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The Indecomposable Representations
of the Dihedral 2-Groups

Claus Michael Ringel

Let K be a field. We will give a complete list of the normal forms of pairs a, b of
endomorphisms of a K-vector space such that a?=b?=0. Thus, we determine
the modules over the ring R = K{X, Y>/AX?2, Y?) which are finite dimensional
as K-vector spaces; here (X2, Y?) stands for the ideal generated by X2 and Y?
in the free associative algebra K{(X, Y) in the variables X and Y.

If G is the dihedral group of order 4q (where q is a power of 2) generated by the
involutions g, and g,, and if the characteristic of K is 2, then the group algebra
K G is a factor ring of R, and the KG-modules ;.M which have no non-zero
projective submodule correspond to the K-vector spaces (take the underlying
space of yx;M) together with two endomorphisms ¢ and b (namely multiplication
by g,—1and g, — 1, respectively) such that, in addition to a?=»b%=0, also
(ab) = (ba)® =0 is satisfied.

We use the methods of Gelfand and Ponomarev developped in their joint
paper on the representations of the Lorentz group, where they classify pairs of
endomorphisms a, b such that ab=ba=0. The presentation given here follows
closely the functorial interpretation of the Gelfand-Ponomarev result by Gabriel,
which he exposed in a seminar at Bonn, and the author would like to thank him
for many helpful conversations.

1. Description of the Indecomposable Modules

We are interested in the modules over the ring R = K<{X, Y>/AX?, Y?) which
are finite dimensional as K-vector spaces. Denote this category by 9. If a and &
are the canonical images of X and Y in R, respectively, then an R-module is given
by a triple M =(M, a, b} where M is a K-vector space, and a and b are endo-
morphisms of (M, also operating from the left on M with a®>=5b>=0. In this
section, we are going to give a complete list of the indecomposable objects in .

Consider now a, a™ ', b, and b~ ! as “letters” of a formal language, and let
(@) '=gand (b~")"'=b. If | is a letter, we write [* to mean “either ! or 7 '".
Aword C=1,...1,is given by the sequence [,, ..., I, of letters subject to the condition
that [;=a* (for | £i<n) implies I;,,=b* and similarly that [,=b* implies
l;+ y = a*. The number n = |C|is called the length of C. Thus, for example,ab™ 'aba™!
1s a word and has length 5. Also, we include into the set %~ of all words two words
1, and 1, of length 0, with (1,)"'=1, and (1)) '=1,. If C=1,...l, is a word,
then its inverse is given by C~!'=1,1...IT7 '. Let ¢ be the equivalence relation on
#" which identifies every word with its inverse, and let #| = #7/p.
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If C=1,...I, and D=e,...e, are two words with non-zero length, tht_en the
productis given by CD =1,...1,¢,...e,, provided this is again a word. In particular,
if C has even length + 0, then the powers C™ do exist (m = 2). Let %™ be the subset
of # consisting of all words of even length +0 which are not powers of words
of smaller length. If C=1,...1, is in #”, denote by C,;,, 0Sisn— 1, the cyclic
permuted words, thus Co,=C, Cy,=1,...L,I;, up to C,,_,,=11,...[,_,. Let Q'
be the equivalence relation on #™ which identifies with every word C the cyclic
permuted words Cj;, and their inverses Cg'. Thus, if C=ab 'ab, then the
equivalence class of C with respect to ¢’ contains precisely the words ab ™~ 'ab,
b~'aba,abab™',bab 'a,b 'a 'ba ',a b 'a 'bba b 'a ',a" 'ba ‘b .
Let w,=%/¢'

To every element of #, we are going to construct an indecomposable module,
called a module of the first kind. Namely, let C=1,...I, be a word of length n.
Let M(C) be given by a K-vector space of dimension n + 1, say with base z,, ..., z,
on which a and b operate according to the following schema

Kzo«“Kz, ¢* Kz,.. Kz, <> Kz, .
For example, if C=ab™ 'aba™', we have the following schema
Kzo+ Kz, 2+ Kz, «® Kz, b Kz, 45 Kz, ,

(note that we have to adjust the direction of the arrows according to whether the
letter I; is equal to a or a™ !, or to b or b~ '), and this indicates how the base vectors
z; are mapped into each other or into zero. Namely, z, goes under a onto Zgs
and under b onto z,, z, goes under a onto z,, and so on. If no condition is specified,
then the base vector goes to zero, thus z,, z,, and Z5 go to zero both under a and b,
whereas z; goes to zero under b, only. In this way, we get an R-module, and it is
obvious, that M(C) and M(C™ 1) are isomorphic, [or equal, since M(C) is only
defined up to isomorphism].

