly, = 0 and thus,
according to Lemma 2.1, Uy +VEC W’'. Thus, our decomposition is
compatible with VVC Uy + V. We split off the copies of A, and assume that

U, + V=W (6)

(vii) In this step, use again Proposition 2.7 and decompose (W, Uy,
UV, V) ,
W = @ Q20 @ W ]

. . ! :
where W' is a direct sum of copies of Mg, M,, N,, and Q,, ; W' contains

Bid
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no copies of M, because of (3), no copies of N, , N, , and Q,, because of (5)
and no copies of Py, P;, and P, because of (1). Now, since

D QU - (UnV)CU,,

the above decomposition is compatible with U,, and we may split off the
copies of Cg. Thus, we may assume that

U,nNnV =0. (7)
(viii) Similarly, use Proposition 2.7 to decompose (W, U, , V, U, + V):
W = @ Q20 @ WI;

where W' is a direct sum of copies of N,, P,, P,, and Q,, ; this follows
from (2), (4), and (6). Now, since

[T (U + V)N & Qy =0,
we get in view of Lemma 2.1,
UCU,n (U 4+ 1NCw.

"Therefore the above decomposition is compatible with U, . Hence, (W, U, ,
U, , V) is a direct sum of copies of C; and an & -space satisfying

U+ V=MW (8)

(ix) Now, using repeatedly the fact that U, = W, we can find easily
G-complements C; of U, in (U, + U)Nn U,, CCU, NV such that
U, C,DC2U,N TV and finally C, of U, ®C, ®C in U,. In view
of Remark 2.4,

W=Co®W, where W=U,®C,DC,.

The construction of this decomposition ensures that it is compatible with
U, ; moreover, it is also compatible with U, because of U; C W’ and with ¥/
because of CC V. Hence, (W, Uy, U,, V) is a direct sum of copies of B,
and an %-space satisfying

U,nVC T+ U,. )
(x) Now, write T = U; + U, + V and put
A =(U1+ U)n T.
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Thus, using the modular law,

Az(Aﬂﬁl)+U2-

Observe that AN U, is Uy-generated: AN U;n Uy =ANnU,. This
follows immediately from Lemma 2.2 applied to U, C T i

Consequently,

AnU, =[(ANnT) + U] n U,

=(A('\UIHU2)+_U22(A(\U1)—|—_UzzA

and thus 4 is U,-generated: 4 N U, = 4.
Now, define a G-complement C C U, by

ApC =4+ U,
and fix a G-basis {c, , ¢z ,.--, €a} Of C. We have therefore
U,cA¥C=4+C=4@C
Since by (6), U, + V = W, we have also
Uf+V =W

Hence,

¢; = —d;f +v;  with deU,v;eV for 1<i<n

2

Let D be the G-subspace generated by {d , 43 ,..., dp}. Thus DC U, .
First, we shall show that

A+C+D=A4+1U,.
Obviously, 4 + C + DC A + U, . On the other hand,
A+U)n(@d+ V) =4
For, by (9),

A+TUY)NA+V)=4+[U.n A+ TV)]
CA+(U,NnT)=A+ U0 U+ U+ V)
=44 (U, + U+ UzﬂV]QA+[(U1+_U2)ﬁT]=A.
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Thus, using the modular law, the fact that C C C 4 D + ¥ and (8), we have
A+ C+D=A+C+D)Y+[A+U)n(A+ V)]
=A+U)n[(A+C+ D)+ 4+ V)]
2+ U)N(A+C+V)2A+ U)n (0, + 1)
=A+U,.
As a consequence of the inclusion U, C A 4+ C + D, we have

A+C+D=W.

In fact, we claim that this sum is direct. For, since 4 + CC U, + U,
and 4 +VCT,

A+ C)n(d+ V)= 4;
furthermore, (A + C) + (A + V)2 U, + V = W. Also,
A+ C+D)NnA+V)=4

e A+C+DYy+- A+ WV2U,+V =W.
Hence,
2n = dim C = dim[(4 + C)/4]¢ = dim[W|(4 + V)]
= dim[(4 + C + D)/4]¢ < dim(C + D)g < 27,
because C + D is generated by {¢; ,..., ¢, d ,..., d,}. Consequently,
A+ C+D=4ADCHD.

Now, applying Remark 2.3 to

AnUy)dCoeD=U
we get
U=40U,C+D=40CaD;
for, U'CU,CANU,. Thus, since U,CA4+C+ D and U, = W,

we have

D a

W=A@QW with W=C@D = 0 (c,FQ dF).

i=1

1

This decomposition is compatible with U, , because

(ULnA)B[UNCOHD) =U,nA)BDC=UnADC)
=Un(A+U)=U,.
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It is compatible with U, , because of U, 2 C @ D. Finally, in order to show
compatibility with I, observe first that DC C + (VN C @ D) and therefore

A4+CH+FnCED)=W.
Using this relation, we get

VAdOWnNCED)=Vn[d+¥nCOD)
—VAA+O)NnA+ N+ T nTOD)
—VAA+WVN[A+C+TATED)]=V.

Thus, the #-space (W, Uy, U, V) is a direct sum of copies of C, and of
an &-space satisfying

U +Uy=W ad U-+U+V=W (10)

Note that an immediate consequence of (10) is

U1 + .Uz = U2 . (10')

Indeed, if xe U,, then x =u + u'f+ ¥ with &, v € U; and ye U,.
But f =x — u —y belongs to U, and thus u'f e U, . Consequently,
% = u + (Wf+ y)e Uy + U,. The other inclusion is trivial.

(xi) Now, consider a basis {9, %2, v CUNUNYV of
Vy = U, n U, NV and extend it by {011 Upsa o) v,} C Uy N V to a basis
of Uy V. Write V, = EB:LP 1 0. F. For each v;, | < i < n, there exist,
by Lemma 2.4, elements x; , y; € Uy such that v; = x; + ;f and such that
(%1, Ko yeeey Xy Vi» Yaseees Yu) is F-independent. Also, for 1 < i < P,y € Uy

for,

yifz‘l)i—xie U2.

Let X be a G-complement of @7, yGin U N U,. Then, obviously
e o D
B=UnU,@V,=X® ® &FDyF)
i=1

This follows easily from X N &7, (xF ®yF) =0 The latter relation is
a consequence of the fact that there is no nontrivial relation

D

t=1
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For, assuming that such a relation exists, we get
P
Z (v: —y:if)cie Uy
i=1

by substitution x; = v; — y,f. As a result, z:;l v;k; € U, because of y, € U, ,

and thus, in view of (7), T1_, v;x; = 0; hence, all x; = 0. Now, denote by Y

the G-subspace of W generated by {x,,5, X519 sy Xn s Ypi1 s Yor2 reees Vb
We are going to prove that

BNnY =0.

Since BN U; = B and Y C Uy, it is sufficient to show that BNY = 0.
First, if 0 # ye Y, then yF L V;,, so V, N yF = 0, and consequently

dimg(V, @ yF) = dimg V, + 2
and
dimg ¥ = 2 dimg ¥ = dimg Y + dimg V,.
Thus,
dimg[(V, ®yF)N Y] = 2,

and there is x € (V; ® yF) N Y independent of y. Moreover,
v" = x + yf’ € V, with a suitable f’ e F.

Consequently, assuming that

0#yeBNY,

we have
y=u-+wv with ueU;NnU, and v eV,
and thus there exists 0 - o' € V, such that
v =&+ uf' + v f' with suitable xe YC U,  and f'eF.
From here,

v’-——v,f’=x+uf’eU1-l-U2(_:U2,

and therefore

v —of cehNnUnV =V,.

But this yields ¢’ € VV; N V,,, a contradiction.

As the next step, take a G-complement C containing ¥ of B N Uyin U, .
Furthermore, complement the basis {v, Vg sy Upy of V@V, by
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{w, , W, ..., W,,} to a basis of V. We claim that, for each w; , 1 < j < m, there
is z; € ¥, such that

@, =w;—2€C+ U.
This follows from the fact that, by (10), Uy + Uy = W:
w=c;+u;+v; with geCuel, and v el].
For, since
;=) ey + ), Yikis = Z (% + yif Jeis + gyi(/\if — fri) = 2+ o
with zeV, and u/'el],
we get immediately
w; — 3 =c¢+u+u eC+Us,

as required.
Write V' = @]_, @,F; and put

D=C+V)NnU,.
It is easy to see that
U,nD=0nUn(C+V)=0
For, by the modular law,
C+ V) (T, nT)CIC+ V)N TIN (TN

=[O, n V')+C]n(Ulny2)=C"n U,nU, =0.

Also,
B@®C)+ D2 w.

Indeed, since by (8), (B + C) + V = W, we have for every we W,

w—atito=a o+ Y =0 it

i=1

where @, a’ €B, ¢, ¢ €C,and W' e U, N (C+ V') = D, as required. Thus

W=X06 (FOrFEW

=1
with
W =C®D.
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Now, in view of the direct decomposition U; = X @ ®,_, (x.G @ y.G) ® C,
the above decomposition of W is compatible with U, . Also, it is obviously
compatible with U, . Consequently, it is compatible, in view of (10) with
U, = U, + U,. Finally,

Xn®

[® @F@yP]aV{OICOD) N Y]

=0V @V, aV =7,
because

COEDNTV ={COCOV)NUNY
=CeVnColU)nVaV,eV.

Hence, theuy-space (W, Uy, Uy, V) is a direct sum of copies of A
(comprizing X), of copies of C, and of an &-space satisfying

U,nU,=0 and UnU,nV =0 (11)
(xit) Now, consider the F-subspaces U, N V, V, and V, of V defined by
NEUNY  and UpnV4HUnV)=U,nV oV,
and
UnVOVev,=7,

respectively. Put V' =V, © V,.
First, define

P=UnU+T,nV) ad Q=U,n{T +T,07).

Using the modular law, (10) and (11), it is easy to see that

PRO=(U+UnV)NU,+U,nV)2U,N V.

Also, according to Lemma 22 applied to U, C U, + U,NV and
U,V CU,, we have

UnUy+UynV)=Un(U,+ TU,N T)

and

and thus,

Pﬂ Uleln(U2+U2n V): Ulf\(gz-!— Ugﬂ V):P.
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Second, put
C=UnU,+V and D=U,nU +V.
Again, using the modular law, (10) and (1), we get easily that
CODOWU, +V)NU,+ V)2V

And, moreover, by Lemma 2.2 applied to U, C U, + V' we get

CAU, =UnU,+V =0,nU,+ V' =C.

Now, we shall prove that

U =C®P and U,=D®O.

This will be achieved if we show that (a3) CNP =0, (b) C+ P = Uy,
)DNnQ =0,and(d) D+ Q = Us.

(a) Show first that

Uy+ V' nU,n ¥V =0.

Indeed, let

2=u-+7v with zeU,nV, uel,, veV
and
(u-+o)feU + V.

Then 2z — v =ueU,NV and thus o' =z —-uelU,NV. Therefore,
v’ = 0. Also, ufe U, 4+ V', and thus uf = x + y with x€ U and ye V'
Consequently, x = uf —y = 2f —yeUyNV, s0

y=2f —xe TNV NV =0,

and therefore 3f = x€ V N U, = 0. Hence

CNP=UnU+VnlU+UNV)
= O, {[Us+ V' nTnV]+ U =000, =0,

as required.

(b) Let X be a G-complement of (C'N U)®@Pn Uy in Uy . Then
COP®X="U,. Now, COPD U, contains P @0, and therefore
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U, N V; moreover, it contains C @ D, and therefore I’". Consequently, it
contains all of V, and thus

COPOU,@X2U,+ U, + V=W

But COPD U, ® X is a proper subset of W unless X = 0. Hence,
U, = C @ P, as required.

(c) We claim that
(C,+ V)N (U, +0,nV)=1,.
For, let x belong to the intersection:
x=u4+v =u+v with s,u’eU,, veV’, and velU,NV.

Then, 4’ —u = v — v' € U; N V and thus

vV =vtu—uwe(UUNMN4+U,nV=UnVYV,.

Therefore, v’ € Uyand x = u’ 4 v’ € U, , as required. Now, since U, + V' =
U, + 7,

DAQ = Uy (T, + VYN (T, + T 5 7)
= _Uzn I71=0-

(d) Finally, using (8) and (10),
Up = Us N{[(UL + Uy n V)N (O, + Uyl + V'3
=U,n(@Q+ U, +V)=0+D.
Summarizing,
W=WwW, o&W, with W,=P®0Q and W,=C&D

is a decomposition which is compatible with U, , with U, , and thus, by (10")
with U, = U, 4+ U, , as well as with V. Moreover, since

and

TN W) (VA Wy =0,

we have decomposed our #-space (W, U,, U,, V) into a direct sum of
& -spaces satisfying the conditions

UsNV =V (12°)
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and
U,nV =0, (127
respectively.

(xii') Assume that the &-space (W, Uy, U, V') satisfies, in addition
to ()~(11), To,n V = V.
Let{v, , v, ..., )} be a basis of Uy N V. By Lemma 2.4 appliedto U, 0 V
and U; N V, there exists a basis

{735 Taseees Ty S35 S2ees Sps Brs Do eess taCUNV

such that
g, =r;+s;f forall 1 <i<p

Also, by Lemma 2.4, there is an independent subset

{2, X5 yees Xpy Y13 Y pe y,3 €Uy
such that
v; = x; +y,f  forall 1 <iLp.

Thus, foreachi, 1 < < p,
=1, — X = (yi - si)f;

from here it follows that 2; € U, . Moreover, in view of (10) and (11), we have
a unique decomposition

t; = a;,+b;f with g€l and bie U,

for each j, | < j < ¢. Furthermore, a; = a;" + ajf with a;, aj € U, . Hence,
t; — a; — b;f = ajfe U, ; this implies that @} € U, . Since Uy N U, = 0,
@ = 0 which means that a;€ U; forall 1 < j<q.

Now, we claim that both subsets

{30, Xy ooy Xy V19 Yoo Vs G2 F2oee a} C Uy

and
{2y, 23 300 Bp>» by, by yu-r b} Cc U,

are independent. This follows easily from the facts that the G-subspaces
U, , U,and U, N V have pair-wise zero intersections and that the independent

elements 7, , s;, and t; of U, N V satisfy the relations

Ti:xi+zi)

~1
$i =Yi— z,-f s
and

t; = a; + be
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Denote by C a G-complement of the G-space generated by {x, , x, ,..., X, ,
Y1 Y2505 Yps @1y Gy ey agf in Uy and by D an F-complement of the F-space

generated by {z,, 2, ,..., ,, b, by ,..., .} in U, . Then

W= é (xF Dy F D2F) @ é (a,F @ b,F) D W',

i=1 i=1

where W' = C @ D is obviously a decomposition of W which is compatible
with U, , U, and thus with U, , as well as with V. Hence, the #-space
(W, Uy, Uy, V) is a direct sum of copies of D, and of copies of C,, and
an .-space (W', Uy, Uy, V") satisfying the condition I’ - 0. However, then
U, = W’ and therefore U," = W’ in view of (6), U, = W' in view of (8),
and thus W’ = 0 by (11).

(xii") Finally, assume that the #-space (W, Uy, U, V) satisfies
U2 mn V = 0.

Let{v,, v3,..., ¥, Vy4q ..y ,} be an F-basis of V such that {Vy, Vg yeery Uy}
is a basis of U; N V. For eachi, 1 <7 < n,

vy =1u;+2% with w,elU; and zeU,.

Obviously, for 1 <i<p, 2, =0. Furthermore, one can see easily (as

in previous (xii') that both {u; , u, ..., upt and {z,,,, 2.5 ,..., 3,} are
independent. By Lemma 2.4, we get that

7)2' :xi +yif+ 2’,; With .x',—,_’y,-E Ul

such that {x,, %, ,..., %o, ¥, s yeery ¥} is independent. Again, let C be
a complement of the G-space generated by (%0, Xy ety Xy Y1y Vo sernr Vit

in U; and D a complement of the F-space generated by {2,,,;, 25, se-r Zn}
in U, . Then

W=08EFON® & (FyF@® k)@ W,

d==1 i=p+1

where W' = C @ D, is a decomposition of W which is compatible with
U,, as well as with V. Moreover, using the same argument as in the
previous section (xii’), W’ must be 0. Hence the &-space (W, U, , U,, V)
is a direct sum of copies of Cg and of copies of D, .

"The proof of Proposition 3.1 is completed.

PROPOSITION 3.2. Let £,(G) be given by the chain {I' < 2' < -+ < m'}

and I,(F) by the chain {1" < 2" < < n"}. Let & be a structure given by

InlG) u F(F) together with two additional relations (m—2yY <1” and
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(m — 1Y < 2". Let, moreover, dim F; = dim oF = 2. Assume that m > 2
and n 2> 1. Then there are exactly

im + 1)(m + 2) + 3 + D)(n -+ 6) + 7

nonisomorphic indecomposable S -spaces.

T n“
.

eb

Proof. Let (Wg, U(i')g, V(i")s) be the given #-space. First, decompose
the vector space W as the &'~space (Wg, U[(m — 1}]¢, U(m'), V(17)g).
Write

W=Wwo w,® W,

where W, is the direct sum of all copies of A;, A;, A,, and C,, W, is the
direct sum of all copies of By, By, and B and Wj is the direct sum of all
copies of the remaining types. Observe that A;, A, , A;, and C, are the
only types X for which (X n Uim — 1)) + (X n V(1") # X and that
XN Uim — 1) = 0 in all these cases. Moreover, observe that B,, B,
and B, are the only types X for which X N Uf(m — 1)’ N F(m") # 0 and that
XN V(1") = X in all these cases. It follows that

Um— 1y "W, =0 and V()N Wy = W,.

Consequently, the above is a decomposition of the .¥-space ( w, U@, 1@
and it is a matter of routine to calculate the number of the indecomposable
#-spaces: By Proposition 2.5, there are 4(m + 1)(m - 2) of those for which
V(i") is the whole space; by Proposition 2.6, there are j(n + 1)(n - 6) of
those for which U(m — 1)’ = 0;in this process we have calculated 3 .7 -spaces
(namely those with U(m’) == 0, G or F and ¥(1") = F) twice; to complete
our list we have to add the tvpes By, B;, By, C; — G, D,, and D, of
Proposition 3.1. The proof is completed.

