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let ¥ be a commutative field, R a finite

dimenaional K-algebra (associative, with 1), and

ﬂg the category of all (right) R-—modules. If there

are only finitely many indecomposable R-modules, then

every R—module 1is the direct sum of finite dimension—

al ones [6]. On the other hand, M. Auslander recently

has shown [1] that in all other cases, R possesSes

an indecomposable module ¥ which 1is infinite dimen—

sional. This module X 1is constructed as the union

of a chain

() X, & X, € < Uxy =¥

— —

of finite dimensional indecomposable R—modules Xy

and he has asked whether for any such chain, the union
has to be indecomposable.

The answer to this question 1is negative. It is

rather easy to see (section 1) that the guiver Q

e— )
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possesses chains (%) of finite dimensional indecompos—
able representations Xi such that the union X is
decomposable, even as the direct sum of infinitely
many non—zero representations. We denote by EQ the
category of all representations of the quiver Q . It
is well—-known that for many algebras R , there exists
an exact embedding T: §Q — QR which is not necessa-
rily full, but which maps indecomposable objects to
indecomposable objects. The "wilg" algebras are usually
defined by this property (the existence of such an em—
bedding). Since, in most cases, T also preserves
unions, we get from a chain of indecomposable objects
with decomposable union in EQ » & similar chain in
Mp

On the other hand, we will show that there are
examples of "tame" algebras for which for any chain of
finite—dimensional indecomposable modules Xi , the
union X is indecomposable. Further investigation
of the tame case reveals however a third type of be—-
haviour: it may happen that not all such unions are
indecomposable, but that there is a finite bound 4
on the number of indecomposable summands in any direct
decomposition of such a union (section 3).

The case of the representations of a K—species

S will be solved completely (section 2). If S is
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tame (equivalently, if the corresponding quadratic form
is positive semi—definite), and X 1is the union of a
chain of finite dimensional indecomposable representa—

tions X then X is the direct sum of at most six

i ]

indecomposable representations. The bound d ( < 6 )

depends on the quadratic form of S . For example, if
. ot ~ o~

S is of type A4, ,» B, , OT e, > then d = 1, and

therefore any such union 1is indecomposable. Also, it

turns out that the indecomposable representations X

of S which are unions of chains of finite dimensional

indecomposable representations, are of two different

types: either X admits an endomorphism which is sur-—

jective, but not injective. Then any endomorphism «& #

o is surjective, and its kernel ijs finite dimensional

and indecomposable. These indecomposable representa—
tions are quite similar to the Priifer groups in abelian
group theory. Otherwise, any surjective endomorphism 1is
an isomorphism, and then for every endomorphism a of
X , the kernels of a6 and a! are equal. It is an
open problem whether such an indecomposable represen—
tation can have an endomorphism with non—-trivial kernel.
The main tool used in this paper are the Coxeter
functors and the notion of defect. Both concepts were

introduced by Gelfand and Ponomarev [4] in the case of a

quiver of type'ﬁ; (the "four subspace problem" ), and the
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Coxeter functors were defined by Bernstein, Gelfand

and Ponomarev [2] for arbitrary quivers. Both concepts
have been generalised by Dlab and the author to species
[3]. We will recall the main properties which are used

in the paper (see the beginning of section 2).

1. Decomposable unions: the wild case

We consider only representations V of Q
o——;——)oocp
with M en inclusion map. Thus, we can write V in
the form V = (A,B,¢), where B is a vector space
over K, A 1is a subspace, and ¢: B—> B 1is a
K—-linear map.

Let K* be a countably generated vector space
over K with base €4 €5y eve and let e, = 0 for
n <o. Let X° be the n—dimensional subspace of K%
generated by €11 seey €, and, for n < o, let K®
= 0. PFor a € K, consider the endomorphism [a]m:
k¥ — k¥ » defined by

le] (eq) = aey + e, o, , for all 1 > 1.
The subspaces K° are invariant with respect to [a],
and we denote by [a]n the restriction of [a]u’ to
K" .