Next, we construct the modules of the second kind. Let ¢ be an automorphism
of the (finite dimensional) K-vector space V. Also, let C be a word in %, say

n—1
C=1,...I,. Let M(C, ¢) be given as a vector space by M(C, @)= P V,with ¥,=V

i=0
on which a and b operate according to the following schema

=g L h=id In-1=id
Vo ¢ Vi « Vz---Vn—z‘__“"‘/'Vn—l-

I,=id
For example, if C=ab~!ab, we have the schema

= b=id =i
Vo a=g V1 i Vz a=id V3

b=id

which shows that V, = Vis mapped under b identically onto V,=
that ¥ =V is mapped under a identicall
mapped under a onto Vo=
is specified, the elements
into zero. In this way,

V, and similarly,
y onto ¥, =V. On the other hand, V, is

V by the isomorphism ¢. Again, where no condition
g0 to zero, thus, for example, V, is mapped under b
we get an R-module. If (V, ) and (V' ) are isomorphic as
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vectorspaces with automorphisms (as K[T, T~ !]-modules), the R-modules
M(C, ¢) and M(C. ) are isomorphic, for fixed C. Also, it is easy to see that for
two words C and D of #” which are equivalent with respect to ¢, and fixed ¢,
the modules M(C, ¢) and M(D, ¢) are isomorphic.

Theorem. The modules M(C) with C in #" and the modules M(C, ¢) with C
in %" and ¢ an indecomposable automorphism of a vector space, furnish a complete
list of the indecomposable objects in M. No module of the first kind is isomorphic
to a module of the second kind. The modules M(C) and M(D) of the first kind are
isomorphic if and only if C and D belong to the same equivalence class with respect
to ¢, the modules M(C, @) and M(D, y) of the second kind are isomorphic if and
only if C and D belong to the same equivalence class with respect to ¢', and ¢ and
are isomorphic as automorphisms of vectorspaces.

As a consequence, the number of isomorphism classes of indecomposable
R-modules of given dimension d is as follows: if d is odd, there are precisely
2471 classes, whereas, if d is even and K is infinite, the number of classes is equal
to the cardinality of K.

2. Reminder on Relations

A relation on a vectorspace V is a subspace C of ¥ x V. For example, ifa: VoV
is an endomorphism, then we may consider a as the relation {(x,ax)|xeV}.
If C is a relation on V, then C™! is given by {(x, y)}(y, x)e C}. Also, if C and D
are relations on V, then CD={(x, z)/(x,y)e D and (y, z)e C for some ye V).
If x is an element of ¥, and C a relation on V, we write Cx for {y € V|(x, y)e C},
and similarly, for a subset U of V, let CU = {ye V| there is x € U with (x, y)e C}.

We will use only relations which are of the form C=1,...I, where |, or [}
is a mapping V—V. Note that in this case the definitions mentioned above

coincide with the usual ones.
If C is a relation on V, let C’'=( ) C"0, (“the stable kernel” of C~!) and let

C"= [} C"V (“the stable range” of C). Then there is the following important
result."

Lemma. If C is a relation on V, there are subspaces U and W of V such that
V=U®@W, and C=[Cn(UxU)]®[CA(W x W)], with C\(U x U) the graph
of an automorphism of U, and C'®U = C”.

The lemma can easily be derived from the well-known classification of normal
forms of relations on vector spaces.

Corollary. If C is a relation on V, then C induces on C’/C' an automorphism
@ with (x + C')=(CxnC"V+ C, for xe C".

The relation ¢ on C"/C' is called the regular part of C, and the lemma asserts
that the regular part of a relation splits off,

Corollary. If C is a relation on V, and C' @ U = C" with C~(U x U) the graph
of an automorphism of U, then also (C"'Y@®U=(C™ 'Y, and [C'+(C~YY]@U
=C"+(C1y.

i
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Let us mention at the end a rather useful (but trivial) result.

Lemma. Let a:V—V be an endomorphism with a*=0. Let U, CU,CV be
subspaces. Then

dimU,/U, 2dimaU,/aVU, +dima™'U,/a" ' U, .

Proof. The multiplication by a defines isomorphisms
a”'Uyfa™ U, »[(U,naV) + U /Uy,
Uy/LUyn(a™ '0 + U)]—aU,/al, .

and

On the other hand, we have the following inclusions:

Ui S(U;naV)+ U, SUyna™ 0+ Uy ) U, .

3. The Functors Involved in the Proof

We want to apply the following lemma in order to prove the main theorem.

Lemma. Let I be an index set. Let M and Wi(ieI) be abelian categories, and
let S;: ;=M and F,: M-, (ie 1) be additive functors such that
(i) F;S;~idy, and F§;=0, fori%jin I
(1) The set {F,liel} is locally finite and reflects isomorphisms.
(i) For every M in M and every i€ l, there is a map vy, : S;F(M)— M such
that F(y; ) is an isomorphism.
Then the indecomposable objects inM are of the form S,(A) with A indecomposable

in W, all those objects are indecomposable, and S,(A) and S;(B) are isomorphic
if and only if i=j and A is isomorphic to B in ..

Here, the set {F} is called locally finite, provided for every M in IR there is
only a finite number of indices i with F(M) =+ 0. And it is said to reflect isomorphisms

provided every map « in 9 for which F(«) is an isomorphism for all i e I, is itself
an isomorphism,

Proof. Since {F,} is locally finite, the sum (D S:F(M) exists, and we get a
I

map (y; v);: ®S;Fi(M)— M, which becomes an isomorphism under all the
functors F, by the second part of (i) and (iii). By (ii), M is isomorphic to @D S F(M).