481/33/2-12
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Remark 3.3 The proof of Proposition 3.1 can be shortened if we assume
that F contains a central subfield K with [F: K] finite and K C G C F. For,
in this case we can make use of the following duality with respect to K.

If W is a finite dimensional K-vector space, let W* = Homg(W, K)
be the K-dual of W. Then dim xW = dim (W*, and we can identify W
and W** If U is a K-subspace of W, let U+ = {p e W* | Up = 0}. Then
U+ ~ (W/U)*, and under the identification of W and W**, we get also
U = UL If V is another K-subspace of W, then UC V if and only if
VXC U, and (U+ VR =UrnV*t and (UnNn V)t = UL + V- Now,
assume that F is a field which contains K in its center and [F: K] is finite.
If W; is a right finite dimensional F-vector space, then the K-dual W*
becomes a left F-vector space, and thus a right FO-vector space. f K C G CF,
and Uy is a G-subspace of Wi, then U™ is a G%-subspace of IW*. Also, since
U =Yy, cvVrand U= vov Ve, it follows that

U+ =(UY and OU* = (UH).

If the K-structure & for F satisfies the condition F; = F; for i < j, then
we may define a K-structure .#* for F? taking % with the inverse order and
mapping each 7 € #* into the field (F,)°. The K-structure & * is called the
dual K-structure of &. Furthermore, every finite dimensional .¥’-space
(W, W,) defines an S *-space, namely (W, W))* = (W*, W), and
(W, Wy** = (W, W)).

Now, in the case of & = S(G) u S (F), the dual K-structure #* of &
is just .F* = F(G® u S (F); thus, every result on the decomposition of
& -spaces can be applied to the K-structure #*, and yields therefore a dual
result for &-spaces. For example, in the first step of the proof of
Proposition 3.1, we have shown that every #-space is the direct sum of copies
of Ag and By, and an & -space in which U; = 0. Now, if (W, U, , U,, V) is an
& -space, then we may apply this resuit to the & *-space (W*, U,*, U,*, V);
hence, (W*, U,*, U;*, V*) is the direct sum of copies of (F?, F9, F?, 0) and
(F°, F°, F%, F9), and an & *-space in which (U,*) = 0. Applying the dual
argument again, we see that (W, Uy, U,, V) = (W*, U,*, U,*, V4)* is the
direct sum of copies of B; = (F°, FO, F°, 0)* and A, = (F9, F°, FY, FO)*,
and an &-space in which U, = Up* = (U4)t = 0+ = W. In this way,
we may replace every second argument in the proof by a reference to the
duality.

4. K-Structure #(G) with [F: G] = 3

Throughout this section, we assume that K C G CF are three fields such
that K is central in F, [F: G] = 3 and [G: K] = n. Let & = 4(G). First,
we want to show the existence of an indecomposable #-space (W, Ug)



ON ALGEBRAS OF FINITE REPRESENTATION TYPE 337

with dim W, = 2. To this end, we need the following lemma which will
also be used to prove Proposition 7.4.

LimMma 4.1. Let [F: G] =3 and e e F\G. Then there exists a G-subspace
Ug of F X F such that

dimUg =3, UnUe=0 and UN(Fx0)=0.

Proof. First, assume that F is commutative. Obviously, {1, e, ¢®} is
a basis of Fs. If € ¢ G + €G, let f = €2, otherwise, put f = e + €% {1, ¢, f3
as well as {1, e, ef} are bases of F . Let

U = (0, )G + (e, ©)G + (1, f)G.
Since {1, e, f} is a basis of Fg, we have U + F X 0=F XF,so
dmU;=3 and UNFx0=0.
If x€ U n U, say
x = (egs + 83> &1 + o8 + 18s) = (€)' + eg’, 8 + €8 + efg)
with g, , g,/ € Gfor 1 < i < 3, then
g+ elgr—g) — & =0

implies that g; = 0 = g,’ and g, = gy, because {1, ¢, €%} is a basis of F.
Comparing the second components of x, we have

&+ elg: — &) — efgy =0,

!

and since {1, ¢, ef} is a basis of Fg, we conclude that g, = 0 = g’ and

g. = g, Consequently, since g, = g5’ = 0, x = 0. Therefore U N Ue = 0,
which proves the lemma in the case when F is commutative.

Thus, we can assume that the field F, and therefore also K, are infinite.
Let Wy = F x Fand Ug = G X G X G. Consider the affine variety

Homg(Ug, We) ~ K**"

over K. Denote by Aut Ug the automorphism group of Ug . Also, consider
the ring T,(F) of all 2 X 2 upper triangular matrices over F as the subring
of Homz(Wy, Wp) of all elements mapping F X 0 into itself, and denote
by T,(F)* its group of units. Both Aut Ug and T,(F)* are open subvarieties
of affine varieties, namely '

Aut UGQ HOID(;(UG ’ Ug) 21 K3-3-n
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and
Ty(Fy*C TyF) ~ K¥37,

Moreover, Aut Ug x T,(F)* operates on Homg(Ug, Wg) via
(o, Blp == Bpa ! for acAut Ug, Be T(F)* and @& Homg(Uq, W)

Here, the diagonal K* = {(k, k)| ke K~} C Aut Ug x T,(F)* opcrates on
Homg(Ug, W) trivially. Since

Dim(Aut Ug X ToF)"|K*) = 9+ 9n — 1 == 182 — 1,

whereas
Dim Homg(Ug, Wg) = 18n,

we conclude that there are infinitely many orbits.

Now, denoting by % the K-structure J(G) u Ji(F), it is easy to see that
these orbits correspond bijectively to the isomorphism classes of .#'-spaces
of the form (F x F, Ug', F x 0) with dim Ug" < 3. For, given

Qe Hom(;(UG ’ WG))

we can construct the . -space (F x F, ¢(U), F x 0) and, obviously, we get
in this way all such &'-spaces. If ¢, € Homg(Ug, W) belong to the same
orbit, that is, if there are a € Aut Ug and B € Ty(F)* such that ¢ = Bpa™,
then the automorphism 8: Wy — Wy maps F x O into F < 0, and

Be(U)) = Blpa™(U)) = Bpa (V) = H(U);

thus, (F x F, p(U),F x 0) and (F X F, $(U),F x 0) are isomorphic
&'-spaces. Conversely, if there is an isomorphism of &’-spaces

B:(F X F,¢(U),F x 0) — (F x F, §{U), F x 0),

then B e Ty(Fy* and, since both B¢ and ¢ map U onto (U), there is also
a € Aut Ug with = Bpal.

We want to show that there is only a finite number of (nonisomorphic)
&’-spaces of the form (F X F, U;, F x 0) with dim U; << 3 which satisfy
either UNnUe #0o0r UNF x Q) # 0.

First, there is only a finite number of decomposable &’-spaces (F x F, U,
F x 0). Indeed, an & -space (Wp, U’, V') with dim Wy =1 is either
of the form (F, U, F) or of the form (F, U, 0), and thus there are just 8 such
nonisomorphic #’-spaces, corresponding to whether dim Ug = 0, 1, 2, or 3.
Perhaps only the case when dim Ug = 2 requires to show that every %' -space
(F, U, V') with V' =0 or F, is isomorphic to (F, G + ¢G, V'), where
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e € F\G. Indeed, both U and Ue™! are K-subspaces of Fy of dimension 2n,
and therefore, since dim Fy = 3n, there exists 0 # x€ U N Ue'. And,
it is easy to see that the left multiplication by x maps (F, G + &G, V') into
(F, xG + xeG, V') = (F, U, V"), as required.

Also, there is (up to an isomorphism) only one indecomposable &'-space
(F x F, U F x 0) with dim Ug = 2. Obviously, we can assume that
(0,1)e U and that U = (0, )G + (1, /)G with a suitable feF\G. If
U’ = (0, )G + (1, f')G with another f' e F\G, then

G+ GN(G+fGf #0,

because both G + f'G and (G + f'G)f are K-subspaces of F of dimension 2n,
and dim Fy = 3n. Thus, there is a nonzero element e F such that

y=g+fg ad o= o 18
for some g, , g, 8., &2 € G. Define
«=g' —g&f ad B=g,

and observe that « == 0; for, otherwise, g = 0 = &5, and, consequently,
gi=v#0 and g,f =g, €G. Then, (5 %) is an automorphism of W
which maps F x 0 into itself and U into U’ according to

I R R ARL R

6 D) =03 = ) = O+ e

Similarly, there is at most one indecomposable &'-space (F X F, U',F x0)
with dim Uy = 3 and U'NF X 0 0. For, if such an &"-space exists,
then, in view of indecomposability, necessarily dim(U’' N F x 0)g = 1 and
U’ A U'e = 0. We may assume that G X GC U, and thus let

U = G x G+ (¢, f')G with suitable e, f' eF.

Let {1, e, f} be a basis of F and let U=G xG+ (e f)G We are goifxg
to show that (F x F, U, F x 0) and (F x F, U',F x () are isomorphic.
Since (G + F'G)N (G + f'G) f*#0, there is a nonzero y € F such that

y=g+fg and v =& +f&
for some g, , g5, 22> g5 € G- Since {1, ¢, f} is a basis of F, we can write

—e'gof + €8s = —g + o+ af
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with the coefficients g,', a« and g from G. Defining, furthermore,
B = g1 + €'gs, we can verify easily that ¢ = (% £) is an endomorphism of
W which maps F X 0 into F x 0 and U into U’;

6 26 =0 =)=
6 D=0 =(a+(a+())e

t

6 ) =5 = Qs+ Qe+ ()

Now, if @ is not an isomorphism, then « = 0 and thus F x 0 is its kernel.
Butp(U) = (U + ker g)/ker ¢ = (U + F x 0)/F x 0is of dimension 2 over
G, and therefore F X F = (F X 0) @ ¢(U)F is a direct decomposition of Wp
compatible both with F x 0 and U’, a contradiction. Hence ¢ is an
isomorphism, as required.

Finally, there is just one indecomposable &’-space (F x F, U, F x 0)
with dim Ug =3 and U N Ue # 0. For, such an F’'-space necessarily
satisfies UNF X 0 = 0, and we may assume that (0, ¢) € U N Ue. Hence

and

U = (0, )G 4 (0, &)G + (h, f)G,
where {1, e, f} is a basis of F; and 0 +« ke F. Now, if
U = (0, )G + (0, )G + (¥, f)G

is another such %’-space, one can see immediately that the automorphism
("3 9 of Wemaps F x Ointo F x 0 and U into U".

Thus, we have shown that there is only a finite number of (nonisomorphic)
&'-spaces of the form (F X F, Ug,F x 0) with dim U; < 3 satisfying
either UN Ue £ 0or UNF x 0 = 0. Since the number of nonisomorphic
-spaces (F x F, Ug, F x 0) with dim Ug < 3 is infinite, we conclude
that there are #’-spaces (F x F, U, , F % 0) with

dim Ug; = 3, UNnUe=0 and UNF x0=0.

This completes the proof of Lemma 4.1.

Now, if we take a subspace U of F x F with dim Us=3and Un Ue =0,
then the S-space (F x F, Ug) is indecomposable. For, otherwise the inter-
section Ug' of Ug with one of the one-dimensional summands would have
dimension at least two and thus U’ N U'e # 0, in contradiction to
U N Ue = 0. We are ready to formulate the following:
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PrROPOSITION 4.2. Let & = J(G) be a K-structure such that [F: G] = 3.
Then there are exactly five nonisomorphic indecomposable S -spaces.

Proof. First, choose a basis {1, e, f} of F which is a basis for the vector
space gF, as well. This is possible in view of the fact that if {1, ¢, f'} and
{1, ¢, f"} are bases of F; and gF, respectively, then either one of them or
{1, e, f' -+ f"} is a basis for both Fg and &F.

We are going to prove that every finitely generated &-space (Wg, Ug)
is a direct sum of indecomposable .#-spaces of the form

(1) (F,0),
(i) (F, G),
(iii) (F, G + ¢G),
(iv) (F,F), and
(v) (FxF, (G xG)+ (e f)G).
First, it is obvious that
W=U®DW oW,
where W, is an F-complement of U in W and W, is an F-complement of
U @ W, in W, is a decomposition of the #-space (W, U). Here U is a direct
sum of copies of (iv) and W, is a direct sum of copies of (i). Hence, we may
assume that U = 0 and that U = W.
Now, consider the F-subspace U N Ue™* and let {#, , u; ,..., u,} CUN Ue?
be an F-basis of it. Thus

{4y, Uy youey Uy, 18, Usly..., 1}

is a G-independent subset of U. Since U = W,{u, , ty,.., ,}can be extended

to an F-basis
{8y 5 By yeuey Uy y Ypig sesy uyCU

of W. Define
X=u40uG® QuGCUCuFOuFO® - DuF = W.
Obviously, since X 4 Xe 4+ Xf = W, every element w € W has the form
w = %, + ¢ + xf with xeX.
Now, the G-independent subset
{8y 5 Uy yerey Uy y Upyy ooy By 118y Unyerss uey CU

can be extended by {v; , ¥y ,..., 7} to a G-basis of U. We may assume that
v; € Xe + Xf; let

v, = x/e + x| f with x,.’,x;'EX, 1<j<t
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Put

i=1

r i t
AGIZ“iG+ Zx,'G-}—Zx:GQXc;,
i=1

‘ =1
and observe that
UCA+ X.

Choose a G-complement B of A in X: X =A@®B. Then W=A®B
is a decomposition of the S-space (W, U). For,since UC A + XC A + B,
every element « € U can be written
u=a-+b with ae A and beB;
hence,ae AN Uandbe BN UC BN U, as required. Here, B is obviously
a direct sum of copies of (ii). Thus, we may assume that 4 = X and thus
A=W.
Now, since [G: K] = n,
dm Ug=(r+ s+ t)n and dim Wy = 3sn.

Also, considering the G-subspaces UNV, Ue' NV, and Uf-'NV of
V = U n Ue™?, we see easily that

dim{(U N V)g = dim(Ue ™ N V) = dim(Uf-1 N V)g = 2rn
and dim V = 3rn. Thus,
dim(U N Ue)g = dim[(UN V)N (Uer N V)]g = drm — 3rn = .

Moreover, since U =0, Un Ue N Uf1 =(Un UeYn (Uftn V) =0,
and we deduce immediately that dim(U N Ue)x = rn. Hence,

3m = dim(U + Ue)y = dim Uy -+ dim(UeY), — dim(U A UeY)g
= (T + 23 + Zt)n

and thus
dim Wy =5 > r 4 2t.

Consequently, in view of the fact that the set {ug, g ey uy, %)) 21,0, %), X7}
F-generates W, we obtain the decomposition

r t
W=@uF®@ F@«F)
i=1 j=1



ON ALGEBRAS OF FINITE REPRESENTATION TYPE 343

of the ¥ -space {Ug;C Wy} into indecomposable & -spaces of types (iii)
and (v). The proof is completed.

A case similar to that of Proposition 4.2 was treated in [5]; it can be dealt
with by the same method as here.

1I. CATEGORIES OF STRONGLY UNBOUNDED TYPE

5. Construction of Large Indecomposable Representations

The aim of this section is to study the representations of certain rather
simple K-species and to construct large indecomposable representations.
As P. Gabriel [7] has pointed out (in the classical case), there is a strong
affinity between K-structures and K-species. In some cases, there is a corre-
spondence between a K-structure % and a K-species 2 in such a way that
the categories &(.¥) of all #-spaces and R(2) of all representations of 2
are nearly equivalent to each other. Since it is usually easier to operate
within an %-space than within a representation of a K-species, the final
classification of K-species of finite type is derived from the corresponding
classification of K-structures of finite type. However, in some instances, there
is an advantage in working in the category R(2), because R(2) is an abelian
category, whereas this is usually not true for S(). In the sequel, we use
the fact that R(2) is abelian, mainly in order to be able to apply the following
criterion for indecomposability.

LemMA 5.1. Let U be a Grothendieck category and let B, B’ be inde-
composable objects of W.

(a) Let
0 =AOQA]_Q"'QA]¢:A

be a sequence of subobjects A; € Wof A such that A,JA; y ~ Bforalll <i<k.
If every morphism B — AJA;_; with 1 < i < k maps B into A;]A;_, , then A
15 indecomposable.

(b) In addition, let
0=4,CA4,/C--CA' =4A

be a sequence of subobjects A; € W of A’ such that AJ|A; , ~ B’ for all
1 <j <L If Hom(B, B') = 0, then also Hom(4, A} = 0.

(c) Let

0 ZA(}(_—-_AI(_:”'QAI'_IQA,:Q'“QA —_ UA;
ieN
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be a sequence of subobjects of A such that A;/A; , ~ B for all ieN. If every
morphism B — A[A;_, , i€ N, maps Binto A;{A;_, , then A is indecomposable.

Proof. We prove first (a) by induction on k. We show that every idem-
potent ¢ in Hom(A, A)is either 0 or 1. Since with ealso 1 — e is an idempotent
and either 4, # 0, or (1 — €) 4, # 0, we may assume that e4; # 0. Let
p: A, — A be the inclusion of A; in A. Then eu: A ~ A maps 4, ~ B
into A4, , so there is ¢ in Hom(A4, , A;) with ex = pe’. Obviously, € is also
an idempotent, and since A4, is indecomposable, either ¢ = 1 or ¢’ = 0. But
¢ = 0 is impossible since eA; # 0; hence, ¢ = 1. If we denote by
a: A — AJA, the canonical projection, then there is € in Hom(A4/4, , 4 [A)
with €”m = me, and so ¢” is an idempotent. All the assumptions are satisfied
for A/ A, with the series

0 = A,/]4, C A,/A4,C - C A4, = AlA,

of subobjects. Thus, by induction, either ¢* =1 or ¢ = 0. Now, ¢’ =1
together with € = 1 implies that ¢ is an isomorphism and then € = 1.
Hence, we may assume that ¢’ = 0. But then ne = 0, so € = yup for some
p: A — A, , since p is the kernel of 7. It follows that pp = 1. As a
consequence, also the inclusion A, C 4, splits, that is 4, = 4, D C with
C ~ Ag/A, . But A,JA, ~ B shows that there exists an embedding of B
into A, C A which avoids A, . This contradiction shows that ¢ =1, as
required.