Let a # B be two fixed elements of K . We
define a representation Vn of Q by
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n n
v, = (&, K&k, |a] ®[B])),
where An is the subspace of Ko™ generated by

K" 'ex™ ' and the element e e . Note that we have

inclusions
V1 g v2 g v3 Q s s ’
and that the union V 1is just
(]
v=LJv, = (x“ex”, K“ex",|a] 8[p],)-
Obviously, V 1is the direct sum of (K*,X°,[a],) and
(KM,KU,LBLQ). On the other hand, all the representations

V, are indecomposable. For, any decomposition of V.

induces a decomposition with respect to the sub—quiver

ﬁ:::)tp . But, for a« # B , (KnﬁKn,La]ne[B]n) has pre—

cisely one non—trivial decomposition, with direct sum—

mands (K"80,{a] 80) and (08k™,08[p] ) , and this

decomposition is not compatible with the subspace A.

Similarly, we construct a chain of finite dimen—

sional indecomposable representations with union the

direct sum of infinitely many indecomposable represen—

tations. Let @y ieN , be pairwise different in K,

W = (C
n (n'isﬂ 1eN

with C_ the subspace of & k™1 generated by
@ Kn““1—'i and the element & en_i = (en,en_A‘,....e@,Os...).

Then, again, we have a chain of inclusions

N A PR cw=Uw, ,

and all the representations

W
wi are indecomposable.
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The union W 1is given by

Ww=(8 k%, 8 K% o [a]),
el iel ieN

and therefore is the direct sum of the reprecentations
(k%K% [a;],).

The last construction was based on the assumption
that the field K contains infinitely nany elements.
However, we easily can modify the construction in order
to deal with finite fields: instead of using only one—
dimensional representations of qé::) as composition
factors of the restriction of wn to {:::) y We

will work with higher dimensional simple representations

Now, let S = (Fi’iMj)1$i,j§n be a K—species.
[I.e., there are given division rings Fi containing
K 1in the center such that dimK Fi is finite, and
Fi—Fj—bimodules iMj with central operation of X
and dim, iMj finite.] ©Let ¥s be the category of
all representations of S and 109 the full subcate—
gory of all finite dimensional ones [a representation
v = (vi’jwi)1£i,jgn of S 1is given by F;—vector space

Vy and Fj—llnear maps 5943 Vy 8 M. —> VJ . In cas

i J
all vector spaces Vi are finite dimensional, V itsel
1s called finite—-dimensional. If V = (Vi,j¢i) and
W = (wi,jni) are representations, a morphism a = (ai)z

V—-— W 1is given by Fi—linear maps aizvi —_ wi such
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that « jni(aiﬁ1), for all i,j.] The quadratic

39%1 ©
form q of S on the n—dimensional rational vector
space Q% is given by

g(x) :Z: fixi2 —-Ez:mijxixj for x = (xi)e Q-,
where fi = dimK Fi and mij = dimK iMj . In order to

use the construction of decomposable unions of indecom—
posable representations of Q , to get a similar situation
in My , we need an embedding gQ.——é Mg with certain

broperties.

Proposition. Let S be a K-—species with indefinite

guadratic form. Then there is a finite—extension field

K' of K and a proper embedding T: My g+ — My -

Here, EQ,K' denotes the category of representations
of Q over the field K' , and the embedding T 1s
Called proper provided T 1is exact, union preserving,
maps finite dimensional objects to finite dimensional ones,
such that, moreover, any direct decomposition of an object
of the form T(X) comes from a direct decomposition of
the object X .

Proof of the proposition: If S does not contain
any oriented cycle,then there is an extension field KXK'
of X and a proper (even full) embedding of My. y 4>
into Mg , where gK'(x,y) denotes the module category
over the free K'—algebra in two (non—commuting) generat-—

ors x, y [5]. Of course, as is well-known, we further
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may embed gQ,K' properly (and full) into gK'(x,y> .
It remains to consider the case where the diagram of S

is of one of the forms

.O(d,d) ’ .__;.Q’ .(._..O .

a>1
In the first case, we have S = (F,FMF) with 4 = dimM
= dim Mp > 2 . Let S' = (F1,F2,1M2) be the K-species
with diagram M,

rPeT 2%p_,

2 5
division rings Fy = F, = F , and bimodule 1My = FMpRoMy.