Now it is easy to see that the functor (F)  M->] AU, is a representation
equivalence. Namely, by assumption, it reflects isomorphism. By (1), every object

of the target category is isomorphic to an image under this functor, and the
functor is full using (i) and the first part of the proof.

Let us describe the situation where we want to
moment, we will consider an index set which is far too big, so that the second
condition of (i) is not satisfied. Then, in the last section, we will select an appropriate
subset. Now, take as index set the disjoint union of #” and the set of all pairs
(C, D) of words in %" such that C~ 'Dis again a word. We have defined the product

of two words only in cases where both words have non-zero length. In addition,
we define products with 1, and Iy as follows: let {,a=g, l,a'=a! bi,=b,

apply the lemma. For the
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b="1,=b"", and similarly for longer words. In the same way, 1, shall be right
unit for words with last letter a*, and left unit for words with first letter b*.

If C,D,C'D are words, then let U p= kI, the category of all finite dimen-
sional K-vector spaces. If C is in #7, let e = k7.7, that is, the category
of all K[T, T 'J-modules which are finite-dimensional as K-vector spaces,
or, equivalently, the category of automorphisms of finite dimensional K-vector
spaces.

Again, if C, D, C™' D are words, define the functor Se.p: U p—=Mby S¢ p(xK)
= M(C~'D). Thus, for an arbitrary (finite dimensional) vector space V¥, we have

Sc.o(V)= @ V; with ¥, =V, on which a and b act according to the schema

i=1

Vo VLY, Ly

where C™'D=1,...I,. And, if C is in %", let Sc(V, @)= M(C, @), where ¢ is an
automorphism of the vector space V.

Our next goal is to describe several functors 9} — kM. Recall that the set
of all such functors is an abelian category, and that, moreover, it is (partially)
ordered by F < G iff F(M)C G(M) for all M in M.

The two letters @ and b will be called the direct letters, whereas the letters g~ !
and 7! are said to be inverse. If C is a word, there is precisely one direct letter d
such that Cd is again a word. Let C™ (M) = CdM and C*(M)=Cd '0,,, for M
in M. In this way, we define two functors from M into .

Lemma. Let d be a letter and C, D, CdD be words. Then we have the following
relation

CdD™ £CdDT<C™ <C*LCd™'D™ £Cd™'D*.

Proof. Let e be the direct letter with De a word. We have for every M in M,
eMC e 10y, and dM Cd™10,,, since both a and b operate on M with a? =0 = b2,
This gives the first, the third and the last inclusion. But obviously, CdD* (M)
=CdDe '0,,C CdM=C" (M), and C'(M)=Cd™'0,,CCd™'DeM=Cd™ D™ (M),
which gives the two remaining inclusions.

Also, consider an element C of %", Note that for every M in IR, we have the
following inclusions

COy < C2 0y C - CCM0, < SC'MS - CCPMCCM,

thus we also have

CM)= ) C0,CC'(M)= [ C"M,
and obviously, C’ and C” are again functors from M into  IN.

Denote by W, the subset of #° which contains 1, and all words with first
letter of the form a*. Similarly, we may define #;, thus #" is the disjoint union
of #; and ;. Also, let W, = #,A %" and W} = ¥, #".

Let “Ii/a be the set of all functors M — kM, which are either of the form
D* + C7)nC* or (D™ +C7)nC* with C in #, and D in #,, or which are
of the form C' or ¢” with C in w,.
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Now 117,, is an ordered set, and we will show that it even is a chain. Given an
arbitrary ordered set T, an intervall [t,,t,] is given bei two elements ty,t,in T
such that t, <t,. Also, two intervalls [¢,,t,] and [t5,t,] are said to avoid each
other, provided either 1, <t, or else 1, <t¢,.

Proposition. The ordered set “/f/a is a chain, and all the intervalls [(D~ + C™)nC™,
(DT +C7)NC*] with Ce W, and De #,, and [C, C"] with Ce #. avoid each
other,

Proof. Define an order relation on #, by C <D provided either C = DdE,
or D=Cd™'E, or C=C,dE, and D= C,d"'E, for suitable words C.EE,E,
and a direct letter d. Obviously, # becomes a chain, and the previous lemma shows
that C< D in # implies C* <D~ in the set # of all functors. Thus, for C+ D
in ¥, the intervalls [C~,C*] and [D~, D*] avoid each other in %,

Also, if Ce # and D € #,, then one of the following two possibilities occurs.

Either D < C" for large n, then D* < C'. Namely, if C"=Dd"'E for some direct
letter d and some word E, then

D*(M)=Dd"'0,,S Dd~'EO,, = C"0,,< C'(M).
M

Otherwise D=D,dE, and C"=D,d"'E, for suitable words D,E.E, and a
direct letter d, and using the previous case, we have D* <D} < C'. The second
possibility is that C" <D for large n. Then we have C"<D” in #. Namely, if
C" = DdE for some word E and a direct letter d, then

C'M)SC"M =DdEMCDAM =D~ (M),

and otherwise C"=D,dE, and D =D,d"'E, implies C"<D; £D". As a con-
sequence, the intervalls [D~, D*] with De %, and the intervalls [C, C"] with
Ce %, avoid each other. Also, it follows that the intervalls [C', C"] and [D/, D]
with C and D in % avoid each other.