Now, let p: 4 — A’ be a morphism. In order to prove (b), we will use
induction with respect to &+ 1. If 2 > 1, let u: A, — A be the inclusion.
Then pu: A, — A’ is zero, so A, C ker ¢, and pinduces a map ¢": 4/4, - 4’
which, again by induction, has to be zero. Therefore, ¢ = 0. Similarly,
if 1 > 1, let o1 A’ — A'[A; be the projection. Then #'p: A — A’[A, 1s,
by induction, zero. Consequently, ¢ maps into A,’, but then also ¢ = 0.

Finally, in order to verify (c), we note that every endomorphism
o € Hom(4, A) maps A; into 4; for all i € N. For, assuming that p4; ; C 4;_4,
denote by ¢’ the induced map A4/4; ; — A[A;_,. Then, by assumption,
@' (A,/44-,) lies in A, /A; ,, since A;/A; ;3 ~ B Thus also ¢A4;C 4;.
In particular, every idempotent endomorphism ¢ & Hom(4, 4) maps A;
into itself and so induces a decomposition of 4;. But note that, by (a),
A, is indecomposable. Thus, if € is an idempotent such that e4; 7 0, then
eA; # 0 for all 7, and therefore the restriction of € to A, is the identity.

Hence, since A = J;en 4;, We conclude that ¢ = 1. This completes the
proof.

Now, we consider a K-species (K, v iM )i e with I = {1, 2} and M, =
oM, = ,M, = 0. That is, there is given just a2 bimodule g {M:)x, on which
K acts centrally and which is finite dimensional over K. A representatlon
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is given by a pair (Vy)x , (Vo)x, of vector spaces together with a map of
the form @: (Vy)x, ® x(Mo)x, = (Vox, - To avoid indices, we write
K,=F K,=G, My=M, V=X, I/, =Y and simply speak about
the K-species ;M and its representations (X, Y, ¢). We shall denote by
¢*: Xz = Homg(;M¢ , Y¢) the adjoint mapping of ¢. Maps from (X, Y, ¢)
to (X', Y’, ¢') are pairs of mappings «: Xy — X, 8: Y — Y satisfying
Bp = ¢'(« ® 1), or, equivalently, Hom(l, B) ¢* = ¢"*«. In this way, we get
the abelian category R(zMy) of all representations of M .

If (X, Y, ¢) is a representation of zMy, and @ is not an epimorphism,
let C; be a complement of (X @ M) in Y and 6: 0 @ M — C the zero
map. Then

(X, Y, (P) = (X, (X ® M): (P) @ (0, G, 6)

is a decomposition in R(;M). Thus, for an indecomposable object (X, Y, ¢)
in R(;M;), either ¢ is an epimorphism or (X, Y, ¢) ~ (0, Gg, 6) with
the zero mapping 6. We denote by Re(zM) the full subcategory of R(xMg)
of all objects (X, Y, ) with an epimorphism ¢. Similarly, we denote by
Rim(-M) the full subcategory of R(zM) of all objects (X, Y, ¢) such that
@* is monomorphism. Then, an indecomposable object of R(zMg) either
belongs to Rm(zM) or is isomorphic to (Fr, 0, Fx @ fMg—> 0). The
K-species ;M is therefore of finite type if and only if one of the categories
Re(xM) and Rm(zM) (and, therefore both) is of finite type. And similarly,
if one of the categories R(xMg), Re(:Mg), and Rm(zM) is of strongly
unbounded type, then all three categories are of strongly unbounded type.
The following proposition is of great importance.

PROPOSITION 5.2. Let zMg be a K-species. If (dim M) X (dim Mg) > 4,
then M is of strongly unbounded type.

Proof. Let A = (M) be the category defined as follows: the objects
of A are of the form (Ug, Xg, ), where 1 Ug — X ® pMg is G-linear
and the morphisms (Ug, Xr, ¥) — (Us, XF, §) are given by pairs
(y, o) withy: U — Ug', a: Xp— Xy such thatg’y = (a @ ). Obviously,
9 is an abelian category. We are mainly interested in the full subcategory
B — B(:M) of all objects (Ug, X, ) of U, where ¢ is an inclusion
(usually denoted by ¢), in which case a morphism is fully determined by
a single mapping «: X7 — X' and so we write instead of (y, o) simply a.
Also, if X = @, Fg with an index set /, then

XF@FMGN(’B(FF@FMG)%@MGs
1

1
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and we will frequently identify X; ®) ;Mg and @&, Mg . The category B
is equivalent to Re(-Mg). For, consider the functor Re(pM;) — B which
sends (X7, Yg, ¢) to (kerg, X, 1), where «: kergp — X, 6) (M is the
inclusion of the kernel of ¢: X (%) ;M; — Y, . Since @ is an epimorphism,
@ is (up to a canonical isomorphism) determined by ¢, and therefore the
functor is an equivalence. If we define a dimension in B by

dim(Ug , X5, ) = dim X,

then our functor is a dimension functor. For, if dim ;M = n, then dim YV <
dim(X; ® ¢M)x = n dim X, and therefore

‘ﬂl?T (dim X + dim Yy) < dim Xy < dim Xg + dim V.

Let d = dim Mg, d' = dim M, and d'd = 4. First, we assume that
d’ < d, and show that in this case B = B(rMg), and therefore Re(,Mj),
is of strongly unbounded type. T prove that B has many indecomposable
objects, we will work in the abelian category ¥ and construct objects which
satisfy the conditions of Lemma 5.1 and which belong to B. Note that
objects of B of the form (U , Fp, «) are indecomposable in . For, in a direct
decomposition (U, Fr, ) = (X, Y, ¢) D (X', Y', ¢'), also ¢ and ¢ are
monomorphisms, and since Y @ Y’z = Fy, either (X, Y, 9) =(0,0,06)
or (X', Y', ¢) =(0,0, 9).

We will consider two cases, namely the case where d’ — | and d = 4,
and the case d > d’ > 2.

(i) Letd >4, d = 1. Hence ;M; = g, and G can be viewed as
a subfield of F. If x e F\ G, consider the object B = B, = (G + xG, F, 1),

where ¢: G+ G CFg = F; () gF; is the inclusion map. We are going to
construct in A a sequence

0 =A0(_:A1g“‘QA,-,_1QAiQ"'QA == UA‘
ieN

with 4, 4;€ B and 4,/4, , ~ B forallieN, and such that every morphism
B — A factors through A4, , and that, for everyj € N, there is an isomorphism
A — A|A; mapping A; onto 4, ;] A, forall ie N. Then, in view of Lemma 5.1,
A as well as all 4; are indecomposable.

Since G+ xG + Gx + xGx is a proper K-subspace of Fy (for,
dim(G + xG + Gx + xGx)x < 4 dim Gg, because ¥G N Gx %0 and
4 dim G < dim Fy), there isan element y e F NG+ «G + Gx - xGx. Let
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U; be the G-subspace of (Fi)g = F; X ** X F (i copies), generated by
G' = G X - x G and the 7 elements

4, (x, 0,..., 0),
u‘2 == (J’; X, Ov") O)y

u,, =(0,.., 0,y x 0), and
u;, = (0,..., 0, 3, x).

Let 4, = (U;, F*, ) and, for k < 1, consider A, embedded into A; via
(Uy, F*, ) &~ (U, x 07k, F* x 0i~%, ) C (U, , FY, o).

Also, let A = (J;en 4; . .
Every map B — A maps B into some 4, , so we may assume that there is
given a mapping

a: B = (G + xG, F, ) > 4; = (U;, F, )

which does not factor through 4, ;; we want to show that ¢ < 1. The
mapping « determines elements £, ,..., f;_; € F with

(fiser i, DeU; and  (fix,.., fiqx, x)eU;.

For, let ofl) = (fser ;) EF X =+ X F. By assumption, f;' # 0. Now,
@ maps G + xG into U;, so ofl) = (). fi') and afx) = (fy'%,..., fi'%)
both belong to U; . Since fi and f/x are right G-independent, and belong. to
G + G, they generate G + xG, so there are clements g, g, € G with
figi+ fixg, = 1 and g,, g, G with f;'gy + f;xg, = ». Now, the last
component of of1)(g, + xg,) is 1, so let

gy + xgp) = o1)(g1 + %g2) = (f1 s Sicas 1)-

The last component of «(1)(gs + %g4) is x, and since this is an F-multiple of
o1)(g, + xg,), we get

(g + xgy) = o 1), + xga)x = (flx’"'s fea®, x),

as required. '

Now, assume that i >> 2. Then, from (f; ,-.e fic1» 1) € Uy, we derive
that f; , € G + %G, and thus fiix € Gx 4 xGx. Similarly, from (fi% ,-.
Jea, x)e U, , we derive that there are elements g, g’ € G with

fiax =g+ %+
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and therefore ye G + Gx + xG + xGx, a contradiction. This shows that
a maps B into A4, .

We have shown that B has indecomposable objects of arbitrarily large
finite dimension and of infinite dimension. Now assume that K is infinite,
and let [G: K] = n. We want to show that there is an infinite set £ C F G
with Hom(B,, B,) = 0 for x + x’ in E. Consider the affine variety

Homg(GG X G(;,Fg) A K2

over K. The algebraic group Aut(F;) x Aut(Gs X Gg) operates on it via
(o Bl = apB1 for a & Aut(Fy), B € Aut(Gg X G¢)and p € Hom(G x F, F).
Obviously, the diagonal Kx — {(& k) | ke Kx} C Aut(Fy) x Aut(G; X Gg)
operates trivially on Homg(G x G, F), and

Dim(Aut(Fr) x Aut(Gg x Go)[KX) = dn + 4n — 1.
Since
dn4-4n—1<2dn— 1 < 2dn,

it follows that there are infinitely many orbits. But there are even infinitely
many orbits containing only monomorphisms. For, if ¢ € Homg(G X G, F)

is not a monomorphism, then dim Im(p); < 1. Since there is just one @ with
Im(p) = 0, consider ¢, ¢’ with

dimIm(p); = 1 = dim Im(¢)g .

Let Im(p) = fG and Im(p') = f'G, where f, f* are nonzero elements of F
and let @ € Aut(Fy) be the left multiplication by f'f~1. Then there is obviously
an automorphism B of G; x G such that ap = ¢'B, and thus ¢ and ¢’
belong to the same orbit. Consequently, we have infinitely many orbits
containing only monomorphisms. Since Aut(Fp) is transitive on the nonzero
elements of F, every such orbit contains a map ¢ with | € Im(p). We may
select a set E of elements x e F\ G such that the maps Gz X Gg ~
G 4 G — F; belong to different orbits, Now, we want to show that
Hom(B., B,) = 0 for x # ¥’ of E. Let ¢: Gg X Gg ~ G + xG ¢— Fg,
and ¢": Gg X Gy ~ G+ x'G “—>Fg, and assume there is a nonzero
mapping a: (G + %G, F, ) — (G + *'G,F, 1) in B(;M;). Then « is an
automorphism of Fy, and therefore also the restriction of « to G + G

is an isomorphism. But then there exists B e Aut(Gy x G) making the
following diagram commutative

Gc,'x G(;N G—I—-xG C—)-F

B

Y

G X G~ G+ %G S F
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50 ap = ¢'B, and p and ¢’ belong to the same orbit. This contradiction shows
that Hom(B, , B,’) = 0 for x # «" € E. Hence, by Lemma 5.1.(b), it follows
that there are infinitely many dimensions for which there are infinitely
many nonisomorphic indecomposable objects. This proves the result in
the case whend > 4,d’ = 1.

(i) Letd > d' > 2andlet[G: K] = n,[F: K] = n'. Hence dn=d'n,
and thus # < #’. For 0 # x € M, consider the object B = B, = (xG, Fy, 1),
where 1: xGC Mg = F; ® gMg is the inclusion map. Again, we are going
to construct in 9 a sequence

0=4,C4,CCA,CA4C~CA=)4

ieN
with 4, 4,in B and 4,/A4; ; ~ Bforall {e N First, take y € M\ (G + Fx).
This is possible, because xG + Fxisa K-subspace of My, and

dim(xG + Fx)g < dim(*G)x + dim(Fx)g — 1 =n + n—1<<2n—1,
whereas dim My = (dim Mg)(dim Gg) = dn = d'n’ > 2n'. Let U, be the
G-subspace of M! = Mg x '~ X Mg (¢ copies) generated by the elements

u = (x, 0,--., O),
4y = (¥, %, 0,..., 0),

#, ; = (0,..., 0, », % 0), and
u; = (0,..., 0, ¥, %)-

Let 4, — (U,, F*, «) with the inclusion i U;C M* = F# @ ¢Mg. As in
the previous case, we embed, for k < i, A, into A; by (Uy, F5 ) ~
(U, x 0%, F* x 0i~* ) C (U;, F¥, 1), and define 4 = Uen 4; - Again, we
assume that there is a mapping

a: B = (xG,F, t)""’Ai :(U;WP’ "))

which does not factor through A;_, , and we want to show that £ < 1. N-ow
a: Fp— Fyi is determined by (1) = (fi, f) e F¥, and by assumption
fi#0 Thena®1: M —F;Q M—~Ff @M= M‘ maps z€ M into
(fi2,..., ;). In particular, x is mapped into ( fi%,., fix), and thus_( fl.'r,..., fex)
belongs to U, . Therefore, there are elements g, €G, 1 <k <1, with

f

(flxv'"vfix) = Z Ul -

k=1
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If £ >> 2, we may compare the last two components

fiax = xgiy + yei and  fix = xg;.

Since f; # 0, g; # 0, so the last equality can be written as xg;! = f;'x,
and multiplying the first equality from the right by g;!, we get after sub-
stitution

y=f_fix—xg,_ gt eFx + xG,

a contradiction. This shows that 7 <{ 1 and hence, in view of L.emma 5.1, all
the A; and also A4, are indecomposable. This shows that in B are inde-
composable objects of arbitrarily large dimension.

Now, assume that K is infinite. Consider the affine variety M ~ K%
over K together with the algebraic group F* x G* (F* and G* are the
multiplicative group of F and G, respectively) operating via (f, g)x = fxg!
for fe F*, g € G*, x € M. Obviously, the diagonal Kx = {(k, k) | ke KX} C
G* X F* operates trivially. Now,

Dim(GX X FX)[KX =n+n" —1 <2n— 1 < dn,

and consequently, there are infinitely many orbits. Choose an infinite set
E C M\{0} of representatives of different orbits. We claim that

Hom(B,, B;) =0 for x £ x'ekF.
For, a homomorphism «: B, — B, is given by a commutative diagram
¥G — Mg~ Fr ® Mg
.
XG> Mg ~ Fr @ M,

where 8 is the restriction of & ® 1, and if « 3 0, then B(x) == x'g for some
g€ G%, and (« @ 1)x = fx for some f e F%, so that

fr=(0®x =Bx = x'g,

and x, ¥’ belong to the same orbit. As in the previous case, it follows that
there are infinitely many dimensions for which there are infinitely many
nonisomorphic indecomposable objects in B.

Cases 1 and 2 together show that for d’ < d (and d'd > 4), B(;M;) ~
Re(pMg) is of strongly unbounded type. It remains to reduce the case
d’ > d to this situation. Denote by M* the G-F-bimodule

eM*p = HomG(FMG ’ GGG)-
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Since
Homg(Ms , Gg) = Homg (B G, Gs) = @ Hom(Go, Go) = D G,
d d d

it follows that dim M*x = dim My = dn, so dim ;M* =d and
dim M*p = d’. If we assume d’ > d, then by the previous investigations,
B(cM*;) is of strongly unbounded type. We claim that B(sM*f) ~
Rin(zMg). Indeed, an object of B(;M*p) has the form (Ur, X¢, ¢), where ¢
is a monomorphism Uy — X @ ¢M*r. Let X5 = @, G for some index
set 1. Then

Xe @ eM*p ~ @ (Ge ® cM*F) ~ @ M*p = @ Homg(sMg , Gg)
I I 1
~ Homg (FMG , @ GG) = Homg(+Ms , Xo)-
I

Of course, we have used here again the fact that Mg is finite dimensional.
Thus, denoting by ¢ the canonical monomorphism

l.’: UF C—> Hom(;(}:‘MG ’ XG)’

the functor B(zMg) — Rm(zM¢) mapping (Ur, X¢, 1) into (Ur, Xg, V)
is an equivalence, and also a dimension functor. This completes the proof
of Proposition 5.2.

We like to use the same technique also for another type of K-species. Let G
be a subfield of F containing K. Let I = {l, 2, 3}. Define the K-species
2 = (K;, M) e by Ky = K, = G, Ky =F, \M; = 6Gg, oM = eFr,
and ;M, = ( otherwise. A representation of 2 is given by (X6, Y6, Zr, 9, ¥)
with ¢: X5 — Homg(sGg, Yo) & Yg,and Yo — Homp(oFr, Zp) ~ Zg .
We denote by Rm(2) the full subcategory of R(2) of all representations
(X, Y, Z, @, ) such that ¢ and ¢ are monomorphisms. In case that p and
are inclusions, we denote both @ and ¢ by «. It is easy to see (but we shall not
need it) that R(2) is of finite type if and only if Am(2) 1s of finite type.

PrOPOSITION 5.3. Let G be a subfield of F containing K with [F: G] = 3.
Let 1 ={1,2,3}, and 2 = (K;, {M,); jer @ K-species with K, = K, = G,
Ky =F, M, = Gz, ;My = cFr, and ;M; = 0 otherwse. Then Rm(2)
is of strongly unbounded type.

Proof. We will work in the abelian category R(2); however, all objects
which will be constructed, will belong to Rm(2). Let xeF G and consider
the object B — B, — (Gg, G + xG, Fr, 1, ¢). Obviously, B is inde-
composable in R(2). Calculating the K-dimensions of G + xG + Gx and
and of F, we conclude from [F: G] =3 that there is an element

]

481/33/2"!3
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y€F\G + xG + Gx. 'Let U; be again the G-subspace of Fg' generated
by G4 and the ¢ elements

4, = (x,0,..,0),
u, = (v, x,0,..,0),

4_y = (0,..., 0, y, ¥, 0), and
ui == (0,..., O, y, x).