Now S' has no cycles, and its quadratic form is inde-—
finite, since 2d:24 > 4, thus there is a proper embed—
ding of some gQ,K' into gs,. Define a functor T7T:

Mo — Mg by
T(X,Y,9) = (X&(X&M)8Y, (

Qo =0

0 0
ool ),
¢ O
F—-1

where o¢:X .M, — Y 1is an inear map. It is easy

1772
to see that T is exact, union preserving, and maps
finite dimensional objects to finite dimensional ones.
Also, its restriction to the full subcategory ggs. of
Moy consisting of all representations (X,Y,9) with
¢ surjectiv, has the property that any decomposition
°f an object of the form T(V) is induced by a decom—
position of V . Since the embedding of ﬂQ,K' into

Mg, constructed in [ 5], actually embeds My g+ into
= a3

=

i€cv » We get a proper embelding of EQ,K' into gs .

==
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The remaining two cases are rather similar. Thus,
we will only consider the case where S5 1is of the form
Let N* = Homg(GNF,Fg;) , and m: N@N — P the canon—
ical epimorphism. We will consider the K—species St =
(P,M8M) with diagram .O . A representation V of
S' may be written in the form V = (X,94,9,) with

maps ¢;: X8M — M . We define a functor T: Mg, — Mg

by o
?
T(X"P‘]iq)z) = ( (X@N*)GO: Xex , (1@n)eo, (1 CP;) )

and it is rather easy to see that T 1is a proper

embedding. This concludes the proof of the proposition.

Corollary. Let S Dbe a K—species with indefinite

quadratic form. Then there exists a chain
VT g V2 ; VB ; o o0
of finite dimensional indecomposable representations

V. such that the union V = {_JV, is the direct sum

i
of countably many non—zero representations.

2. Tame K-species

We want to discuss now the case of a tame K—species.
Thus, we assume that the quadratic form of S5 1is posi-
tive semi—definite, but not definite. Obviously, we ray

assume that S is connected. In case of a species
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S = (Fi,iMj) of type E; s we will, in addition,
assume that S does not have the cyclic orientation.
[Otherwise, we add a new edge with opposite direction

in order to get a diagram of type KHH

1 2 1 2
S . }'o——)O\ 2 0._,90-——30\ g
® l 3
Ne .. o NI g ..o @
n & n 4
and we let S' = (Fi’imﬁ) with Fj = Fy (0<i<n), and

nMo’ and n+TM6 = F, (with the canonical Fo—Fo—bimo—
dule structure). Then, we consider Mg as the full
subcategory of gs, consisting of all representations
(Vi,j¢i) with ¢ .4 = 1d.]

Since S is a K-species without oriented cycles,
there are defined two endofunctors C+,C-: Mg —> My

the so—called Coxeter functors and two natural trans—

formations n: ¢¢t —> i4 , and y: 14 — cTc”

which satisfy the following properties:

(C 1) ¢™ =0 1f and only if X is projective,
CX =0 if and only if X is injective.
(C 2) Let X be indecomposable.
If X 1is not projective, then C+(X) is inde—
composable and nxzc_b+(X) — X 1is isomorphism.
If X 1is not injective, then C(X) 1is inde-
composable and Y: X — C+C—(X) is isomorphism.
(c 3) ¢t is left exact, C is right exact.
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Also, for any object X in @ , there is defined
an integer &X , called the defect of X , with the

following properties:

(D 1) & 4is additive on extensions: if
0 — X —>Y——>2 —0
is an exact sequence in Mo , then we have the
following equality: &Y = &X + 82 .

(D 2) Let X, (o<i<m) be indecomposable in g .

i
m
If Xo can be embedded into ®i=1 Xi , and

m
o, for all i, then ©&X & 259 &%y -

6Xi >

If Xo is a homomorphic image of 6121 Xi , and
m

5%¥; & o, for all i, then 8Xy 2 2.4-1 5%y -

(D3) If X is indecomposable, then | 6%| < 6.