In order to prove the proposition, it is enough to show the second part. Now,
the intervall [(D~ 4+ C™)nC*, (D* +C)NC*] with Ce #, and De ¥, lies
inside the intervall [C~, C*], thus it avoids all the intervalls of the form [E', E"]
with E€ #7, and also all intervalls of the form [(Df +Cy)NCT, (D} +C7)n Cr]
with C+ C,. In the case where C=C 1, but D+ D,, we use again the previous
lemma, this time for the proof that the intervalls [D,D"] and [D], D} ] avoid
each other. N

As a consequence, ¥, induces a filtration #,(M) on every module M, given
by the set of subspaces F(M), with F e ¥,. We will see later that the intervalls
(D~ +CINCH, (DT +C7)nC*] and [C.C"] (which will be called the
elementary intervalls) also cover #,. That means that for every M in 9%, and
every O+ x in M, there is one elementary intervall [F, G] such that xe G(M)
but x ¢ F(M).

Now we come back to our previous considerations. We have defined the
categories AU ,, (for C,D,C™'D words) and A, (for Ce '), and also functors
Sc.p and Sg. respectively. It remains to define functors F, , and F.

If C.D.C™'D are words, define FC.D=(C+r\D+)/[(C"+nD‘)+(C‘nD*)].
Thus, F; , does not depend on the order of the pair C,D. On the other hand,

£l

|

Fe b,sﬂ?fi
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Fc p is isomorphic to the functor [(D* 4+ C™)nC* /(D™ +CINCT). If we
consider F¢ , as a factor in the filtration %, we will tacitly assume that we have
replaced Fc, by the functor [(D* +C )nC*]/[D” +C7)NC"], where C
belongs to #/, (note that always just one of the words C and D belongs to #)).

Lemma. Let E be a fixed word. The functors Fc p with C"'D=E are all
isomorphic,

Proof. It is enough to show that for E = C~'ID, with [ a letter and C, D words,
the functors F, ,, and F,. . , are isomorphic. Also, since Fec1p=Fp¢, and so on,
Wwe may assume that / is a direct letter, say [ =a. Now it is easily checked that the
multiplication by a defines a vector space 1somorphism

[@™ D" +C)NCI(M) _ [(D* +aC )naC*](M)
[(@ D™ +C)nC*I(M)  [(D” +aC )naC* (M)’

which is natural in M.

Finally, let C be an element of #”. If we consider C as a relation on M, we
know that C induces on C'(M)/C'(M) an automorphism, denoted by ¢ .
Let Fo(M)=((C"/C’)(M), @c,y), $0 this is really an object in .= g7 r-1 .

Lemma. Let Ce . The functors Fc and F¢  are isomorphic. Also, dim F(M)
=dim F,_.(M).

Proof. Let C=1,...1, with letters [, and let Vi=(Cy)"(Cy)) (M). Now, if
liisdirect, then it is easily seen that the multiplication by /; induces an epimorphism
Vic1+=V. And, if I, is inverse, then the multiplication by /7! induces a mono-
morphism ¥,_, - ¥;. Thus, in both cases we have dim¥,_, < dim ¥, and

dim¥, <dimV,...dimV,_, <dim¥V,

shows that all dimensions are equal, and that in both cases the multiplication
by the direct letter I, or I; !, respectively, is an isomorphism. Therefore, the vector-
Spaces V; and the corresponding maps satisfy the schema

O R R

In

and the map @c.m 1 given by I,...1, that is, by going once around the circle,
Counter-clockwise. Note, that the maps @, M ATE CONjugate to @c y.

The last assertion of the lemma is again a statement about the regular part
of a relation,

4. The Modules of the First Kind

The first lemma deals both with the modules of the first and of the second
kind.

Let M be a module of the form M(C) or M(C, ¢) defined in the first section.
Then M has a canonical vector-space decomposition M =@V, with ¥, =Kz,
In the case M = M(C). The elements of M which belong to one of the Vs are called

4
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homogeneous. Note that both @ and b map homogeneous elements in homogeneous

clements. A subspace U of M is said to be homogeneous, provided U can be
generated by homogeneous elements.

Lemma. If U is a homogeneous subspace of M, and D is a word, then DU is
again a homogeneous subspace.

Proof. It is enough to show it for a letter D=1 If U is homogeneous, then
U=ZU, with U;=UnV,. Therefore, we may assume that U is contained in
one of the V. If [ is direct, say I =a, then aU C aV,, and aV, is either zero or is just
one of the V’s. Thus, aU contains only homogeneous elements in this case. If /
is inverse, say I=a" ', then either there is some V. such that a maps V; onto V,.
Then take a subspace U’ of V,withaU' = U, and it follows thata™ ' U = U’ + 4" '0.
OrelseaMnV;=0,andthena™' U =a~'0.Since obviously a~ ' 0isa homogeneous

subspace, it follows in both cases that a™ ' U is homogeneous.