Let 4; = (G¢, U;, F¢, 1, 1), and consider for & < 4, A, embedded into 4,
via the first & components. Also, let 4 = (J;en 4, .
Now, a morphism

B:(GG’ G_*_xG’FFa‘; ‘)"’Ai:(GG‘v Ui:FF‘: 4 ‘)

is obviously fully determined by a single mapping a: Fy — F/, and we are
going to show that every such morphism factors through 4, . Thus, assume
thats > 1 and that « does not factor through A4;_, . We have 1) = (gy ,.., £:)
for some elements g; € G, and g; + 0. Also, since a(x) = (g,x,..., g,x) belongs
to U;, there are elements g/, g} € G with

(8809 = 808+ . 15 -
Comparing the last two components, we derive the equalities
gx =g txg; and g ox=g gt +yel.
The first equality implies g} 5 0, so
(1) = g8, (&)) + g%

If we multiply the second equality from the right by (g7)! and substitute
the expression for x(g])"1, we get

Y= 8808 (&) 8, &7 % — g () — xgl_ (g,

in contradiction to the fact that y ¢ G -+ xG + Gx. Thus, the morphism «
factors through 4, and we can again apply Lemma 5.1 to B and the subobject
sequence

0 :.AOC_AIC_;"'QAiQA{+1(_:"'gA,

in the abelian category R(2), and conclude that all the representations A4;
and A are indecomposable.
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Now, assume that K is infinite and let [G: K] = n. We want to construct
an infinite set E of elements of F\ G with Hom(B, , B,) = 0 for x # " in E.
Consider the affine variety

Homg(G¢ X Gg,Fg) x Homg(Ge, Gg x Gg) ~ Kbm+2"

over K. The group F* x Aut(Gg X Gg) X G* operates on the variety via
U, o ), ) = (fa?, ™) with feF¥, aeAut(Gg X Go), g€ G
¢ € Homg(G; x Gg, Fg), and ¢ € Hom(Gg, G % Gg). Obviously, the
diagonal K* = {(k, k, k) | k€ KX} CF* x Aut(Gg X Gs) X G*  operates
trivially. Since

dim(F* x Aut(G¢ x Gg) x G*[K¥) = In+dn+n—1
= 8n—1 < 8n,

there are infinitely many orbits.

Now, F* operates transitively on the 1-dimensional, subspaces of Fg,
as well as on the 2-dimensional subspaces of Fg. For, let Ug CFg and
dim U, = 2, then, for e e F\ G, we calculate the K-dimension of U + Ue™
and see immediately that U N Ue?! #* 0. But if 0 == ue U Ue™, then
the left multiplication by u on Fg maps G + ¢G onto U. As a consequence,
there are only three orbits of the form (¢, 0). Moreover, there are only two
otbits of pairs (g, /) such that g 1s not a monomorphism and ¢ % 0, namely
with ¢y = 0 and with dim(Im @) = 1, respectively. Thus there are infinitely
many orbits containing only pairs of monomorphisms, and every such orbit
obviously contains a pair of the form (p, #) with Im(py) = G CF. In this
case, Im ¢ = G + G for some x € Im ¢\ G. Denote by E an infinite set of
such x chosen for different orbits. Note that, for every x € E, there is given
a pair (p, ) and an isomorphism 8,: G X G; — G -+ xG such that the
diagram

GG——w“"—*GG X GG"—?"—)FG

| DI

G; — G+ =G C—» Fg

is commutative. Let also x’ € E, and (¢, ¢') a corresponding pair. N?w
assume there is given a map a: B, — By’ in R(2). Then we get a commutative

diagram

b Jem

Go—Y > G X Gg—2—Fg
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where 8 and y are the appropriate restrictions of «. If o # 0, then « is an
automorphism of Fr. Hence, « € F%, and then 87!85, € Aut(G¢; x Gg) and
y € G*. The diagram above shows that («, 5,88, , ¥)(¢', ¢) = (@, ¢) and
then (¢, 4) and (g, ) belong to the same orbit. This means that for x £ x’
from E, we have Hom(B;, B,") = 0. Now, it follows again from Lemma 5.1(b)
that there are infinitely many dimensions for which there are infinitely many
nonisomorphic indecomposable objects in Rm(2). Thus Rm(2) is of strongly
unbounded type, as required.

6. Abelian Subcategories of S(.#)

In order to show that certain K-structures .# are not of finite type, we are
going to investigate the category &(.%) of all #-spaces. We will determine
full subcategories U of S(#) which are abelian and which will be shown
to be equivalent to categories My of modules over finite dimensional
K-algebras #. This will be done for several particular K-structures in the
next section. In the present section, we develop certain auxiliary techniques.

We note that, in (%), a kernel is given by a monomorphism a: (W, W,)—
(W', W) such that o(W;) = o(W) N W/ for all i € &, whereas a cokernel
is given by an epimorphism o: (W, W,) — (W', W) with o(W,) = W,
Obviously, S(.%) is usually not an abelian category, and we want to describe
a construction for exact subcategories which are abelian. We will assume that
0, o¢#, and we form &+ = & u {0} u{oo}. Also, if (W, W) is an
S -space, let W, =0, W, = W. By an equation for ¥ we mean either
a condition of the form

W.nW; =Ww,, W+ W, =W, ()
with i, j, k, le &+, or, if [F: F;] = 2 for some e & » a condition of the form
Wi:Wk» Wi:Wt: (**)

with k, [€ #*. Now assume there is given a system & of equations for .%.
We define by induction which elements of %+ will be said to be determined
by €. First, 0 and oo are always determined by &. If £ and 7 are determined
by &, and (*) is in &, then also i, § are determined by &.If k, I are determined

by &, and (**) is in &, then 7 is determined by &. The system & determines &
if it determines all € &.

PROPOSITION 6.1. Let % be a K-structure, and & q system of equations

for &. Let W be the full subcategory of S(&) consisting of all objects of S(F)
which satisfy all equations of &. If & determines &, then U is an abelian, exact
subcategory, which is closed under direct sums.
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Proof. Let o (W, W) — (W', W) be a morphism in . Let
A = {we W|«(w) = 0}. We want to show that the S -spaces

A=A, A0W), B = (W), (W)
and
C = (W/«(W), W, + «W)/a(W))

belong to A and that
W) =o(W)ynW, forall ie?.

From here, it will follow that B is both image and coimage of «, that A
is the kernel of «, and that C is the cokernel of «. We proceed by induction.
From now on, assume that we have proved for some &, [ € ¥+ that

(W) = W)W/, W) = (W)n W5

for example, this is always true for £ =0, ! = co.
Assume that the equation (*) belongs to &. Then

o W,) Co(W)N (W)W, NW; Na(W) = W,/ N a(W) = (W),

and therefore
(W) N o(W;) = (W)

Since, obviously,
(W) + o W) = «(W; + W) = W),
we conclude that B = («(W), «(W;)) satisfies (*). Also, we have
AW)C W, Nno(W)C W, W Na(W) =W, Nna(W) = ao(Wy);
thus, o(W,) = W, N «( W), and, as a consequence,

(W)W, = o(W) "W, W, = W)\ W,
= [ W) + AW N W = (W) + [«(W)) N W]
= o W) + oW}) = oW)).

Of course, we have similarly
(W)n W = o(W)).
Now, we show that A = (4, 4 N W) satisfies (*). Trivially,
(ANWINANW)=An(W,nW) =AnW,.
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Thus, let xe ANW;, so x = w; + w; with w,e W;, w;€ W,. Then,
aw;) + «(w;) = o(x) = 0 implies that o(w,) € «(W;) N o(W,) = o W}), and
therefore w; == a 4+ w, for some a€ 4, w, e W,. Note that ae AN W;.
From

¥ =w; + w; = a+ (w, 4 w)
we get that w;, + w; € 4, and thus
ANWY)+ANW)=AnW,.

It remains to prove (*) forC = (W'|a(W), W, + «(W)/o(W)). If w,' € W/,
w; € Wy and we Wwithw, = w;’ + o(w), then o(w) e (W) N\ W, = o W)),
and therefore

Wi N (W) 4 o(W)) = Wi N (W) + o(W)))

=W/ (W + o W) + o W)))
=W/ (W) + o(W))) = (W, 0 W) + (W)
= W' + «W));

as an immediate consequence, we get

(WS + (W) 0 (W) + o(W)) = Wy + (W)

On the other hand, trivially

(W + o W) + (W) + W) = W) + (W),

and thus C satisfies (*), as well.
Now, assume that the equation (**) belongs to &, that is

W, =W, Wi=W, ad W/ =W, W, = W,.
Since « is F-linear, we have o( ;) C (W) and o W;) = o(W,), and thus
(W) = (W) C o(Wy) C WinoW) =W, N (W) = a(W,),
and
a(W) = (W) = o(W)).
Hence, B = («(W), o(W,)) satisfies (**). Furthermore,

«(Wy) = o(W) O\ Wy,
because of
a(Ws) C a(W,) C (W) O WY C ol W) A Wy — (W),

——

A W;) = (W)
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and
{W)yn W/ = o(W) NW =oW)n W, = oW,).

Next, we show that A = (4, 4 N W) satisfies (**).
Obviously,
AnW;=AnW;=ANW,.

Also, ANW, CANnW,. Thus, let xe ANW,, so x = u -+ u'f, where
u, u' € W;and F = G + Gf. We have

0 = ofx) = of) + alt'),
so both «(u') and a(u')f = o —u) belong to W,". Therefore,
ou)e(W)N W, = (W)W, = o(Wy),

and also afu) = —aft')f € o(W;). As a consequence, we find elements q,
aeA and w, w' e W, with u =a+ w and ¢ = a' + w'. Note that g,
a’'e W;. Then

x =u+uf=(a+ w+ 2’f)+ af,

with e AN W;, and a + w + w'fe W;. Since x and &'f belong to A4,
the same is true for a + w + w'f, so x € A N W; . Thus, A satisfies (**).
Finally, consider C = (W'[«(W), W, + o«(W)/a(W)). Trivially,

Wy - (W) = Wy +o(W) = Wy + W),
Also,
W' + (W) = W/ + W) C W, + oW).

Thus, let y € W with yfe W, + ofW). There are elements 3€ W)/, we W
with yf = 2 4 «(w). Now,

ow) e (W) W; = o(W)N W, = (W),

and therefore we may assume we W, = W,. Thus, w = u 4 «'f for some
4, u'e Wi . Both y — Ct(u’) € Wi’ and

[y — o(w)]f = % + a(w) + ofs) — a{w) = = + a(u) € Y.
Therefore, y — a(u') € Wy, and y € W)’ 4 o(W). This shows that
W, 4 o(W)C W, + «(W),

and, consequently, C satisfies (**).
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We have shown that ¥ is an exact subcategory of &(.%) and that for every
map « in ¥, its image and its coimage coincide. It is obvious that ¥ is closed
under arbitrary direct sums, thus, in particular, we see also that 9 is abelian.
This completes the proof.

Observe that an abelian, full exact subcategory U of &(.%) which is closed
under direct sums, is a Grothendieck category. For, by assumption, 9 has
arbitrary colimits and these are constructed as in E(¥). We will use only
such systems of equations which force the corresponding subcategory U
to have a progenerator, that is an object which is small, projective and
a generator in A. Now, finite dimensional objects 4 of U are obviously
small (that means, the functor Hom(A4, —) commutes with direct sums}, and
a projective object A of a Grothendieck category U is a generator if and only
if every simple object of U is of the form A/A’ with a subobject A’ of A.
Thus, we need a criterion that a given object P of U is projective.

In the applications, A will usually have precisely two simple objects S
and T such that every object 4 in U has a subobject A’ ~ @ T with
A[/A" ~ @ 8, and, moreover, @, S will be injective for every index set J.
In this situation, we have the following criterion for projectivity.

LemMmA 6.2. Let & be a K-structure. Let W be a Sull exact subcategory
of ©() which is abelian, and closed under direct sums. Let T be an object in N
such that every object A in W has a subobject A’ satisfying the following two
properties: A’ is isomorphic to a direct sum of copies of T and A/A’ is injective.
If P is an object of W which is finite dimensional over K, and if Extg(P, T) = 0,
then P is projective.

Proof. First, we show that Exty(P, @, T) = 0 for every index set J.
Let a: E — P be an epimorphism in 9 with kernel A — ker(a) = @;c; T(j),
where T(j) ~ T forallje J. Write E = (E, E;), and similarly P = (P, Py),
T=(T,T)and A =(4, 4,), ic%. Let C be a K-subspace of E with
A®C =L

Since A is an exact subcategory of S(S), we have A, = AN E; and
Pi = ot(E,-), SO

is a finite dimensional vector space over K. Let C; be a K-subspace of E;
with 4; ® C; = E; . Now, C; is a finite dimensional subspace of

E=4®C=(D1)) o0

jed

and is therefore contained in a finite direct sum. This is true for all {1 e &,
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and since & is finite, there is a finite subset | C J with C; C(®yerr T(j)) D C
forall ie &. Let J" = J\J, and A" = @,y T(f), A" = Djes~ T(j), and
note that both A’ and A" belong to 2. Also, we construct E' as follows:
the total space E' is given by E' = A’ @ C, and E/ = E'NE;.

We have a direct decomposition E = A" @ E’ of #-spaces. For,

AT +E/ = A" +(E'NE)=A] +[E 0 (4, +C)]
— AT+ (ENA)+C =4+ A4 +C =E,.

As a consequence, E’ belongs to . Also, if we denote the inclusion E' — E
by p, we have an exact sequence

0— PTI(j) —E P —0
jel’
in 9. Now, /' is finite, so Exty(P, @, T) = @, Extg(P, T) = 0. Hence,
there is B: P — E’ with (au)8 = lp . But then also «(uf) = lp.

If B is an arbitrary object of U, then there is a subobject B’ of B with
B’ ~ @ T and injective quotient B/B". This gives rise to an exact sequence

Exty(P, B') — Exty(P, B) — Exty(P, B/B’).

As we have seen above, Exty(P, B') = 0, and, if B/B’ is injective, also
Exty(P, B/B’) = 0. Thus Exty(P, B) = 0 and P is projective.

If a Grothendieck category  possesses a progenerator A, then U is
equivalent to the category Wi of all right Z2-modules, where # = Hom(4, A4).
In order to determine the category Mg in several particular cases, we will use
in the next section the following

LemMa 6.3. Let & be a finite dimensional basic K-algebra with radical
N Let ¢, and e, be idempotents in X such that e, Re, and e, He, are fields
satisfying e, Re, CN" and eRex A = 0. Then there is a full embedding of
Re(, 2 (a18s)e #e,) 1o Mg which 1s a dimension functor.

Proof. Let F = e,%e,, G = eyHe, and M = e, %e, . If (X, Y, @) is an
object in Re(rMg), then g is just an epimorphism

‘P:@MGNXFC@FMG—’ Y,
1

where I is an index set with X5 = @, F, and ¢ is determined by its kernel

ker <P Q @ MG == @ (el'@eZ)Eggeg *
I

I

We may consider ker @ as a subset of ®; e,% , and we claim that it is, in fact,

i T
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a right #-submodule of @;e,#. Indeed, since # is a basic algebra,
ee#(1 — e,) C A", and thus,

(ker ) = (ker @) &, = (ker ) e, ey + (ker ) ex (1 — e,),

where the first equality comes from the inclusion ker @ C eyHe, . The same

inclusion together with the assumption e;®e, A" = 0 shows that the above
equality reduces to

(ker @) = (ker ) e, e, = ker g,

because ¢ is e,%e,-linear. Thus, we may form the right R-module Vgp =
(@D e1%)/ker . Moreover, ker ¢ C @1 esfe, C P, e, 47, and therefore the
canonical epimorphism @, e,# — Vi is a projective cover.

Now, assume there is another object (X", Y, ¢') in Re(pzMg), with
X' = @ Fr,and an epimorphism

@' @ M~ Xi ® (Mg — Yg,
Il

let Vo' = (@ e,%)/ker ¢’. Given a mapping

(o B): (X, Y, @) — (X', Y, ®’)
in Re(;My),
[ 2 @FF = XF—-> X].-’ = @Fp
I

Il

is a mapping such that

@l @ Mr ~ (DFr) @ Mo~ (D Fs) @ ;M ~ @ Ms
1 I r

II

maps ker ¢ into ker ¢’. Then
a@log DeZ —~@ eR
1 r

maps again ker g into ker ¢’, so we get an induced mapping

x: Vg = ((—l}} elR)/ker o> Vg = (@ elR)/ker P
T

Conversely, given a mapping y: Vg — V&', we may lift it to the projective

cover, and get a mapping y: @, 6% — @), ey such that j(ker ) C ker ¢’

Since Homgl(e,#, ;) = e, e, = F, every mapping from @, e into

®r e 1s of the form « ® 1, & with a: @, Fp —» @p Fp. Thus,j =a ® 1, #
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and & == y. But « is even uniquely determined, since F = ¢,%e, is a field.
Also, « defines in a unique way 8 such that («, 8) is a mapping in Re(rM¢).

This shows that the factor Re(M;) — M4 which maps (D, Fr, Y¢, )
onto (@), e,#)/ker ¢ is a full embedding. It is also a dimension functor.
For, if dim ;M = k, [F: K] = and dim(e;#)x = m, we get dim Yx <
dim(@,; Fr ® gM)x = k dim(@;F)x in view of the fact that Y¢ is an
epimorphic image of &, F¢ ® (Mg . Therefore,

- JIF - (dim (6? 1&‘)‘E + dim Yx) < dim (@ F)K = dim [@ (el.@/er/V)]K

< dim [(QI—) elgi’)/ker (p]K .

On the other hand,

dim [(ela oR) /ker ¢]K < dim (ela elgz)x = 27 dim @ F)

7 K

< 7 (dim ((JIa F)K + dim Y).

Thus 1/(k + 1) and ml are real numbers with

E?IT dim ((I@ Fr, Y5,9) < dim (@ o) [ker o

m

Q—T dim (@;}F;,Yg,qa).

Finally, we like to present a simple criterion which will be used in the next
section to decide whether certain objects of an abelian category are inde-
composable. Recall that in an abelian category two composition series of a
given object have the same length, called the length of the object. Simple
objects are just those of length 1, and indecomposable objects of length 2
are serial, that is they have just one composition series.

Livva 6.4. Let 9 be an abelian category, and A € W an object of length 3.
If A has two simple subobjects T, and T, such that A|T, and A|T, are non-
isomor phic indecomposable objects, then A 1s indecomposable.