The Coxeter functors and the defect are related

by the following property:

(CD) Tet X ©be indecomposable in Oy - Then:
&X ¢ o 1if and only if C+m(X) = 0 for some m>o.

§X > o if and only 1if ¢ B(x) = 0 for some m>0.

The definitions of C+, ¢~, and &, and these pro—
perties can be found in the joint paper [3] with V.Dlab.

An object is called regular, provided it is the direct

sum of indecomposable objects of defect zero. These

objects form a full, exact, abelian subcategory of ms ,

which is denoted by rg - This follows from (D 1) and (D 2).
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The combination of theorem 3.5 of [3] and theorem 1 of

[5] yields the following structure theorem for Iy -

(R) The category I 1s the direct sum of categories
Lq » €ach of which is serial, of global dimension

1 and has only finitely many simple objects.

Recall that an abelian category is called serial Pro—
vided every indecomposable object has a unique compo—
sition series. A serial category which cannot be written
as the direct sum of two non—zero categories, has global

dimension 1 if and only if there are indecomposable

objects of arbitrary length.

After we have collected those known results which
we will need in the sequel, we are ready to look at
our problem. Thus, assume we have given a chain of in-

decomposable representations Xi in m.

=)

X1 C X2 c X3 C * & 0

and that X = {JX; 1is the union in Mg -
Lemma_ 1. For all i, we have 68Xy < o.

Proof: Assume 6Xi > o for some i, thus there
1s some m > o with Xy = c™I for an indecomposable
injective object I . For J > 1, we denote by uJ the
inclusion Xic;—é Xj . If we apply C O 4o uy o, we
get a non—-zero map

c"‘m(uj): c“"‘xi = T — c""‘“xj ,
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in view of C B¢c™%(u . Let J Dbe the image of

3 =Y
C"m(uj) . Since J is a homomorphic image of the in—
jective object I , and my has global dimension 1,

also J is injective. But J is a subobject of the
indecomposable object c“mxj , and therefore J = c"mxj,
which implies Xj - ¢tM7. we have shown that for i < J§,

X; is of the form Xj = ¢y , with J indecomposable

J

injective, and fixed m.

However, there is only a finite number of indecom—
posable injective objects in s , and therefore there
is only a finite number of objects of the form ¢ty

(with m fixed!). This contradicts the fact that we

have infinitely many Xj with J > 1.

Lemms 2. Assume there is 1 with 8X; = 0 . Then
X 1is indecomposable, and its endomorphism ring End(X)
is a complete discrete valuation ring. If ¢ # 0 is
an endomorphism, then ¢ 1s surjective, and the kernel

ker ¢ is indecomposable and finite dimensional.

Proof. If j>i, then éxj = 0., For, assume éxj #0,
then, by the previous lemma, 6XJ < 0, and therefore

+
C+ij = O for some m. However, C 1is left exact, thus

the inclusion Xicéij gives rise to an inclusion

C+mXi<-%-C+ij - 0. Consequently, we would have &X, < o.
Tt follows that we may assume 6X4= o for all {4
(deleting, if necessary, the first objects of the chain).
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Now, every Xi is regular and indecomposable, thus

it belongs to one of the categories by given in (R).

a

i
Since the inclusion X1c;—> Xi is a non—zero morphism,
we must have ay = ay . This shows that all Xi belong

to one and the same Tr

x

We know that has only finitely many simple

La
objects, say k. For the investigation of X , we may
assume that every Xi (as an object of ga) has length
ki . Namely, since Xi is serial, every subobject of
Xi is serial, again, and therefore indecomposable.
Thus, we may refine the chain such that X1+1/X1 is
simple for all i. If we then consider only every k—th
term of the chain, we get a new chain with the same
union, such that the length of Xi is precisely iki.
Note that Xi/xi—1’ 7or all i>1, is isomorphic to Xy
and that the endomorphism ring End(X1) is a division
ring.