Lemma. Let C, D be words, such that also C™*D is a word. Let C be of length i.
Then K z; embeds naturally into F. ,(M(C™'D)).

Proof. Let M=M(C™'D), and K;= Kz, Let d be the direct letter with Dd
a word.

First, we will show that K;~ D~ (M) = 0. This will be done by induction on the
length j of D. If j=0, then D=1, thus D~ (M) =dM. and obviously, X, is not
contained in dM. Now let | be a letter and E a word with D = [E. The induction
hypothesis implies K;,,nE~(M)=0. First, consider the case where [ is direct,
say D=aE, thus K;=aK,,,. Assume K;CD (M)=aEdM, thus K, SEdM
+a~'0. Since EAM and a” '0 both are homogeneous, either K;+, a0, which
is nonsense, or else K;,; € EdM, which contradicts the induction hypothesis.
Next, consider the case where I is inverse, say D=qa"'E, thus K, =akK,. If
K;CD™(M)=a"'EdM, then K,.,=aK,;C EdM, again a contradiction to the
induction hypothesis.

Since D™ (M) is homogeneous, it follows that D~ (M) is contained in P K.

k*i

Similarly, also K;~C~(M)=0, and therefore also C " (M) is contained in (P K,.

k*i

As a consequence, Kin[(CTAD7)+(C- NDT](M)=0. On the other hand,

it is obvious that K, is contained in (C*nD*) (M), and both assertions together
define the embedding of K, into

Fe,o(M)=(C"nD™)(M)/(C* AD™)+(C” nD*}](M).

Corollary. Let M = M(E) for some word E. If C,D, and C™'D are words,
then the functor F, , takes on M the following value

a) Fe p(M)=Kz, if C"'D=E and the length of C is i.
b) Fe p,(M)=0, if both C'D+Eand D 'C+E.

For Cin %", we have
¢) Fe(M)=0.

 Progf. The vector spaces F¢ ,(M) and F.(M) may be considered as factors
in thc? filtration #(M). Namely, for C in %7 we may assume that C belongs to
#,. since F(M) and F¢- (M) have the same dimension.
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Let E be of length n, thus M is of dimension n + 1. Also, there are n+ 1 pairs
(C, D) with E=C"~'D. By the previous lemma, the factors Fe p(M)with C"'D=E
are non-zero, thus they are just one-dimensional, and all the other factors of the
filtration ﬂ:(M) have to be zero.

Proposition. For every module M in I, there is an R-linear mapping
YoM Sc pfe MV M such that Fe p(v¢ p a) is an isomorphism.

Proof. Given xe(C" nD" )(M), there is an R-linear mappingy: M(C ™' D)= M,
such that 7(z;) = x, where i is the length of C. Let U be a complement of [(C* nD ")
+(C"AD"](M) in (C*ND*)(M), and let m be the dimension of U. Note that
U=Fc p(M), and that S. ,(U)= “P M(C 'D). Using a basis of U, we get an

R-linear mapping -5 M(C ~ ' D}— M such that D Kz; is mapped onto U.

5. The Modules of the Second Kind

Given a word C=1,...1, in #", there are defined the cyclic permuted words
C(O' = C, C(l)= 12...1"11, ey C(n_ 1) = Illll .-.ln# 1 The Clements C“) and C(:)l With
0<i<n—{ form an equivalence class with respect to ¢'.

Lemma. The words Cyg). ..., Coy_1)» Colr .- Ciu 1, are pairwise different.

Proof. 1If C = C 4, coincides with some C;;), i # 0, then C is a non-trivial power
of some shorter word in #°, impossible. So assume C = Cy forsomei IfC=1,...1,,
then Co'=17' 7Y ;.15 Since I7'=1,, either both elements /, and I,
are of the form a* or both are of the form b*. Thus i is odd, say i = 2j + 1. But the
(/+ 1)>th letter of Cj,' is I, thus I7) =1, ,, impossible.

Recall that we have introduced an ordering on #". In particular, for two words
C, D of the same length, we have C < D iff C = C,dE, and D= C,d™'E, for some
direct letter d and words C,, E,, E,. Now, the word C in %~ will be called minimal
provided it belongs to #; and we have C < C,, and C < C,' for all i #0,j such
that C and C(},1 belong to % . By the previous lemma, every equivalence class
In %" with respect to ¢' contains a (uniquely determined) minimal element.