Proof. Let A =X @Y, and assume X is of length 2, and Y of length 1.
Then, fori =1, 2, |

Y XY =4 -» AT;
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maps Y into the socle, and therefore the canonical morphisms
X XY =4 AT,

cannot map X into the socle. Consequently, we get X ~ A/T,and X ~ A|Ty,
a contradiction.

1. K-Structures of Infinite Type

In the preceeding section, we have prepared certain auxiliary results which
we now intend to apply, and show that the following K-structures are of
strongly unbounded type: (1) & = J(G) u FA(F) u F(F) with [F: G] = 2,
(2) & = H(G) u A(F) with [F:G] =2, (3) & == S(G) u H(F) with
[F: G] = 2, and (4) & = F(G) u F(F) with [F: G] = 3.

ProposiTiON 7.1. Let[F: G] = 2. The K-structure ¥ = 4(G) u S (F) u
J(F) is of strongly unbounded type.

Proof. Let U be the full subcategory of (%) of all objects (W, U, V4, V)
with
UdV,=W and Vi®V,=W.

This system of equations determines %, so by Proposition 6.1, 9 is an abelian,
full exact subcategory of (). We want to determine the simple objects
of A. Let (W, U, V,, V,)be asimple object in U. If Vy # 0, take 0 £ velVy,
and observe that the subobject (vF, 0, vF, 0) belongs to A; therefore,
(W, U, V,, V,)~ (F,0,F, 0). We will denote this object by T' = (F, 0, F, 0).
Now, assume that V; = 0; thus, (W, U, V,, V,) = (W, W, 0, W) is a direct
sum of copies of § = (F, F, 0, F). This shows that § and T are the only simple
objects in . Also, an arbitrary object (W, U, Vi, Vy) has (V,,0, V,,0)

as a subobject, and (V,, 0, V;, 0) is a direct sum of copies of T, and,
furthermore,

(W, U, Vi, Va)(V1, 0, Vi, 0) ~ (W/Vh W/V1 , 0, WIV,)

is a direct sum of copies of S. We claim that every direct sum of copies of S
is injective. Indeed, consider an inclusion

(W', W', 0, W) s (W, U, V,, V)

in A. Here, W’ is an F-subspace of W with W’ n Vy =0. Let C be an
F-subspace of W with V; CC and W' @ C = W. Then

(W, U, V1, V) = (W, W,0, W) ®(C,CAU, V,,CV,,

as required. Also, T is projective. By Lemma 6.2, it is enough to show that
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Exty(T, T) = 0. Let (W, U, V,, V,) be an extension of T by T. Then
U =V, =0, and thus ¥/; = W, which means that the extension splits.
Now, let F = G + fG, fe F\ G, and consider the #-space

P=FXxXFxF;0,1L,1D)G+(U,f,f)G,F xXF x0,0x0XxF),

which obviously belongs to . We claim that P is projective. Using
Lemma 6.2 again, assume there is an exact sequence

0—>T —> (W, U, V,, Vy) =>P —>0.

Let C = U+ V,. As an F-subspace, C is generated by three elements,
and since

A(C) = U + V) = oU) 4+ o(Vy) = (0, L, DF + (L £, )F + (0,0, DF
=FXFXF

is three-dimensional over F, we conclude that dim Cr = 3 and that
ker « N C = 0. Now, also dim(V;); = 3, so since both C and V; are subspaces
of Wy, and dim Wy = 4, we see that dim{(C N V;)p = 2. Thus, we have

a direct decomposition
(W’ U, v, V2) = T@(C! U, Cn Vl) Vﬂ)

and « splits.
Also, P has T, =(F X0 x 0,0,F x 0x0,0) and T, = (0 X F x 0,
0,0 x F x 0, 0) as subobjects, and

P/T, ~ (F x F, (1, )G + (f, /)G, F X 0,0 X F)
has the property that dim(U -+ V,/V,)¢ = 2, whereas for
P/T, ~ (F X F, (0, )G+ (1, /)G, F x 0,0 X F),

dim(U 4 V,/V,)g = 1. Since both P/T; and P/T, are obviously inde-
composable (a proper decomposition would have to be F x 0@ 0 X F in
order to be compatible with ¥, and ¥V, but this is not compatible with U),
we conclude, in view of Lemma 6.4, that P is indecomposable.

Now, T, @ T,, which is isomorphic to T @ T, is the socle of P. Also,
P/T, ®T, ~ S. Hence, since P is indecomposable and projective and
since S and T are nonisomorphic and therefore Hom(S, T) = 0, we have

Hom(P, P) ~ Hom(S, §) = F.
Also, Hom(T, T) = F, and we have
Hom(T, P) ~ Hom(T, SocP) ~ Hom(T, T@T) ~ F X F.
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Thus, as an Hom(P, P) — Hom(T, T)-bimodule, we see that Hom(T, P)
is of the form f(F x F)g.

We consider P @ T. This is a finite-dimensional, and thus small, projective
object; moreover, since 8 and T are the only simple objects of 9, and
P/SocP ~ 8, P @T is also a generator, hence a progenerator. Therefore,
A ~ Mg, with Z = Hom(P @ T, P @ T). The simple objects of U are
finite dimensional, and hence the dimension in 9 is equivalent to the length
function. Since % is a finite dimensional K-algebra, the K-dimension of
Z#-modules is equivalent to their length. Thus, every equivalence U ~ g
is a dimension functor. Consider the two orthogonal idempotents e, and e,
in # which are given by the projections onto P and onto T, respectively. Then

ei#e, = Hom(P,P), and  e,%e, — Hom(T, T)
are isomorphic to F, and
e,#e; = Hom(T, P) = Rad(#) ~ AF X F)g.

We can apply Lemma 6.3 and conclude that Re(o(F X F)g) is a full sub-
category of . But

dim ((F X F) = 2 = dim(F x F),,

because [F: K] is finite and K acts centrally on F X F = Hom(T, P). Thus,
it follows from Proposition 5.2 that 9 is of strongly unbounded type.

PROPOSITION 7.2. Let [F: G] = 2. The K-structure & = S(G) u IF)
is of strongly unbounded type.

Proof. Let % be the full subcategory of S(F) of all objects (W, U, , U,,

Vi, Vi) (where Uy C U, are G-subspaces of We,and V, C V, are F-subspaces
of Wp) such that

We claim that U is abelian and an exact subcategory of S(&).
In order to be able to use Proposition 6.1, define another K-structure &’
by introducing a new element: Let &' —= & J(F) and denote an S'-space

by (W, Uy, U,, Vy, Vs, X). Consider the following system & of equations
for &’

XV, =W, U @V, =W, UL,baV, =W,
and
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Of course, we have introduced just a “label” for U, . Now, & determines %,
and thus as a consequence, the category of all .%”'-spaces satisfying & is an
abelian category; but, the latter is just 9 under the obvious embedding

AC S(F) 1> S(F)

with T(W, U, U,, V,,Vy) = (W,U,, U,, Vy, Vs, Uy). Since T preserves
kernels, cokernels, and direct sums, and since U is an exact subcategory of
S(F”), it is also an exact subcategory of S(.%).

Again, let F = G + fG with fe F\G. We claim that

S=(FxF,GxGFxFO0,(,f)f) ad T=(F0,0FF)

are the only simple objects of . Note that S is simple. For, if (W, U,, U,,
Vi, V,)CS and dim Wy == 1, then either W =V, = (1, f)F, so U, =
(G x &) (1, f)F = 0and V; = 0, contrary to the equality U; @ V; = W,
orelse V, = 0,and then W = U; @ V, = U, , contrary to U; = 0. Now, if
(w,U,, U,, V,, V,) is an arbitrary object of U, then (V;,0,0, V,, V) is
a subobject of it and it is a direct sum of copies of T. The corresponding
quotient is of the form (W, U, W', 0, V), and this is a direct sum o_f copies
of S. Indeed, in order to decompose (W', U, W', 0, V)withU =0, U = W'
and U@ V = W', we just use either Lemma 2.5 or the classification of
J(G) u S(F)-spaces in Proposition 2.7.

Next, we show that every direct sum of copies of S is injective. Assume
that we have an inclusion

W, U, W,0,V)yc— (W, Uy, Uy, Vy, Ve)

in 2. Again, we use Lemma 2.5, this time for U, , the G-subspace U, and
the F-subspace V' = U, N V,. We have /" C I and so we can take a basis
of V extending a basis of ¥’; moreover, we may assume that the basis elements
of V' are of the form x + yf with x, y € U". In this way, we get a decomposi-
tion U; = U’ (® U” such that

V=V olny).
Let C = U @ V,. Then
(W, U,,U,,V,,V,) = (W,U,W,0,V)®D(C, U.cnt,V,,Cnl,).

For, W=U,@V=U®U @V =W @C, and this decomposition
is trivially compatible with U, , U, , and ¥, whereas, for V3, we have

V@CAV)= +C)nV,=T + U + V)"V,
= Oy +V)nV,=V,.
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Every extension (W, U, , U, , V;, V,) of T by itself satisfies U =U,=0
and V; = V, = W and so it splits. Thus, by Lemma 6.2 we see that T is
projective. Similarly, we can prove that

Pz(FxeFxF,OxOxGxG,U,FxeOxO,V)
with

UzOXO><G><G+(0,l,f,O)G—{—(],f,O,f)G
and

V=FxFx0x0+(00,1,[)F
1s projective. Assume that there is an exact sequence
0—“—’T——>(W, Ul’ Uz, VI’ Vz)";.—bp—‘**’o

in A Now, dim(Uy)s = 4, so dim(U,); < 4. Since o(T,) = a(Ug) = U
is of dimension 4 over F, we have dim(U,); = 4, and U, Nker « = 0.
As a consequence, W = U, @ ker a, and

(ker «, 0, 0, ker o, ker o) ®(U,, Uy, U,, U, N Ve, U,n V)
= (W, Uy, U, Vi, Ve)

is a direct decomposition, and thus « splits.
In order to see that P s indecomposable, let

le(FXOXOX0,0,0,FxO><0><0,F><0><0><0)
and

T2=-—(0><F><0><0,0,0,0><F><0><0,0><F><G><0).
Then

PIT,~ (F xFxF,0x G xG,0xXGxG+(l,f,0)G
+(£.0,)G,F X 0% 0,F x 00+ (0, 1, f)F)

and here is dim(U, + U,/U,)¢ = 2, whereas

P/Tza,v(FxeF,OxG><G,O><G><G—|—(0,f,0)0
+(l,0,f)G,F><O><O,F><0><0+(0,1,f)F)

with dim(U, + U,/U))¢ == 1. Also, both P/T, and P/T, are indecomposable,
since in both cases in decomposition has to be of the form F x 0 x 0P

0 X F x F, but this is not compatible with U,. By Lemma 6.4, P is inde-
composable.
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The socle of Pis T,®T, ~ T®T, and P/(T; & T;) ~ S. Since P
is the projective cover of S, we see that Hom(P, P) ~ Hom(S, S). Let
H - Hom(S, S). Then H is a field, and since H does not act transitively
on S, dimyS : 2. Let F = Hom(T, T), and consider the H-F-bimodule

Hom(T,P) ~ Hom(T, T ® T) ~ F @ F.

Calculating the dimensions over K (and noting that K acts centrally on
Hom(T, P)), we see that

dimy(F©F) =2, and  dim(F@®F); =2

Thus Re(,(F @ F)f) is of strongly unbounded type, but we can embed
Re(4(F @ F)f) into Mg with # = Hom(P @ T, P ©T), and Me ~ U,

and these functors are dimension functors.

ProposITION 7.3. Let [F: G} = 2. The K-structure & = J(G) u H(F) s
of strongly unbounded type.

Proof. Let A be the full subcategory of S(¥) of all objects (W, Uy, U,,
U, , V) (where U, C U, C U, are G-subspaces of W ,and Vis an F-subspace
of W) such that

U =0, UnV=0 UnV=VF

and
U1®V:W, U2@V:W, .Ua@V:W-

Note that, from these conditions, we can derive that U, DU;NV) =
(U, 4+ V)N Uy = U, and thus also Uy = W. We claim that 91 is abelian.

In order to use Proposition 6.1, we define another K-structure S by
introducing three new elements. Let & = % U F(F) u J(F) u A(G), and
denote an &’-space by (W, U, Us, Us, V, X, Y, Z). Consider the
following system & of equations for &

X@QV=W, UoVv=W YOV=w ULOZ=U
and

U =0, U,=X U=Y U=Ww £Z£=0 Z=V

and Y as

It is obvious that we have introduced X as the “label” for U,
and thus,

the “label” for Uy . Also, one can see easily that ZCVnUs,

since Uy = U, @ (U; N V) = U, @ Z, we get Z=UnV.
Now, & determines X, V, U,, Y, using the first line of the equations

and therefore also Uy, U,, and Z using the remaining equations. As a

481/33/2-14
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consequence, the category of all .#'-spaces satisfying & is an abelian, exact
subcategory of ©(#"). But this category can be identified with 9 under the

obvious functor
AC (&) 1> &)

with (W, U,, U,, Uy, VY= (W, U, , U,, U,, V, U, , Uy, Uy V). Since
T preserves kernels, cokernels, and direct sums, we see that 9 is also an exact
subcategory of S(%).

We claim that the only simple objects in U are

S=(F,G,F,F,0) ad T=(F,0,0,G,F)

and that every object A = (W, U,, U,, U,, V) of A has a subobject
A~ OT with A/A' ~ ®S. Now A’ = (V,0,0, UsnV, V) is always
a subobject of A, and obviously it is a direct sum of copies of T, since
UsNV =0and U;N ¥V = V. And A/A’ is of the form (w,u,w,w,0)
with U =0and U’ = W', so it is a direct sum of copies of S. Also, a direct
sum of copies of S is injective. Indeed, consider an inclusion

W', U, W, W,0) <~ (W, Uy, Uy, U, V),

and take a complement U” to U’ in U, thus U; = U’ @ U”, and let
C=U"® V. Then .

(W, Uy, Uy, Uy , V)= (W, U, W', W',0) ®(C, U", C A U, CalU,,V)

Thus, we may use Lemma 6.2 to conclude that T is projective. Every
extension (W, U, U,, U, V) of T by T splits, because U, = U, = 0,
and thus Uy = 0, Uy = V = W, hence, Ex(T, T) = 0 and T is projective.

"The same reference to Lemma 6.2 can be used to establish projectivity of

P=(F><F><F,0><0><G,0><0><G+(1,f,f)G,G><G><G
+ (L, £, )G, F X F x 0).

For, let
0—T— (W, U,,U,, U, V) —*>P — 0
be an extension in U. Since (T,); is generated by two elements and since
ATy) = o(Uy) =0 x 0 X F + (1,1, f)F

is of dimension 2 over F, we conclude that also dim(U,); = 2 and that
keran Uy = 0.But Uy N ¥ C ker a N U, , because dim(ker « + U,); = 3,
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whereas U, + U, n V = W. Thus, there is an element u€ U; NV with
u ¢ ker o N U, . Consequently, W = ker a @ U, ® uF, and

(Wi Ul! Uz, U3’ V) zT@(Ug@“F, Ul’ Uz, Uﬂ@uG,uF)

gives a splitting of a.
Also, P is indecomposable. Let T,=(F x0X 0,0,0,G x0 x0,
F x 0 x 0); then

P/le(FxF,O><G,O><G+(f,f)G,G><G+(f,f)G,FX0)

satisfies U, £ Uy = (1, 1)F. On the other side, for Ty = (0 X F X 0, 0, 0,
0 X G x0,0 xF x 0), we have

P/T,~ (FxF,0xG,0 % G +(1,1)G, G X G+ (L,f)G, F x0)

with U, C U, == (0, 1)F. Since P/T; and P/T, are nonisomorphic and
indecomposable, it follows from Lemma 6.4 that P is indecomposable.
Now Hom(T, T) = F, and Hom(P, P) ~ Hom(S, §) =F, and

Hom(T, P) ~ Hom(T, T®T) = F @F.

Again we consider the K-species sHom(T, P)which is of strongly unbounded
type, and embed Re(Hom(T, P);) into IR, with 2 = Hom(P © T.P®T).
Since Mg ~ A, also A is of strongly unbounded type.

ProposITION 7.4. Let [F: G] = 3. The K-structure & = $(G) u A(F)
is of strongly unbounded type.

Proof. Let U be the full subcategory of &(¥) of all objects (W, Us Vr)
with
vepv="Ww.

This equation determines &, so & is abelian. '

Now, an arbitrary object A = (W, U, V) 1n 9 has A’ = (V,0, V) 28
subobject and AJA’ ~ (W|V, W[V, 0). This shows that there are precisely
two simple objects, namely ‘

S —(FF0 ad T=F0F)

Obviously, every direct sum of copies of S is injective. For, if there is an

inclusion

(W’: W’) 0) C—> (W’ U’ V)’
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then W'N V' = 0, and thus there is a complement W' @ W) = W, with
VC W’ and

(W, U, V)= (W, W,00& (W, W U, V).

In order to see that T is projective we only have to observe that Ext(T, T) = 0.
But every extension (W, U, V) of (F, 0, F) by (F, 0, F) satisfies U == 0, so it
is of the form (W, 0, W) and therefore splits.

Again we want to use Lemma 6.2 for an object P of length 3 which we are
going to construct. Let {1, e, f} be a basis both of F; and of 5F. By Lemma 4.1,
there is an indecomposable #-space (F ¥ F, U, F x 0) with dim Ug == 3,
UnUe=0and UNF x 0 = 0. Calculating the dimensions, we see that
U+F x0=FxF, and thus (F x F, U, F x 0) belongs to 9. Also,
since U 4- F x 0 = F x F, we may choose a G-basis in Ug such that

U = (a, 1)G + (b, &G + (¢, )G,

with some elements q, b, c € F. Now, let P be given by
P=(FxFXF (a0 )G+ (b0 6G + (¢, 1,f)G, F x F x 0).