Let ¢ # 0 be an endomorphism of X . Let ¢(Xi)
= 0, but ¢(Xi+1) # 0. Consider, for any 8 > 1, the
object w(Xs) in My . Obviously, ¢(XS) is finite—
dimensional, and therefore a subobject of one of the
Xg (£ 2 1). The restriction ¢y Oof o9 to X_ is

s

& morphism XS —> X in r, Wwith kernel containing

t
Xy » Dbut not X;41- It follows that the kernel of ®g

is precisely Xi and that Py induces an isomorphism
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of XS/X1 onto X__;. Since this is true for all s > 1,
we conclude that ker ¢ = LJker ¢ = X; , and that the
image 1im ¢ =) im ¢ = U,y Xg 4 = X . This shows that
¢ is surjective, and that its kernel is indecomposable
and finite dimensional.

Let E = End(X). An endomorphism ¢ of X 1is a
non-unit in E 4if and only if @(X1) = 0. Thus, E 1is
a local ring, and M = {Q e E| o(Xy) = O}- is the ra—
dical of E . Obviously, X and X/X, are isomorphic,
and we denote by ~® an epimorphism X — X with ker—
nel X, . If ¢ €¢M, then ¢ can be factored through
X/X, , and therefore through =, that is ¢ = ¢'n for
some ¢' € E. This shows that M is a principal left
ideal of E , and, as a consegquence, Mo = {@E E |
p(X) =0} .

In order to show that E 1s complete, we have to
verify that the canonical ring homomorphism E —
iif E/Ms is an isomorphism. Since (\ M® =0, it is
obviously a monomorphism. Let (9g )y be an element
of iig E/Ms , with Es = cps+Ms for certain P e E .
For 1 < s, the restriction of ¢  to X, does neither
depend on the choice of the representative ¢, in Pg
nor on the index s (as long as 1 £ s). Thus, we may
define 9 € E by ¢lX, = 9g]Xg -

Now, E/M® = End(X,) is a finite dimensional local

K-algebra, and Mﬁ/Ms is a principal left ideal. Then
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M/MS has to be also a principal right ideal, and, since
E 1is complete, M 1itself is a principal right ideal.

This concludes the proof of lemma 2.

Lemma 3. Let 4 be a natural number with
—-d < éXi < o, for all i.
Then X 1is the direct sum of at most d indecomposable
representations. If ¢ 1is an endomorphism of X , then
either ¢d = 0, or else ker ¢d—T = ker ¢d. In particular

if ¢ 1is surjective, then ¢ is an isomorphism.

Proof: Assume X is the direct sum of d+1 non—

zero representations Yj

d+1
X =6 Y, .
=1 73
Let ¢j be an endomorphism of X with kernel ekgT Yk'

Since X is the union of the Xi , We may choose an

index 1 such that Xir‘Yj # 0 for all j. We define
subobjects Kj of Xi by

- 3

Kj Xir\ Ok=1

thus, we have an increasing chain

Yk = Xir\ker ¢j ’

Here, all inclusions are proper inclusions, since
We claim that for every J with o < j < d, the defect
of Ky.4/Ky 1s < —1. We have

Kj+1/Kj < Xi/Xir\kermj ~ QJ(XI) < X,



UNIONS OF CHAINS OF INDECOMPOSABLE MODULES 1137

thus Kj+1/Kj is (isomorphic to) a subobject of X.
Since Kj+1/Kj ig finite dimensional, it is even a
subobject of some Xt’ teN. But Xt is indecomposable
with 68X < o, therefore also 6(Kj+1/Kj) < o. (Other—
wise, an application of the left exact functor c*tm
to the inclusion Kj+1/Kj —> X, would give the contra-
dietion C(Ky,q/Ky) £ O, c*®(x,) = 0.)

A1l factors Kj+1/Kj have defect < —1. Therefore,
the additivity of the defect yields

GXi = 6Kd+1 = Zji‘l 6(K3+1/Kj) £ _(d+1):

a contradictioh.