Lemma. Ler C be a minimal element in W', and let ¢ be an automorphism
of some vector space V. Let M = M(C, @). Then C0,,=0,.
n—1
Proof. By definition, M= D) ¥, with V;=V. Let V,=V, for i=j(n). Let
i=0
C=1, ..ly. If I;= a*, then the sequence i,i—1,i—2, ... is called the a-neighbour
S¢quence of i, and i—~1,i,i+1,... is called the g-neighbor sequence of i—1. In
this way, we define for every i its a-neighbour sequence. (It corresponds to a
walk around the schema, starting at the point i and with direction a*.)
First we show the following. If D=e,...e, is in ¥,, iy=1i,i,,1i,,... is the
a-neighbor sequence of i, and if D(x) =0 for some x € V,, then there are elements
Xy, € Vi, such that x; =x, x;,=0,and x; € e,x; . The proof follows by induction

ix k-1

On m. Namely, if m= 1, then there has nothing to be shown. If m> 1, then let



28 C. M. Ringel

E=e,...e,, and choose an element y such that xe d, y and VEEO, . Ife, =a™!,
n—-1

then y = ax belongs to V, , so take x; =y. If ¢, = a, decompose y = Yy, into its
j=0

homogeneous components. Thus, x=ay =X ay; implies x =ay, . On the other

hand, with y also y; belongs to EO,,, since EQ,, 1s homogeneous. So, take in this

case x; =y;,. Now we can apply induction on the word E (which belong to #,)

and the b-neighbor sequence i,, i, ... of i,.

We know that C0,, is homogeneous. Thus, let x e COynV, for some i. First,
consider the case i+0. Let iy =1i,i,,i,,... be the a-neighbor sequence for i. Let
E=e,...e, be equal cither to C, or to Cy' whatever word belongs to ¥ .. Note
that e,: V, _, «V, is an isomorphism, for all k. Now compare E with C, say let
er=l,...e;_;=1,_, but ¢;*1;. Since C <E, this implies that l; is direct, and
e;=17". Note that therefore Vi,=LV,.,. Now by the first part of the proof,
there is a sequence of elements x, € V.. such that x, = x, and x,_, € I, x, (we apply
this part for D = C). But then Xj-1=Ilx;, and x; € Vi,=1;V,,_, together show that
x;_1 € ;M =0. But this then implies that all the elements X, With 0 Sk <j— 1,
satisfy x, =0.

The case i =0 is even easier. This time, the a-neighbor sequence is just 0, 1, 2, ...,
and because of x € C0,,, the first part of the proof gives us again a sequence of
elements x,e W, with x,=x, x,_, € Lxy, and x,=0,,. But since the maps
I Vi 1<V, all are isomorphisms, it follows that all the elements x;, =0.

Corollary. Let M = M(C, ¢) for some C in ' and some automorphism ¢
of a vector space V. If De W, then the functor Fy, takes on M the following value

a) Fp(My=(V,, ), if D= C;, for some i,

b) Fp(M)=0, if D is neither of the form Cyy nor of the form C,' for some i.

If D, E, and D™ 'E are words, then

¢) Fp,s(M)=0.

Proof. Assume the length of C is 2n and that C is minimal. Obviously,
Vo € C"(M). Since CO,, =0,,, it follows that C’'(M)=0, thus, ¥, can be embedded
into (C"/C')(M). The functors Fe2iv1) and Fc,,(0£i<n—1) define pairwise
different factors in the filtration W, and all are of equal dimension, thus it follows
that ¥, =(C"/C')(M). Of course, the induced automorphism is just ¢. Also it
can easily be seen that V, is a complement to (Cw) (M) in (Cy;))" (M). The other
factors in the filtration %;(M) have to be zero, this then proves (b) and (c)

Proposition. For every module M in M, there is an R-linear mapping
Youm : ScFe(M)— M such that Fc(yc,m) is an isomorphism. Here, C is a word in W'

Proof. Consider C as a relation on M. We know that there is a subspace U
such that C'(M)® U = C"(M), and, moreover, C induces an automorphism
@cm on U. Thus, if x,,...,x,, is a basis of U, then Cx;nU contains precisely
one clement, namely ¢¢ ) (x). Let C=1,...1, and choose elements x{¥e M such
that x{" = x;, x*~ e I,(x(*) and x{¥ = ®c,m(x;). This then defines a mapping from
ScFc(M) into M. Namely, F.(M) can be identified with (U, ¢c.y) and we map U,
identically onto U, and we map the base elements x; of U, = U onto x{¥. Tt follows,
that this map is R-linear and that it goes, under F, onto an isomorphism.
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6. The Elementary Intervalls Cover #/,

In this section, we will also consider infinite words in our letters a,a™ ', b, b~ L,
An infinite word [,1,... is given by a sequence [, [, ... of letters with the same
restriction as for finite words, namely that [;=a implies /,,, =b, and that [,=b
implies I;,,=a. If A=1l,... is an infinite word, denote by Ay, =101,...1, its
finite part of length n. For example, if C belongs to %~ and has length m, we may
form the infinite word C* with (C*)y,,; = C* Infinite words of this form will be
called periodic. As in the case of a periodic word, we consider for arbitrary infinite
words A the following inclusions

A[;]OM < AmOM C & A[n]OMg SR e A[;.]M g g A[l]M s
so again we may define functors A" and 4" from M into M

A’(M) = U A[”]OM g ﬂ A["]M = A”(M) f

Thus, for Ce #”, we have C'=(C®) and C" =(C™)". Denote by #.® the set of
infinite words with first letter a*.