First, we claim that P is indecomposable. Let T, = (F x 0 x 0,0, F x 0 X 0).
Then

P/T, ~ (F x F, (0, 1G + (0, &G + (1, f)G, F x 0)

is indecomposable; for, a decomposition would have to be of the form
Fx0®(fi,f)F, and since F x 0N U = 0, it would be necessary that
(f1, fo)F = U which is not the case for any f, , fy € F. Moreover, U N Ue 0,

since (0,e)e UnN Ue. On the other hand, take T, = (0 x F x0,0,
0 X F x 0). Then

'wnwwame+@@G+@ﬂanm

is also indecomposable, but satisfies U N Ue = 0. Thus, it follows from
Lemma 6.4 that P is indecomposable.

Since P is indecomposable, it follows that
U' = (a,0, )G + (5,0, )G + (¢, |, f)G

has the property that U’ = F X F x F. For, otherwise we take an F -subspace
VECF XF X0 with U@ V' =F X F x F and this
obviously compatible with both U’ and V.

In order to prove that P is projective, take an exact sequence

decomposition is

0—T-— (W, U, V)P0,
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Since Uy is generated by three elements, dim Uy < 3. But

f(U) = o(U) == U" =F X F xF;

hence, we conclude that dim Uy = 3 and U N ker « = 0. Also, kera C V;
thus, the decomposition W = U = ker a is compatible both with U and
with I, and « splits.

Again, we see that Hom(T, T) = F, Hom(P, P) ~ Hom(S, §) = F, and
Hom(T, P) ~ Hom(T, T & T) ~ F @ F. Since the K-species fHom(T, P)
is of strongly unbounded type, the same is true for U ~ My with
A =Hom(PE&T,P&EOT).

Let us conclude this section with a remark which, although not used
anywhere in the paper, may be found of an interest.

Remark 7.5. In the case of K-structures investigated in Propositions 7.1,
7.2, and 7.3, we can construct by induction explicitly large indecomposable
-spaces. Namely, the following -#-spaces are indecomposable for all 7€ N:

(1) the S-space (W, U, V;, V,) defined by the 2i-dimensional vector

space
We=F xF X XFXxXF

together with
U=GxGx xGxG,

vV, =, HF x - x(,f)F,
and
V, =0 x (1, /)F X = X(L,/)F X0
(2) the F-space (W, Uy, U,, V., V,) defined by the 3:-dimensional

vector space
Wyg=FxFXFx- - xFXFXF
together with
UI:GxGxOx---xGxGxo,
U2=G><G><F><---><G><G><F,
Vy={(,f, DF X == X (1, f, DF
and the (2{ — 1)-dimensional F-space V, generated by V; and
X =0x0x(fDF x x(f 1)F x 0 X 0; and

(3) the S-space (W, Uy, Uy, Us, V) defined by the 2i-dimensional

space
We=F XFx - X F X F,
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and
V=(LNF x - x (1, f)F,
Up=0xG X x0xG,
Uy=GXxGx - xGxG

and U, is generated by U, and
X=0x(I,1)Fx - x(I, )F x 0.

3. PROOF OF THE THEOREMS

8. K-Structures

In this section, we are going to present proofs of Theorem A and
Theorem E(1). First, from the results of Section 5, we derive that certain
K-structures are of strongly unbounded type.

ProPOSITION 8.1. The K-structure & — JUG) with [F: G] > 4, is of
strongly unbounded type.

Proof. Consider the K-species Fj;. According to Proposition 5.2,

Re(zF¢) is of strongly bounded type. Furthermore, Re(:F;) is equivalent
to the category B(:F;;) with objects of the form

(UG, X, UG“"'XJ-‘@FFG) =(UG: Xp, 0 UGQXG)

and this equivalence is given by a dimension functor. It is obvious that
B(rF¢) is just the category of all & -spaces.

PROPOSITION 8.2. The K-structure & — H(G) u S (H) with [F: G] > 2,
[F: H] = 2, is of strongly unbounded type.

Proof. Consider the K-species gFy . Again, by Proposition 5.2, Re(cFy)
is of strongly unbounded type. Define a dimension functor, which is a full
embedding,

T: Re(cFy) — S(&)

as follows: For (X¢, Y, ¢) with 9! X6 ® ¢Fy — Yy, put TX, Y, 9 =
(XG ® GFFi XG ® GGG ’ ker (p), and for (a, B): (X, Y, (p) — (X’, Y', 93'), put
T, ) = 2 @ 1. Now, « ® 1 maps X, ® ¢Gginto X' ® G, and ker @
into ker ¢’ because ¢'(a ® 1) = Be. Since ¢ and ¢’ are epimorphisms, B is
determined by «, and hence T is fajthful, Let

v T(X, Y, ¢) > T(X', Y', ¢)
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be a map in G(¥). Obviously, y: Xg ® ¢Fr — X'¢ ® cFr maps X¢ ® ¢Go
into X' ® ¢Gg, and thus the restriction of y to X ® G is of the form
a® 1 with a: X — X';. But, since y is F-linear,

Yx @ f) = rix @ DIf = (ofx) @ 1)f = ) B f

for every feF, and therefore y = « ® 1. Finally, since y maps ker ¢ into
ker ¢', there is B: Yy — Yy with ¢'y = Bp. Consequently, y = T(x, f)
and T is full, as required.

ProposiTION 8.3. The K-structure & = S(G) with [F: G} =3 s of
strongly unbounded type.

Proof. It is immediate that &(%) is equivalent to the category Rm(2)
of Proposition 5.3, by a dimension functor, and therefore S(&) is of strongly

unbounded type.

Next, we need a lemma which reduces the investigation of a K-structure to
its K-substructures (comp. Lemma 6 of [15]).

LivMa 8.4. Let & be a K-structure for Fand let & = AV SV F; be
a decomposition of & such that % (with respect to the induced order) is a chain,
i <jforall ic & and je % and that F; =F for allie %0 % . Then &
is of finite type if and only if both % U %3 and S, U S5 are of finite type.
Also, the maximal weighted dimension of the indecomposable S-spaces equals
the maximum of the weighted dimensions of the indecomposable (&, U F)-spaces
and (S, U S,)-spaces.

Proof. Me claim that, if (W, W) is an indecomposable & -space, then

the F-subspace
V = ﬂ W,‘

i€Sy

of W satisfies either ¥V = Qor V = W.

Assume that 0 %= V # W. Let =1{ <i{p < < i,} and define
inductively an F-complement Ur of V¢ in W in such a way that Un W;
is an F-complement of ¥ N W; in W, for each ¢ € % . It is easy to show thaft
W = U@V defines a decomposition of the F-space (W, W,). For, if
i€S,, then V.0 W, = W;, and therefore W; =(UNW) D (VN Wy;

ifie S, , then ¥ N W; = V, and hence again
W, = (U@ VAW, =[UnW)BV =UnW)S{F W)

And, since the decomposition is obviously compatible with &, we get
a contradiction to the indecomposability of W.
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Thus, if (W, W)} is an indecomposable .#-space, then either W, =
forallie &, or W, == Wfor all i e %, . The lemma follows.
Now, we are ready to present the following.

Proof of Theroem A and Theorem E(1). Assume that .% is a K-structure
of F' which is not of strongly unbounded tvpe. Then, the width of % is <3
and & cannot contain a K-structure of the form (i)~(iv) according to Kleiner—
Nazarova-Roiter theorem. For, otherwise we can embed the category M
of all right F[t]-modules into &(.%), where F [t] denotes the polynomial ring
in one indeterminate t over F (cf. [7]). But, if the width is <3 and the
weighted width is >3, then the structure .% must contain one of the following
K-substructures: either £(G) u F(F) u J(F) with [F: G] = 2, or £(G) u
AF) with [F: G] = 3, or F(G) with [F: G] > 4, or 4(G) u F(H) with
[F: G] = 2 and [F: H] > 2. However, then the structure .% is of strongly
unbounded type according to Propositions 7.1, 7.4, 8.1, and 8.2, respectively.
Finally, & does not contain any K-substructure of the form (v), (vi), or (vii)
in view of Propositions 7.2, 7.3, and 8.3, respectively.

Now, in order to establish the sufficiency, let & be a K-structure satisfying
the conditions of Theorem A. If F ; = F for all i € &, then the result follows
from Kleiner-Nazarova-Roiter theorem. Thus, assume that there exists
J€ & such that F; + F. Observe that there is no 1 € & such that F; # F;
and F; # F (both for ¢, j related and unrelated). This follows easily from the
fact that the weighted width of % is <:3. Thus, there is a chain F(G)C S
such that [F: G] < 3 and F; = F for all § from the complement #\ S (G).

Now, if [F: G] = 3, then in view of (vii), m = 1: £(G) = {1'}. Moreover,
since the weighted width of % < 3,7 > 1’ and F,=Fforallie &#,i# 1.
Therefore, by Lemma 8.4, & is of finite type if (and only if) both & = S(G)

and & = SN\ are of finite type which is the case according to
Proposition 4.2 and Kleiner—Nazarova—Roiter theorem.
Hence, assume that [F: G] = 2. Write

K= IC) = {I' <2 < < m).
Then, by a width argument, all / € & which are unrelated to m’ form a chain
Fo= SF) = (1" <2 < e <y,

Furthermore, write %, ={i |ie ¥ and ; > m'}
a consequence, we may assume that % == . Of course, there is no
1€ S NIu(G) such that i < m'. Now, if n = 0, then . js of finite type in
view of Proposition 2.5. By Proposition 2.6, &% is of finite type if m = 1.
And, if m > 2 and n > 1, we claim that % is a K-substructure of the
K-structure described in Proposition 3.2 which is of finite type. This is

and apply Lemma 8.4; as
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obvious for m = 2 and # = 1. For m = 2 and n > 2, it follows from the
condition (v); for, necessarily (m — 1)’ << 2". And, to prove the statement for
m > 3, we make use of the condition (vi) to deduce (m —2)" <17, and if,
moreover, n > 2, of the condition (v) to get, in addition, (m—1) <2

Finally, let us point out that Propositions 2.5, 2.6, 3.1, 3.2, and 4.2 together
with Lemma 8.4 and Kleiner’s result of [11] imply that the weighted dimen-
sions of indecomposable #-spaces are bounded by 6.

The proof of Theorem A and Theorem E(1) is completed.

9. K-Species

In this section, we are going to apply the preceeding results on .¥'-spaces
to the classification of K-species of finite type. Our method consists in
showing that this problem can be reduced to the investigation of certain
“linear” K-species and their relationship with & -spaces. Recall that the
index set I is assumed to be finite. If 2 = (K;, iMj)ijer 1s 2 K-species and
;M; = 0, then the pair (¢, ) of elements of I will be called direct. First, we
want to show that, if 2 is of finite type, then there are no indices 7, f € I such
that both pairs (¢, j) and (J, 7) are direct; in particular, in such a case, M, =0
for all i € I. In fact, we shall prove the following more general Lemma.

Levma 9.1. Let 2 = (K;, M) jer be a K-spectes. Assume that, for
a natural n > 1, a sequence {1, 2,..., n} belongs to I such that either M, # 0
or ; M, #0forall 1 <i<<{n—1, and that either M, # 0 or {M, # 0.
Then 2 is of strongly unbounded type.

Proof. Without loss of generality, we may assume that ,M; # 0. First,
for | <i<n define K, — K-bimodules (N; inductively as follows:
1Ny = Kl(Kl)Kl . and if (4, 7+ 1) is direct, then {N;,; = IN" ®K€ ,-M,-H.,
whereas if (, { -+ 1) is not direct (and hence, by our assumption, (+ 1,9)
is direct), then ;N;,, == Homg (;1M;, N,). Let W= N, ® nM})KI;
obviously, W £ 0. Now, we are going to consider the K-specie§ with a
one-point index set 2 = (Ki, x,Wk); and show that there 1s a .full
embedding T of R(2’) into R(2). Then, it will suffice to prove that 2’ is of
strongly unbounded type.

A representation of 2 is given by a pair (4, p), where 4 isa right K,-vector
space and ¢: dx & x Wk, — Ag, is a K,-linear map. We define the
representation T(4, ¢) = (V;, i) of 21n the following way: V' = A ® IN‘
for 1 <i<<mand V; =0 otherwise: if 1 < i <n— 1 and ({, i+ 1) 18
direct, then ;,,¢, is the identity, of

V,- ®iMi+1 =A ®1Nc' @iMHl = A ®1Ni+1 = Vi+1 ’
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whereas if (7, £ + 1) is not direct, then we define ,,,; by the inclusion

l'q)i*+l: Vi+1 = A ® Ni+1 =A ® Hom(‘ﬂM‘ ’ lNi) C—n Hom(ﬂ_liM‘ ’ A ® lNi')
= Hom(;,,M;, V);

moreover, we put ,¢, = ¢, that is
1P Va @My = AR Ny @My =ARW— 4,

and ;p; = 0 for all remaining pairs (f,5). A map «: (4, ¢) - (4', ¢') In
R(2') is a linear map a: 4 — A’ satisfying ¢'(a ® 1) = ap. Given a, we
define T(a) = (o) by oy = a® 1 for 1 <i < n, and o; = 0 otherwise.
It is easy to see that T is a faithful functor. In order to show that T is full,
assume there is given a map (8,): T(4, ¢) — T(A4', ¢') in R(2). Me show
by induction that, for 1 < i < n, we have B, = B, ® 1. This is obvious in
the case when (7, i + 1) is direct, whereas where (7, § 4- 1) is not direct, it
follows from the fact that besides the equality

Hom(1, 8,) #fi1 = (i) Biva »

we have also the equality

Hom(1, 8,) spi1 = (#i0)*(B: ® 1),
where (4;,,)* is a monomorphism. Furthermore, the relation
ﬁl?’ = Bu‘Pn = 1‘Pn’(Bn ® ],,Ml) = ‘P'(Bl ® IW)

shows that §, is a map in R(2'), and thus (B;) = T(B,). This shows that the
functor R(2') — R(2) defined by (4, ¢) > (4 ® ,N;, ;) is a full
embedding. Also, it is a dimension functor. For, if dimy (,N;) = ;5
1 <1 < n, then

dim A, < Z dim(4 ® N))x = (i n,-) dim A.

{=1 f=]

Now we have to consider R(2"). First, assume that , WK o= K(K1)x
‘Then, obviously, R(2’) is equivalent to the category My e of all rlght

K, [t]-modules, where K|[t] is the polynomial ring over K, in one indeter-
minate t; for, a Kl[t]-module can be considered as a pair (4, ¢), where 4 is
a K,-vector space and ¢ is an endomorphism of 4 x, (given by the multi-
plication by t). If x Wy, is not isomorphic to x (K, )x , then dim x W > 2
and dim Wy > 2, ‘because K operates centrally on W and K, is finite
dimensional over K. Thus, according to Proposition 5.2, the category
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R(x,Wk,) is not of finite type. Of course, we have to distinguish carefully
between the K-species x Wy as defined in Section 5 having the index set
with 2 elements) and the K-species 2' = (K, r W) (with a one-point
index set). The objects of R(2') are pairs (4, ¢), where A is a K,-vector
space and ¢: A ® x Wx — A, whereas the objects of M(x Wy ) are triples
(X, Y,¢), where X, Y are K,-vector spaces and #: X @ ‘1W"1_’ Y.
There is an embedding T: R(2") - R(x, Wy ), which maps the object
(4, ¢) of R(2') to the triple (A4, A, ), but it should be noted that this functor
is not full. A triple (X, Y, ) is obviously isomorphic to some T(4, ¢) if
and only if dim Xx = dim Y . So, given an indecomposable representation
(X, Y, §) of g Wx , with finite dimensional X x, and Yx , we define a
representation of 2'in the following way. Let dim X, g, =m and dim Y =n.
If m < n, then we put

XOK ™Y, ¢)=(XY,¢) O DKD00),

whereas if m > n, we put

(X, YDKI ™ e)=(XY,$)® D (0 KO0)

m—n

In both cases, the left side is of the form T(A4, ¢) for some representation
(4, ¢) of 2'. We show that (4, ¢) is always indecomposable and that, starting
with nonisomorphic representations (X, Y, ) and (X', Y’, ¢'), the resulting
representations (4, ¢) and (4, ¢') of 2’ are almost always nonisomorphic
again. First, express (4, ¢) as a direct sum of k indecomposable representations
(A", ) of 2’; this is possible, because A is finite dimensional. Then,

applying T we get

(4, 4,¢) = @(Am AW, o) » (X, Y, $) @ @D (K, 0,0);

i=1

here we write the relation for the first case # 2> m. By the Krull-Schmidt
theorem, we conclude that # = m, because (K, 0, 0) cannot be isomorphic
to an image under T. However, then & = 1, because (X, Y, i) was assumed
to be indecomposable. Next, assume that (4, ¢) and (4', ¢) are isomorphic.
If both T(4, ¢) and T(A4', ¢’) are of the same form, we conclude that the
corresponding representations (X, ¥, ¢) and (X', Y", ') are isomorphic.
If T(A, @) is of the first form, and T(4', ¢') is of the second form, then it
follows that

(X, 7V, )@ P (K,0,0) ~ (X, Y, §)D @ ©, K, 0),

n—-m
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and therefore, obviously (X, Y, ¢) ~ (0, K, 0) and (X", Y, §') & (K, 0, 0).
'Thus, in all other cases the above construction yicelds, for nonisomorphic
indecomposable representations of , W, , nonisomorphic indecomposable
representations of 2. Also, the dimension of (X, Y, ¢) is (m - n)[K,: K],
whereas the dimension of the corresponding object in R(2') is

2 - max{m, n} - [K,: K],
of course,

(m + n)[K,: K] <C 2 - max{m, n} - [K: K] < 2(m - n)[K,: K].

Now, R(x,Wk) is of strongly unbounded type by Proposition 5.2. In the
same way as in the case of a full embedding which is a dimension functor,
we see also here that, together with R( x, W ), the category R(2') is of strongly
unbounded type, as well.

Also, we may use Proposition 5.2 to show that, for a K-species 2 =
(K;, éM}); je1 , the dimensions of the vector spaces g (;M;) and (;M))x, are
bounded. Indeed, using a full embedding of ‘R(Ki(,-M,-)KJ) into SR(Z2), we get

LemMMA 9.2. Let 2 = (K;, ;M,); ;., be a K-species which is not of strongly
unbounded type. Then, for i, j € I, either .M i =0o0r ,M; =0, and

Recall that the diagram of a given K-species 2 = (K, ;M,); je; consists
of the elements of I as vertices, and has

dimy (;M}) x dim(;M;)x, + dimg (;M;) x dim(; M),
edges between the vertices i and J- In addition, the fact that ;M; =0

and dim k(M) < dim(,-]‘.lj.-),(f has been marked by an arrow .i] .