Next, assume that ¢ 1s an endomorphism, and that
ker ¢d—1 # ker ¢d £ X . We choose an index i such that,
for o ¢ J £ d-1, we have

+1
X4 ker ¢j # Xynker ¢j £ Xy

Let K, = X;n ker ¢j for o € j £d, and Kgiq = X4 o

J
Then, again, we have a chain of proper inclusions
and the inclusion
J ~ oY

Kj+1/Kj - Xi/Xir\ker oY = ¢ (Xi) < X,
yields, as above, 5(Kj+1/Kj) ¢ =1. Thus, we get again
the contradiction ©6X; < —(d+1). As a conseguence,
either ker ¢d“1 = ker ¢d, or else ker @d = X , that
is $d - 0. In both cases, ker @d = ker ¢d+1, and this
implies ker ¢m im wd = 0. Thue, if ¢ 1is surjective,

then im ol = im ¢ = X yields ker ¢ = O.
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The property (D 3) shows that for any K—-species S
with semi—definite guadratic form, there is a universal
bound d such that -4 < &X; , namely d = 6 . However
depending on the type of S , we get a better bound by

using the following table

—~ Vorad —~ Pad Pocd o el —
type m41 mTz mn Bn Cn BCn BDn C@n
d ' 2 1 1 2 1 2 2 2

D, By By Bg By Fyy Gyq Gy

One obtains this list from [3] by considering the maxim:
value of |&(P)]|, with P projective (where, of course.
one assumes that the greatest common divisor of all

5(P), with P projective, is = 1). We collect the resul"

of this section in the following theorem.

Theorem. Let S be a K—-species with positive
semi—-definite quadratic form, and let X be the union
of a chain of finite dimensional indecomposable represe:
tations. There is a number d £ 6 such that X is the
direct sum of at most d indecomposable representation:
and X 1is of one of the following types:

Type I. X admits a surjzctive, but not injective
endomorphism. Then X 1s indecomposable, every non—zer

endomorphism is surjective, with finite—dimensional
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indecomposable kernel, and its endomorphism ring is a

complete discrete valuation ring.

Type II. Lvery surjective endomorphism is inject—

ive. Then, if ¢ 1is an endomorphism of X , gither
wd = 0, or else ker @d_1 = ker ¢d.
The cases with d = 1 are of particular interest.

Namely, the theorem above yields the following corollary:

Corollary. let S ©be a K—species of one of the

~ ~ o~
types Bqys s E ,or € . Let X Dbe the union of a
n n
chain of finite dimensional indecomposabhle reprecsentations.
Then ¥ is indecomposable, and either every non—zero en—
domorphism 1s surjective, or every non—zero endomorphism

is injective.

In the general case, we do not know any example for
a union of type II which actually has a non—zero nilpo—
tent endomorphism, nor an example of an indecomposable
union of type II which has a non—zero endomorphism with
non—-zero kernel. However, in the next section, we will
exhibit an example of a union (necessarily of type I1)
which is decomposable, and which therefore has a non-—

zero endomorphism with non—zero kernel.

3, Decomposable unions: the tame case

We consider a K—species of type ﬁ& . Since in

this case, d = 2, we know that a union of finite dimen—
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sional indecomposable representations is the direct sum
of at most 2 indecomposable representations. We want to
give an example of a union which actually decomposes.

Thus, let Q be the guiver
.0
1 °/:;;?f§?\:'
In fact, we are only interested in representations where
all maps are Inclusions, and such a representation will
be given in the form X = (x°|x',%x%,%x7,x%), with X°
a K—vector space, and x1 a subspace of X°, for all
1 i< 4 (thus, we are in the "four subspace" situa—
tion). The defect &% of X = (x°|x',x2,%x3,x%) 1is
given by
8X = — 2-a1m x° + 20,0 aim x|
the Coxeter functor C~ maps X = (X°|X1,X2,X3,X4) ontc

cX =Y = (¥°v,v%,¥2,v%), with Y° given by the exact

sequence

4
i=1

and Y9 (1<j<4) by

x° — @, ", x°xt 5 ¥° 5 o

4

4 , .
x° — o, , x%xt — ¥ 0o,
i#J

For this case, both the defect and the Coxeter functors

were introduced by Gelfand and Ponomarev in [4]. 1If

X = (x°|x1,x2,X3,X4) is a representation, its dimen—
sion dim X 1is defined to be the element of the five—

dimensional rational vector space Q5 with components

(dim X); = dim, x% for o < i < 5.
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If X 4is indecomposable, and has negative defect, then

dim C2(X) = dim X — 86(X)-(2,1,1,1,1).