Lemma. Let M be a module, and 0% x € M. Then there is either some Ce ¥,
with xe C* (M) and x ¢ C~ (M), or there is some infinite word Ae W such that
xe A"(M)and x ¢ A'(M).

Proof. Recall again that for two words C, D of #,, of equal length, we write
C < D provided there is a direct letter d and words C,,E,, E, with C=C,dE,
and D=C,dE,. Let A}, be the smallest word with respect to this ordering of
length n such that x e 4, M. Let d be direct with Apyd a word. If xe A,,dM,
then let Ay, ;= Ap,d, otherwise, let A, ;= Ay, d”". It is easy to see that A, ,
is the smallest word of length n+ 1 with x € A,, ;M. In this way, we construct
an infinite word 4 in #;°, and we have x € 4”"(M). Now, assume x lies also in
A'(M)=|JA,,0y. Let n be minimal with x € Ay, 41,0y, and let Ay, ;3= Apylpsr-
Obviously, I, ., has to be inverse, since otherwise also x € 4;,;0,,. Thus, the direct
letter d with A, d a word satisfies x € A,d~ ' 0, = A{(M). Since A,y ;= Apd ™",
it follows from the construction of A, that x ¢ ApydM = Ay (M),

It remains to be shown that only the intervalls [4’, 4] with A a periodic
word, are of importance.

Lemma. Let A be an infinite word, and A’ + A”. Then A is periodic.

Proof. Note that we can order the set #°® by the rule 4 < B provided there
is a direct letter d such that A,;= B}, A+ ;= A4,d and By, , ;= Bj,;d " (This is
just the extension of the ordering of #” to infinite words.) Then %" is the disjoint
union of two chains. namely of #;° and #,°. Also, it is easy to see that A< B
implies that 4A'< A" < B <B" as functors. Thus, the intervalls [A’, 4”] with
Ae #;° all avoid each other, and similarly, for #;°.

Now, let 4 be an infinite word, and M a module with A'(M)+ A"(M). Let 7
be the set of all infinite words B with B'(M)#+ B"(M) for this particular module M.
Now M is finite dimensional,and the factors B”(M)/B'{M) belong to two filtrations
of M, thus the number of factors B"(M)/B'(M)#+0 is finite. Therefore, also 7
is a finite set.
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Next, if we write 4 = A;,; A" with an infinite word A", then also A" belongs
to 7. Since 7 is finite, we conclude that A™ = 4™ for some n 4 m, and therefore
A=A}, C* with C a finite word, Ce #". Let I be the last letter of C. Since C is of
even length, the last letter of Ay 18 either [ or 17!, Now, if we assume that n is
minimal, then either n=0 and A4 is periodic, or otherwise the last letter of Ap has
to be I”'. We want to show that the latter leads to a contradiction. With C” also
[C* belongs to 7, so assume, both IC® and [ ' C* belong to 7. On the one hand,
we have the inequality, for all &,

dim C*M/C*0y, = dim IC*M/IC*0y, + dim I~ C*M/I= 1 Cr0,, ,

since [ is a letter, and both a and b act on M with g2 = b? =0. On the other hand,
IC*=C{,_ ), where Cin-1) 18 the (n—1)-th cyclic permuted word to C. Thus,
for large &,

dim C*M/C*0,, =dimIC*M/IC*0),, ,

and therefore, for large k, 1" 'CkM =1 ~1C*0y. This shows that I~ 'C* does not
belong to 7.

Proposition. The intervalls [(D~ +C™)nC*,(D* +C" )INC™] with Ce W,
and D& W), and the intervalls [C, C"1 with Ce W, together cover W.,.

Proof. We only have to show that the intervall [C™,C*] with Ce ¥, is
covered by the intervalls of the first kind. Since W), is covered by the intervalls
[D™,D"] with De %} and [E', E"] with Ee #,, we only have to show that

(E'+C7)nC* =(E"+CT)nC*,

for Ce #, and Ec ;. Using again the fact that the regular part of a relation
splits off, we know that there is a subspace U with (E' +(E™ ') )@ U =E" + (E~1Yy.
Now E ™! belongs to #7, so we know that either C* C(E™'Y or that (E~!y'cC™.
In both cases, the equality follows immediately.

7. Completion of the Proof

We have used throughout the previous sections as index set the disjoint union
of #” and the set of all pairs C, D such that C, D,C™'D are words. It remains to
select an appropriate subset I such that the functors S, Fi(ie I) then satisfy the
conditions of the first lemma in Section 3.

Given a word E, then the functors Fep with C"'D=E or with D-'C=F
are all equivalent, thus we will use just one of those. That is, for every equivalence
class E. E ‘ ‘. with respect to g, we select one of the words, say E = { +F, and some
decomposition, say 1,- E. To be more precise, call E principal, provided either E
has even length and belongs to W, or E has odd length, say E= E 1 LE,, with words
E, and E, of equal length, and a letter I, and its middle letter / is direct. Let I

be the disjo_int union of the principal words in %", and the minimal words in %

IfEisa _prmcip_al word, then let the corresponding functor F, be given by F, .,

ctter such that dE is not a word. Now, it follows easily, that

all conditions of the first lemma in Section 3 are satisfied.
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8. Appendix. Calculation of 2 and Q°

Let S be a quasi-Frobenius ring. If (M is indecomposable and not projective,

choose a projective cover ¢: P— (M, and let QM =kere. In this way, we get a
bijective mapping € from the set of isomorphism classes of non-projective inde-
composable S-modules into itself. It is well known that the mapping Q7 is of
particular interest.