Thus, according to Lemma 9.1, the diagram of a K-species of finite type
does not contain any loops or circles and, between two different vertices,
there is either no line, or one line, or a double line with an arrow, or a triple
line with an arrow. If there is a single line between 7 and J, and, say, ;M 5 0,
then we have x (;M)) ~ x(K}), and (M), ~ (K;)x,, and we may identify
K; and K, in such a way that k(M) x, = k(K)) x, - Now, assume that there

is a double or triple line between ¢ and J with an arrow > ;or | ==

i i?
and that ,M; £ 0. Then, necessarily, dim x(:#M;) =1, and thus again
x(:M;) ~ x(K;). Consequently, we may identify K; with a subfield of K,
such that (M), = x(K;)x, and since dim(z-Mj)Kj =2o0r 3 K;,CK, is
a proper inclusion. Similarly, if M, 0, we may assume K;C K, and
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K,(,-.M Dk = Kj(Kz')Kl . It should be noted that for a K-species of finite type
these identifications are mutually compatible according to Lemma 9.]1.
The next lemma deals with the situation, when more than one multiple line
occurs in a connected component of the diagram of a species.

LemMaA 9.3. Let 2 = (K, ;M,); je; be a K-species which s not of strongly
unbounded tvpe whose diagram is connected. Then there is at most one pair (i, j)
of elements of I such that dim g (;M;) X dim(;M;)¢ > 1.

Proof. Assuming the contrary, there is a sequence {l, 2,...,n, n + 1} of
elements of I such that 1, 2, and n, n 4 | are connected by multiple lines,
whereas for 2 <7 < n — 1, each pair (¢, 7 -+ 1) is connected by a single line:

] 2 3 n— 1 n——n-+1

here, we have omitted the arrows. We restrict ourselves to the case n = 2 with
the additional assumption that I = {1, 2, 3}, and show that the corresponding
K-species are not of finite type. Then, using an appropriate embedding
functor, we may translate this result to the general situation. We have to
distinguish three different cases, namely

o ST
=2 0

by - TN . TFE - o
1l 2 N 3

@ 7;\i-2:75{”—_-3 -

Case (a). There are given three fields F = K, G = K,, and H = K,
with HC G CF such that M, = gF; or ,M; = ¢Fr, and similarly
oMy = Gy or JM, = 4G . Since H is a proper subfield of G and G is
a proper subfield of F, we have dim zF > 4, and so we may use Proposition 5.2
for the K-species zFr. Let Rm(xF ) be the full subcategory of R(F) of all
objects (X5, Vg, @) with an inclusion ; thus, X is an H-subspace of Yr.
By Proposition 5.2 this is an additive category of strongly unbounded type.
We define a full embedding T, which can be easily seen to be a dimension
functor, of Mm(yFf) into R(2) as follows. Let T(Xg, Y, ) = (Vi s91)
with V| = Y, V, = Yg; if (2, 3) is direct, then V3 = Yyu/ Xy, whereas
Vy = X otherwise. For (1, 2), mappings s; are defined by the canonical
isomorphisms

oo Yr® FoxYe if (1,2) is direct,
and by '

po*: Y = Homg(FF, Y;) otherwise.
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If (2, 3) is direct, then we take for yp, the canonical projection
2 Yo @ ¢Gu = Yy — Yy/Xy;
otherwise, we use the inclusion
203"t Xy ¢ Yy % Home(4Gg, Yo).

Case (b). There are given three fields F = K, , G = K, and F' = K,
with G CF, G CF', such that either \M, = pF; or M, = ¢Fp, and either
oMy = cF'p or M, = pF';. Moreover, we may assume that at most one
of the pairs (1, 2) and (2, 3) is not direct, because otherwise we exchange
the indices 1 and 3. We form ;Wp = pF¢® ¢F'F. Since dim W =
dim gF' > 1 and dim Wp = dimF; > 1, we know, by Proposition 5.2,
that R(zW ) is of strongly unbounded type. We define now a full embedding

T: R(zWe) — R(2), which is a dimension functor., First, assume that
(2, 3) is direct.

Given an object (Xp, Yp, ¢) of R(:Wr), put T(X, Y, ¢) = (Vi, s0i»
where V, = Xz, Vy = X5, V3 = Yy, where 4p, is given by

3Pe! X6 @ 6Fr ~ XrQ pFe @ 6Fp 2> Yy,
and where ,p, or yp, are given by
271 Xr® pFe ¥ Xg
in the case that (1, 2) is direct, or by the canonical isomorphism
1922 X¢ % Homp{(GFp, Yp)

otherwise. On the other hand, if (2, 3) is not direct, then we only have
to consider the case where (1, 2) is direct, and we define T(X, Y, ¢) =
(Vi) i), where V= Xp, Vy, = Yg, V3 = Yp with ,p, given by

221 *: Xp —=> Homp(pFg ® 6Fi , Yi) & Homg(pFg , Homp(cFp , Y))
~ Homg(zFg, Yg),
and with the canonical isomorphism
273t Y @ pFg' ¥ Y.

Again, it can be verified immediately that T is a full embedding and a
dimension functor,

Case (c). There is given a field F = K, with two subfields G = K, and
H = K, such that either ;M, = oFp or ;M; = pF, and either oMy = gFu
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or 3M, = yFr. We consider the K-structure & = J(G) u S(H) and, by
Proposition 8.2, we know that % is of strongly unbounded type. Thus, it is
enough to define a full embedding T of &(.%) into R(2). If (W, Ug, V)
is an S-space, we define T(W, U, V) = (V;, ;) as follows. Always, put
Ve = Wg.If (1, 2) is direct, then V; = Ug and ,g, is given by the inclusion

g%*: UG s WG 4 Homp(GFF ’ WF),

whereas if (1, 2) is not direct, then V; = W/U; and g, is the canonical
projection

192 Wr® pFe 3 W — WU

Similarly, if (2, 3) is direct, then ¥V, = Wy/Vy, and 4, is the canonical
projection, whereas if (2, 3) is not direct, then V; = Vj with the inclusion

#Ps™
This concludes the proof of Lemma 9.3.

In a similar way we can show that any connected component of a diagram
of a K-species of finite type comes either from a “quiver” (see [7]) or is linear.
Here, we call a diagram linear, if the vertices can be writtenas I = {1, 2,..., n}
and, for £, j€ I, there are edges between i and j if and only if f =i + 1 or
J=1i-—1.

Lemma 9.4, Let 2 = (K, ;M;); ;e be a K-species which is not of strongly
unbounded type whose diagram is connected. If there is a pair (3, §) of elements
of I such that dimg (;M;) X dim(;M;)x, > 1, then the diagram of 2 is linear.

Proof. We may label the elements of I in such a way that { =1, j = 2
(so that 1 and 2 are connected by more than one edge), that {1, 2,..., n} CJ
with #n >> 2 is linear and that mand n 4 1, as well as mand n 4 2, are connected
by an edge:

Again, it is obviously sufficient to prove the lemma for the particular case
n=2:I={1,2, 3, 4. Thus, we have to consider the following two
diagrams
3
(a) 1 2<

and
-3

(b} -7
1 i 2\,
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Case (a). We are given a ficld F :.. K and a proper subfield & . . K, =-
K, = K, of F. We consider the R-structure . . . H(G) v S(G), which
is of strongly unbounded type according to Proposition 8.2. As in the last
case (c) of the proof of the previous Lemma 9.3, we define a full embedding
T: &(F) — R(2) as follows: If (W,, U,, Vg) 1s an .Y -space, define
TW, U V)=V, p)with ¥, - W L, . W,,and

op1: Wi 70 pFg = W or 1" We = Homp(oFp, W)

b

according to whether (1, 2) is direct or not; moreover, define
292t Wi 0 pFp 5 W —» WU,
with the canonical projection if (2, 3) is direct, and
23t Ur @ pFpa~ UpCs Wi otherwise;
42 OT 594 is defined similarly by using ¥ instead of U.

Case (b). We are given a proper subfield G - Kyof afield ¥ == K, =
K; = K,;. The K-structure .¥ = 4(G)u AF) u A(F) is of strongly
unbounded type, according to Proposition 7.1 and thus it is sufficient to define
a full embedding T: &(.#) — R(2). Denote the image of the S-space
(We, Ug, Ve, V) under T by (V. %) and define V, - We. The
definition of V,, ¥, and V, and the corresponding ,p,’s will, however,
depend on the fact, whether (1, 2), (2, 3), and (2, 4), respectively, are direct
or not. For example, if (1, 2) is direct, then we define 2¢; by the inclusion

2(}11*: UG C> WF - HomF(GFp ’ WF),
whereas if (1, 2) is not direct, we take the projection
1P2+ WF@FFG‘"‘N*WG'_)'") WG/UG;

and, similarly for (2, 3) and (2, 4).
We shall need certain results on K-specics of type A,.,, that is on
K-species whose diagram is the Dynkin diagram of type A

n+1 ¢

0 1 2 n—1 n
Note that a representation of such a K-species is given by #n -|- 1 vector
spaces Vy, Vy,..., V, and, for each 0 <7< n— 1, either by a map
ia®it Vi—V;,; or by a map @0 Vg —V,, according to whether
(4, i 4 1) is direct or not. Given a K-species 2 = (K, .M,), ., of type A,
with n 2> 1 and, say, with K; =F for all 1, we consider the K-structure
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S .= J(F) and define a full embedding T of &() into R(Z) as follows.
If (W, ..., is an .¥-space, let T(W, Uy ..., U,) = (V:, i), where
V, = W and where, if (0, 1) is direct, V', = W/U, and

9o = W—> WL,

whilst, if (0, 1) is not direct, }7 = U, and o, is the inclusion

oP1- Uﬁ C— IV.

Assuming, by induction, that a functor T: S(¥") — R(2') has been defined
for the K-structure ¥ = J,_4(F) and the K-species 2" = (K, iM))isento)
of type A, , we complete the definition of T by applying T’ to the &’-space
(WU, , Uy Uy ..., UnJUy)in the case that (0, 1)is direct, and to the ¥’-space
(U,, Uy ..., U,_,) otherwise (see[7]). In this way, the images under T are
just the O-faithful representations of 2 in the following sense: If 2 =
(K;, :M)); jes is a K-species and ke l, then a representation V. = (V;, ;9;)
of 2 is called k-faithful if, for every direct decomposition V =V @V’
in R(2) such that }'j = 0, necessarily V" = 0.

Lemma 9.5. (P. GasrieL [7]). Let 2 = (K;, i{M;)ijer be a K-species
whose diagram 1is

0 1 2 n—1 n
Then,
(a) Every representation V of 2 15 a direct sum V =V @V’ of a

O-faithful representation V' and a representation V" with V, = 0.

(b) A representation V of 2 s O-faithful if and only 'if, .for each
0<i<n—1, ;. 9; 15 an epimorphism if the pair (i,1+ 1) direct, and
Piyy 15 @ monomorphism otherwise.

(c) The functor T provides an equivalence between S(I(F)) zfnd the full
subcategory of R(2) of all 0-faithful representations and is a dimension functor.

It follows from Lemmas 9.1 to 9.4 that, investigating a K-species 2 =
(K, , :M;); je; of finite type whose diagram contains multiple edges, we may
assume that the diagram is of the form

-n n+tl =1 0. ,2 1 2 m-1 m
with m > 1 and 7 > 0. In this case, we call 0 the focal point.

481/33/2-15

- A
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LemMma 9.6. Let (*) be the diagram of a K-species 2 —= (K;, ;M;); jer -
Let K;=G for | <i<<m and K, =F for —n <{-<0. Then every
representation of 2 is the direct sum of a O-faithful representation V' and a
representation V" with V; = 0. Moreover, the full subcategory of R(2) of all
O-faithful representations is equivalent to S(.¥’), where ¥ = J,(G) u S (F),
with respect to a dimension funcior.

Proof. First, consider the case n = 0. Form 2, we derive a K-species
2" = (K}, ;M); e of type Ay, in the following way: K, = G for all
1 e, and (¢, §) is direct for 2" if and only if (7, j) is direct for 2.1f V = (V;, ;)
is a representation of 2, then we may consider V also as a representation of
2': We just consider V, no longer as an F-space but as a G-space, and if
(0, 1) is direct, we deal with

190t Vo)e 3 (Vo)r @ e — V7,

whereas if {0, 1) is not direct, we use
o1 *: V1 — Homp(6Fr, (Vi)p) = (Vo)e -

If we decompose the representation V in accordance with Lemma 9.5(a):
V=V @V’ where V' and V" are representations of 2’ such that V'’
is 0-faithful and ¥ = 0, then, obviously, V" is also a representation of 2,
because the restrictions of 2 and 2’ to {1, 2,..., n} coincide. But, also V'
can be considered as a representation of 2, since V' = V,, and, if (0, 1) is
direct,

190 =190 @190 ViR iFe VY 0>V DV, =V, ,

so that ;¢," 1s a map from Vy ®) pFg to V,'. Similarly, if (0, 1) is not direct,
we have

01T = o) @opt: Vi = VY @V —> V) ®0 5 Homp(Fr, V),

and thus 4p;" maps V' into Homg(cFFr, V,). This shows that V =V ® V’
is a decomposition in R(2) such that ¥V =0 and such that ; ¢, is an
epimorphism for every direct pair (i, { 4 1), whilst (,¢;,,)* is a mono-
morphism otherwise. Here, the last assertion follows from Lemma 9.5(b).
But it is obvious that a representation V' of 2 satisfying the above conditions

on ;,;¢; and (;@;,,)* has to be O-faithful, since every direct summand of V'
satisfies again the same conditions.

Now, in the general case with n not necessarily equal to 0, we consider,
for a given representation V= (¥, ;p;) of 2, the restrictions to {—n,..., —1, 0}
and to {0, 1,..., m}. It is easy to see that in this way we get a decomposition
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V=V ®V OV with ¥/ = 0 for i <0, with V! =0 for i >0, and
with a O-faithful representation V”.

Also, starting with the K-structure & = J,(G) u J,(F), we define a full
embedding T: (&) — R(2) in the following way. Let [ * ={1, 2,..., m} and
I" = {—n,..., —1, 0}; furthermore, let 9’ be the restriction of 2 to I', and
similarly 2" the restriction of 2 to I”. Let

T: S 4(6) — RZ) and T SA(F) > R(2)

be the corresponding full embeddings defined in the paragraph preceeding
Lemma 9.5. Then, if (W, X} oy Xm» ¥y 4 Yy) 18 a0 S -space, define its
image (V; , jpi)i.e; under T as follows: 1f (0, 1) is direct, put

(Vi ’ J“'r')t')s'.iel' = T'(W/XI ] Xz/X1 ooy Xm/XI)
and
1P0: Wi ® pFe =% We—> WiX;;

if (0, 1) is not direct, put

(Vi ’ J"Pi)i,fel' = T'(Xm ’ ‘Yl yeeey Xm—1)
and
o%1: X &> Wo HomiFF, Wr)
and,
(Vt'$ J‘Pl' l',J'EI' = T'(W, Yl yesey Yﬂ).

Then, as in the proof of Lemma 9.5 (see [7]), it follows that the 0-faithful
representations are just those which are isomorphic to the images of -spaces
under T.

This completes the proof of Lemma 9.6.

Now, it is easy to complete the following proof.

Proof of Theorem B and Theorem E(2). If & = J,(G)u J(F) 18 a
K-structure for F, and G is a proper subfield of F, then by Theorem A,
S(¥) is of finite type if and only if . is of one of the following forms:

(a) SF(G)u S F),[F: G] =2,n220;
(b) In(G), [F: G] =2,m2=1;

(c) AG)uAWF)[F: Gl =2

(d) AG)[F:G] =3

and, if &(.%) is not of finite type, then it is of strongly unbounded type.
If @ = (K;, M) is 3 K-species as in Lemma 9.6, then there is
obviously only a finite number of indecomposable representations V with
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Vy = 0, since these representations can be considered as representations of
the restriction of 2 to I {0}, which is the disjoint union of two K-species of
type A, and A, , respectively. The restriction on the corresponding
K-structure .% shows that 2 is of finite type if and only if its diagram is
of one of the following types:

(a) of type B,,,, when ¥ = #(G) u S (F) with [F: G] -2, and
the number of indecomposable representations is

¥+ 1)+ 6) + da(n + 1) + 1 = (n + 2)%;

(b) of type C,,.;, when & = £ (G) with [F: G) = 2, and the number
of indecomposable representations is

dm + 1)(m + 2) + dm(m + 1) = (m + 1)3;

(c) of type F,, when & = 4(G) u H(F) with [F: G] = 2, and the
number of indecomposable representations is 20 - | + 3 = 24;

(d) of type G,, when ¥ = F(G) with [F: G] = 3, and the number
of indecomposable representations is 5 + | = 6.

10. K-Algebras

In this final section, we are going to derive some conditions for a finite
dimensional K-algebra to be of finite type.

Let 2 = (K;, ;M;), jo; be a K-species. Construct the tensor algebra 7 (2)
of 2 in the following way. First, define the semisimple K-algebra I" = [, K;
and consider M = @; ;; ;M; as a I'-I'-bimodule, where I” acts on M from
the left via the projection I'— K; and from the right via the projection
I' > K; . We may also write oM, = ®s.5er {M; , because this decomposition
is a direct decomposition of I'-I~bimodules, Now, for n > 0, we form
the n-fold tensor product M™ = M ®. M ®r - ®r M, where M©® == T,
M® = M, and put 7(2) = @, M™.

Obviously, .7 (2) can be made into a ring, or even a K-algebra, defining
the multiplication through the canonical isomorphism M ® X MY — M+
and extending it by the distributivity. The tensor algebra .77(2) is also called
the “maximal” ring of ~M (see [10]).

ProposiTiON 10.1. Let 2 be a K-species. Then, the category R(2) of all

representations of 2 and the category Mgy of all right T (2)-modules are
equtvalent by a dimension functor,

Proof. We define two functors R: 9 5 2 — R(2) and P: R(2) — My (9
as follows. If Xg7(g) is a right 7(2)-module, then we may consider X also
as a right I"-module, because I' is 3 subring of 7(2). In this way, X

L
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decomposes uniquely into X = @, X; with right K;-modules X; and
X:K; = 0 for ¢ s« j. Also, since M is a I'-I'-submodule of 77(:2), the scalar
multiplication of X gives rise to a right Imap ¢: X ®r M — X, and,
since X; ®p M, = O for i # k, the map ¢ is given by

qJ:@(Xi@iMj)a@X,..