We will consider the representations
X, = (x|o,0,0,0), Y, = (X|K,0,0,0), Z, = (xlo,x,0,0),

and their images under C_i, namely

-1

X X Y

—f _
C = C Yo’ Zi =C 2. .

i o! i

Note that
Xy = (KKK |X00,0K0,00K, (1,1, 1)K),

where we denote by KKK the cartesian product of three
copies of the vector space Ky , and so on, and by
(1,1,1)X the one—dimensional subspace of KKK , gener—

ated by the element (1,1,1). Similarly, we have
Y, = (KK|00,K0,0K,(1,1)K), 24 = (KK|X0,00,0K, (1,1)K).

There are (up to scalar multiples) uniquely determined

exact sequences

@, 14 S
0 —> YO > X1 ——~w>'YT —> 0 ,
B 5,
& —_—

Here, a, embeds Y  as (x00|x00,000,000,000) , and

8  embeds 2. as (0Kko|000,0K0,000,000) into X, .

0 0
For 1 > 1, we define
_ —1 —i+1 _ A1l
(Ii= C i(ao), Bi"-'-‘ C (BO)’ ‘Yi= C (’Y‘])! 61" C (61),

(24

.~ v -~ A Y —_——— >V S7

and we claim that all maps

(aisﬁi)
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are monomorphisms. Since ao(Yo)r\Bo(Zo) = 0, we know
that (ao,ﬁo) is a monomorphism. Its cokernel is just

Y
U = (k]0,0,K,K). Also, (5:

its kernel is ker YN ker 6, = ao(Yo)r‘Bo(Zo) =0 ),

) is a monomorphism (since

and has the same cokernel U . Now, all the represen—
tations Xi, Yi, Z1 and U are indecomposable, and
5xi = =2, SYi = 6Zi = -1, and 8U = o. If we apply the
right exact functor C°%r ana note that C_Q(U) = U,

we get an exact sequence

(ay:sB0y)
21’ 2i Y Y
Y218221 — X21+1 > U > 0 .

In order to see that (aZi,Bzi) is a monomorphism, we
show that the dimension dim of YziGZ2i is equal to
the dimension of the kernel of the map X21+1 —>> U .

dim (Y,,@2,,) = dim Y + dim Z_ + 2-1-(2,1,1,1,1)

dim Xy — dim U + 2-1+(2,1,1,1,1)

If we apply to the monomorphism (a21,321) with 1>1

the corresponding left exact functor ¢ y we obtain

(a21_1,621_1), which therefore also has to be a mono—
Y
morphism. The same arguement shows that (6i) has
i
to be a monomorphism, for all i.

We consider now the chain of monomorphisms

9 ¢
Xy ———> X, —2—5 Xy —> ...

?
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where
Y1
9; = (2y,B4) 5, t Xy — X449 -
Let X = lim Xi be the colimit of this chain. Thus,
X 4is the union of a chain of finite dimensional inde—

composable representations.

i
X 1is also the colimit of the chain of monomorphisms

Y1+1) o Yi+1Py
(x,,B;) = t Y, —> X
(51+1 17P4 5,419 O i 141 0

Y
However, since ¢, = (ai’Bi)(él)’ we know that

where we have used that

- -1

We see that this chain decomposes as the direct sum of

the two chains
.52a1
Y >Z1 >Y2—_'> e a0

and
Y281

1% o
Z A/Y.t 7 Z2_"‘——>Qoo .

o

As consequence, X 1is the direct sum of the corres—

ponding two colimits.
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