But here X; X ;M; maps into X;, and thus ¢ is determined by the
right Kj-linear maps ;p;: X; ®r M; = X, @, M; > X;. We define
R(X5) = (X;, j9:). Observe that the right 7 (2)-module structure on X
is uniquely determined by the map ¢: X & M — X, and since ¢ = @ ;p;,
also by the family of the ;p;’s. For, the scalar multiplication of M™ on X
can be defined inductively by ¢'*: X (3 M® — X with ¢!V = ¢ and

(P(n+1) — CP(fP‘”’ ® ]). X ® M (n+1}
r

— (X@;)M‘"’) (?M

L Y QM —2— X, (¥
r

because the operation has to be associative.

Also, given «: X — Y in Mg and R(X) = (X, ;9:), R(Y) = (Y, ),
we note that « is, in particular, a right I-map, and thus «(X;)C Y;, and
that it is determined by the family of restrictions o;: X; — Y,;. We let
R(«) = (o). The fact that o is a 7 (2)-map implies that #(a; @ 1) = «; ;9;
for all 7, j e I, and therefore («;) is, in fact, a map in R(2).

Conversely, given (X, ;) in R(2), define P(X;, ;p;) additively by
X = @;; X;, where I' = [];; K; operates on X; via the projection
I' ~ K, . The scalar multiplication by M on X is defined inductively
by ¢t X @ M™ — X with

PV = @ P X@M == (—D ()('z (?iM,-)

i,jel i,j¢ef

= @ (Xz‘ ®iM5)'_*@Xj = X,

i€l K, jel
(using the fact that, for i % &, X; ®r xM; = 0) and with ") = g(p™ ¥ 1)
as in (*).

If () (X;, ;00— (Y, b)) is a map in R(2), then « = @ oz X =
@Pie; X; — Y = @1 Yy can easily be seen to be a right 7 (2)-map, and
hence put P(x;) = a.

It follows without difficulties that the functors R and P are mutually inverse
equivalences of categories, thus proving the proposition.
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Let us remark that J(2) is semiprimary if and only if M™ =0 fo
some 7, and that this is the case if and only if every sequence i, , i, ,..., ,
with ,-kM,kar1 # 0, for 1| <k <n—1, is of bounded length. If 7(2) is
semiprimary, then its radical is given by Rad 7(2) = @y M, Also, in
this case, 7 (2) is hereditary, that is gl. dim. .7 (2) < 1 [10]. We may use
this fact to describe .7(2) in the case when the K-species 2 = (K, , ;M)); je1
is of finite type. For, then, by Lemma 9.1, every sequence i, , fy yeery 1, With
,-kM,-k+I #0for 1l <k<<n—1,isof length < card I, and hence F(2)is
semiprimary and hereditary. Of course, (2) is even finite dimensional
over K. We will show that also the converse is true: a hereditary, finite
dimensional K-algebra of finite type is Morita equivalent to a tensor algebra
7(2), where 2 is a K-species of finite type.

Assume that .o/ is a basic finite dimensional K-algebra and let o [Rad o =
K, X -+ x K, with extension fields K, of K for 1 < 1 < n; furthermore,
let Rad .o7/(Rad /)2 = @,¢; ;¢ ;M be the decomposition with the K;-K;-
bimodules ;Af; . Thus, 2 = (K, M,);<; ;<. is the K-species of &/.

PROPOSITION 10.2. Let o/ be a finite dimensional basic K-algebra and 2

its K-species. If of is hereditary and not of strongly unbounded type, then o
is isomorphic (as a ring) to T (2).

Proof. Let A" be the radical of &7, Let | = > i1 be a decomposition
of the unity into a sum of orthogonal primitive idempotents. Since & is
hereditary, we may assume that e, 4" e; =0 for i > j (see [3]). Since &
is a basic algebra, e,ofe; C A" for i J and, consequently, 4" = D img e e
Thus, the subring I' = ¥} | e, satisfies P+ =o, 'n ¥ =0,
and we may identify I" with «//Rad &, and K; with e, s7e; .

Now, considering 4" as a I-T" -bimodule, we are going to show that there is
a I-I'-submodule M of A" with 4" = M @ 42, If we decompose p A =
@, +¥;, where N, is a K ~-K;-bimodule, it is sufficient to show that the
K-K;-bimodules ,N, are simple; for, in this case, rAr is semisimple. Hence,
assume that x (;V;) k, is not simple. But then, by Proposition 5.2, the corre-
sponding K-species (with the two-point index set {&, j}) is of strongly
unbounded type. Let | = ¥, _, o7, . Then, ] is also a right ideal, because

Jod =% seof = Y e, + Y Aede,
i<k i<k i<k
however, since e;s7e, = 0 for I < k&, the last summand is zero. Now, for
k < j, denote the image of e, under the ring homomorphism & — /]
again by e, . Since N, N | = 0, we may identify ;N; = e,of¢; and e ]e; -
Also, e,(o7/]) e; belongs to the right socle of o7 /], because
e les N =Y eleNe,C Y ey, = ]

i<k i<k



ON ALGEBRAS OF FINITE REPRESENTATION TYPE 389

This shows that the idempotents e,, e; of .o//] satisfy the assumptions of
Lemma 6.3, and thus there is a full embedding of me(xi(iN,-)x,) into M/,
by a dimension functor. Since M ./, is a full subcategory of M., , we conclude
that .=/ is of strongly unbounded type, in contradiction with our assumption.
Hence, A4 is semi-simple and A} = M & A7 for some I'-I-sub-
module 2}/,

Now, we define a ring homomorphism n: 7 (2) — 57 which is the identity
on I" = [T;e; K, and on M = @y ;o; +M;. It is easy to see that 5 has to be
surjective, because .M generates A4 as a subring. Then, & ~ J(2)/],
where /' is an ideal in Rad(7(2))% and J' = 0 in view of the fact that
gl. dim. &/ < 1, by a theorem of Eilenberg and Nakayama [6]. The proof of
Proposition 10.2 is completed.

Now, we give a proof of Theorem C and the first part of Theorem E(3).
Thus, let .57 be a finite dimensional hereditary K-algebra. The K-dimension
of the objects of 9 is equivalent to the length dimension, and hence it is
a category invariant. As a consequence, we may assume that &/ is basic.
If o is not of strongly unbounded type, then, by Proposition 10.2, the ring &7
is of the form 7(2), where 2 is the K-species of 7. According to Proposi-
tion 10.1, M4 (9) and R(.2) are equivalent categories. Since 2 is not of strongly
unbounded type, 2 is of finite type, in view of Theorem E(2). Conversely,
if 2 is a K-species of finite type and &/ ~ 7 (2), then &/ is of finite type by
Proposition 10.1.

In order to provide a proof of Theorem D, let us consider now the case
of an algebra .o/ with (Rad o/)? = 0. If o/ is a basic finite dimensional
K-algebra, the separated K-species 2' of 5/ is defined in the following way.
Leto//Rad o = K; X -~ X K,and Rad o[(Rad )2 = @y,i<n :M; with
K-K;-bimodules ;M; . For the index set, we take the set of all pairs (4, t) with
Il <i<nandt =0, 1, and we let

and
wMjy = ;M;, whereas M,y = yM;; = aM;,e =0, for 1 <14, j<n

The separated diagram of &/ defined in the introduction is just the diagram
of the separated K-species of . Obviously, in view of Theorem B,
Theorem D will be established if we show that 2' is of finite type if and only
if the K-algebra & is of finite type. This will follow immediately from
Lemma 10.3 and Proposition 10.4.

We will consider the following full subcategory of R(2'): If

2 = (K: ’ iMJ')t'JEI
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is a K-species, then Rn(2) is the full subcategory of R(2) consisting of all
objects (X, ;@;) of R(2) such that for all 7 € I the map

(@ ier: Xi > Eiex H(’ml()(i‘n’!j » X3)

is a monomorphism. Obviously, this is a generalization of Rin(zM) defined
in the Section 5. Under an additional assumption on 2, we will show that
nearly all indecomposable objects of R(2) belong to Rin(2).

Lemma 10.3. Let 2 = (K;, ;M,); ;c; be a K-species such that M; + 0
implies ;M) = O for all i, j, ke I. Then every object in R(2) is a direct sum of
an object in Rm(2) and of simple objects. Moreover, there is only a finite number
of simple objects and all of them are finite dimensional.

Proof. We define I, as the set of all fe I with ;M; # 0 for some jel,
and set I; = I'\J,. According to our assumption, I, contains all j €I with
M; # 0 for some 7€ l.

First, we remark that, for k € 1, the object B(k) == (Y, , #,) with ¥, =0
except for ¥y = K, and g; = O for all ¢, 7, is simple and that objects of
this form are the only simple objects. For, if X = (X,, ,p;) is an arbitrary
nonzero object, and X, # 0 for some k € I , then there is a monomorphism
B(k) & X (observe that ,p; = 0 for all j, because M, = 0), whereas if
X, = Oforallkel;, thenall jp; = 0; thus, there are embeddings B(k) ¢ X
for all 2 e I, with X,, +# 0.

Now, again, let X = (X}, ;p;) be an object in R(2) and let X" = (X7, ;97)
be defined in the following way. For i€ I, let

X = n ker :i(Pi*’
jely
where ;% X; — Hom(;M;, X}), and let X] = X,/X,. For jel,, let
Xj = X;. Also, for iel,, jel;, let (9])* be the map induced by ;p;*.
Otherwise, of course, we take ;p; = 0. It is rather obvious that X is the direct

sum of X" and of copies of B(k), k€I, . Here the number of copies of B(k)
is indicated by the dimension of X,’. The lemma follows.

The assumption of the previous lemma is satisfied, in particular, for the
separated K-species 2’ of an algebra »7. We claim that the indecomposable
objects in Rin(2’) correspond to the indecomposable right .»/-modules.
Following M. Auslander [1], a functor P: 9 — B is called a representation
equivalence if P is full, reflects isomorphisms, and every object in B 1s
isomorphic to the image of an object of W under P. A representation
equivalence U — B induces a bijective correspondence between isomorphism

classes of indecomposable objects of 9 and of B. The following proposition
is well-known (see [1] and also [8]).



ON ALGEBRAS OF FINITE REPRESENTATION TYPE 391

ProposITION 10.4. Let </ be a basic finite-dimensional K-algebra with
(Rad )2 == Q. Let 2’ be the separated K-species of </. Then there 1s a repre-
sentation equivalence M — Ru(2') which is a dimension functor.

A proof may be found in M. Auslander [1] (Theorem II. 3.1. and Proposi-
tion I1. 4.5), where Rm{2’) is called the Grassman category of .2//Rad &/ and
Rad «&/. We remark only on the definition of the functor Wi, — Rin(2’)
on the objects. Let I = Y, ¢; be a decomposition of the unity as the sum
of orthogonal primitive idempotents; let 4" = Rad «/. Then we may
assume that 2 = (K »» 6.9 Mg ohcii<nocs<a With Ko = Ky =
ewileJe.Ne; and (; M1y = €4 ¢ is the separated K-species of &/, Given
a right «/-module X, its image under M, — Rm(2') is (X9 » 6,096 9)
where

X = (X/Soc(X)) e, X = Soc(X) e;,

and where (; yp ) is induced by the scalar multiplication on X. In particular,
the K-dimensions satisfy the relation

dim Xy = dim Xx = Y dim X9 = dim(Xg,s » 6,096.0)
i.8

and thus the functor is a dimension functor. Obviously, this yields a proof
of Theorem D and of the remaining part of Theorem E.

Note added in proof. In this note, we want to give a survey on some recent
developments. In particular, there are several new techniques for proving the classifica-
tion theorems of this paper; also some further investigations into categories of un-
bounded type have been made.

Let 2 = (K; , {M,)1<i.5<n be 2 K-species, and let I' be its diagram. The K-species 2,
or rather its diagram I" determines a quadratic form g on the n-dimensional rational
vector space R" by

g(x) == Z kix? — Z ™miiXiXj ,
i

LR F]

where k; = dimg K, , m;; = dimg ;M,, and where x = (x) is an element of Q".
Let b be the corresponding bilinear form on ", and s; the reflection of (Q", b) -W:lth
respect to the ith base vector ¢; = (0,..., 0, 1, 0,..., 0). The roots of I" are by definition
the images of the base vectors e; under the action of the Weyl group W (generated
by the reflections s;, 1 < ¢ < n). The base vectors themselves are usually called
“simple roots.” .

If the diagram I of 2 is a Dynkin diagram, then the number of indecomposable
representations of 2 and the number of positive roots of I" are equal. In fact, deﬁne
a map dim from the set of isomorphism classes of finite dimensional Fepresentatlons
of 2 into the space Q" by (dim V), = dim( V,')pi ,where V. = (V, ;@) is 2 represeflta-
tion of 2. Then dim induces a bijection between the indecomposable repre‘sentatu.)ns
of 2 and the positive roots of I'. This follows easily from a case-by-case inspection

using the results of this paper.
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In the case of the diagrams A, ,D., E, E;, and E,, 1. N. Bernstein, 1. M.
Gelfand, and B. A. Ponomarev have shown that this bijection also can be proved
directly, and, in this way, one gets a very elegant proof of Gabriel’s classification of
the quivers of finite type (“Coxeter functors and Gabricl’s theorem,” Uspech: Mat.
Nauk 28 (1973), 19-33, translated in Russian Math. Surveys 28 (1973), 17-32). It is
obvious, that the simple representations of 2 correspond bijectively to the simple
roots, and Bernstein, Gelfand and Ponomarev have defined endo-functors of R(2)
(and functors between the categories R(#) and R(/'), where 2 and 27 are K-species
with the same diagram) which construct out of the simple representations all the
other indecomposable representations in a similar way as the Weyl group produces
all the positive roots out of the simple ones. The most important of these functors
are the so-called Coxeter functors, which correspond to the Coxcter transformations
in W. It is possible to generalize this method to arbitrary K-species, and, in this way,
we get a more conceptual proof of Theorem B (V. Dlab and C. M. Ringel, “Representa-
tions of graphs and algebras,”’ to appear. A summary has appeared: *‘Représentations
des graphes valués,” C. R. Acad. Sci. Paris 278 (1974), 537-540). Theorem B im-
mediately vields Propositions 2.5, 2.6, 3.1, and 4.2 ; thus in order to obtain Theorem A,
we only need the (rather elementary) proof of Proposition 3.2.

A similar technique was developed by W. Miiller (‘' Unzerlegbare Moduln iiber
artinschen Ringen,” Math. Z. 137 (1974), 197-224) in order to give a new proof of
our Theorem D. Given a finite dimensional K-algebra . with (rad &) = 0, he
constructs another finite dimensional K-algebra # which is weakly symmetric and
satisfies (rad #)* = 0. For such an algebra #, the images in a minimal projective
resolution of a simple module are indecomposable modules, and he shows that in
the case of finite representation type, he gets all indecomposable modules in this way.
It is rather easy to see that twice the application of his kernel construction just
corresponds to the Coxeter functor C* on R(2), where 2 is the associated K-species.

Recall that in Section 7 the unboundedness of certain K-structures is proved in
the following way: We construct a full subcategory U of S-spaces, and prove
that A is a Grothendieck category with a progenerator P @ T. In all cases, E, =
End(P), E, = End(T) are fields, Hom(P,T) = 0, and yM; = Hom(T,P)
satisfies dim MEI = dim M E, = 2. Of course, ¥ is then equiVallent ,to the category
fR(ElM 52) of representations of the bimodule E1M E, - P. Gabriel has pointed out that
it should be easier to determine the bimodule ¢ M; directly, and then to define an
appropriate functor R(g Mg) — S(S) such that the image category is precisely U.
For example, in case & = S(G) US(F)U S (F), let E, = E, = E and g|Mf =
rFs ® ¢Fr . Given (Xp, Yr, ¢) in R{zMf), with ¢: Xf @rFg ®¢Fr — YF, then
we denote by Ug the graph of the map

o*: X = Xr @rFg — Homp(gFr, Y§) = Yi.

We define now the functor R(zMf) — S(F) by (Xr, Y5, ¢) > (Xr X Y, Us»
0 X Yr, Xr X 0). It is easy to see that this functor induces an equivalence between the
category R(rMy) and the full subcategory U of S(¥) consisting of all F-spaces (W, U,
Vi, Vdwith W=U®V, =V, & V,.

Also, the results of Section 7 can be improved considerably. Namely, it turns out
that in these cases one may determine a/l indecomposable ¥ -spaces of finite dimension.
Of course, we may replace the category &(%) by an abelian category, namely
the category R(2) of the representations of the corresponding K-species 2. If the
quadratic form of 2 is positive semidefinite (and this is true for all cases considered in
Section 7, as well as in the situation of Proposition 5.3), then one can write down all
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indecomposable representations of finite dimension. In addition to using the Coxeter
functors, the proof involves several other techniques, in particular a theory of defect
of representations (which generalizes the notion of the defect of quadruples introduced
by I. M. Gelfand and V. A. Ponomarev in “Problems of linear algebra and classifica-
tion of quadruples of subspaces in a finite dimensional vector space. Collog. Math.
Soc. Bolyai 5, Tihany (Hungary) (1970), 163-237), and nonsymmetric bilinear forms
on Q" (see the paper of V. Dlab and C. M. Ringel, mentioned above, and C. M. Ringel
“Representations of K-species and bimodules,” to appear). It turns out that the full
subcategories U defined in Propositions 7.1-7.4 contain only representations of defect
zero, whereas the representations mentioned in Remark 7.5 are of negative defect.

Finally, let us mention that M. Auslander has proved that a finite dimensional
K-algebra & which is not of finite type, always possesses an indecomposable module
of infinite dimension (the proof will appear in Auslander’s series of papers *“‘Representa-
tion theory of artin algebras,” in Comm. Alg.). Of course, then the same is true for
K-species and K-structures. However, his proof is a mere existence proof, and therefore
does not reveal a concrete description of such a module.
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