Fix a natural number ¢ > 1. Let S =S(q)= K(X, Y /(X% Y% (X Yy —(YX)),
and denote the canonical images of X and Y in § by a and b, respectively. Then §
is a quasi-Frobenius ring, and the category ¢ is a full exact subcategory of M.
Let #7(q) be the set of all words in ¥~ which don’t contain (ab)?, (ba)! or their
inverses; similarly, let #”(q) be the set of all words C in #” such that no power
C" of C contains any of the words (ab)?, (ba) or their inverses. Obviously, the
indecomposable S-modules are S = M((ab)? (ab)™4,id), where id is the identity
automorphism on the vector space xK, and the modules of the first kind M(C)
with Ce #/(q), and the modules of the second kind M(C, ¢) with Ce #,(q)
and ¢ an indecomposable automorphism of some vector space.

Define on #7°(q) a set-theoretical mapping ¢ as follows. First, denote
A=(aby""'qa, B=(bha)*" ' b. For the words A, B, AB™" let

¢(A)=A4, ¢B)=B, ¢AB ")=4"'B.

Since we want to have that ¢ commutes with forming inverses, this also defines
the value of ¢ on 47!, B~* and BA ™ !. The other words C € #"(g) will be changed
by ¢ in two ways, namely by a change on the left side, and one on the right side:
If C starts with Ab~! of Ba™ !, then we cancel this part, otherwise, we multiply
from the left either by A~ 'b or B™'a, whatever gives a word. Similarly, if C
ends in aB~ ! or bA ™", this part of the word is cancelled under ¢, and otherwise
@ 'Bor b~'4 is added on the right. For example, consider the word C=Ab™"
+Ab~'aba™'. If g> 1, then ¢(C)=Ab 'aba'b™'A, whereas for g=1, $(C)
=Ab"la.

Since ¢ commutes with forming inverses, it induces a mapping on ¥/ (g).
It is easy to determine the orbits of {¢*; z€Z} on #(q). Namely, the fixpoints
are just the elements 4, and B. All the other orbits have infinite length, and there
are infinitely many such orbits.

Theorem. Let g > 1 be a natural number. Then

QZM(C)tM(d)(C)) for Ce¥{q),
QzM(C,QD):M(C»GD) for Ce¥'(g), COEK[T,T-I]W-

Proof. Given a word Ce ¥/, its generation form is given by C=C,C; !
C3C,1...Cy, - C3), where all letters in C; are direct (1 i< 2g), and such that
ICil=2 1 for 1 <i<2g (note that C; and C,, may be equal to 1, or 1,). In this
case, g is called the generating number of C.

IfC=C,C;"'...C5} is in generation form, then we denote by K(C) the word
K(C)=D{'D,D3"...D,,, where again all letters in the D;’s are direct, and such
that, moreover, D, C; is a word and of length 24. It is easy to see that K(C) exists and
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is uniquely determined. Namely, given C, define the words D; consisting of glir_ect
letters by the property that D,C; is a word of length 2g. Then D{ ! can be multiplied
from the right by D,, since C,C; !, C,D, and C,D, are words. Similarly, D,D;!
is a word, and so on, therefore, K(C) exists.

Lemma. Let C be a word in W'(q), and let ¢, d be the direct letters, such that
cCd™'isin #. Then QM(C)= M(K(cCd™ ).

Proof. Let C=C,C;'...C;} be the generation form of C. Consider the

free module (P = C’—B 8%, where S = (S is given by the following diagramm
i=1

Kg) a K(;‘) b K(Zi) e .. b K;i)_1

with K = K for all i, j. Also, let j; be the length of the word C,...C,,_,(i=1, ..., g),
thus M(C) has the form

c C C c
Voe—re=V, 2By ... V. =%,y
Ji b2 Jg "

Define a map P—M(C) by mapping Ky, =K identically onto V., =K for
1 SiZg. It is easy to see that the kernel is just M(K(cCd™ 1)),

Corollary. For C in #'(g), 2*M(C) = M(a(C)).

Proof. We may assume that the first letter of C is a*, If C = A, then K(bAb™ 1)
=(1,)"" A =4, thus QM(4) = M(4). If C= AB~", then K(bAB g 1y=(1,)"" 1,
=1, and K(b-1,-a"")=A !B, thus Q’M(AB™)=M(A"'B). So assume
C+ A AB 1,

LetC,C; "...C3, bethe generation form of C, then (bC)C31..Chy 1 (AT, )7
is the generation form of hCd~!. Let K(bCd YY=D; 'D,...D,,.

If|Cy]=2q 1, then C starts with 4b~'. In this case, let C,= E,b. Note that
ID,|=0, thus D=D,D; '...D,,. Since the last letter of C, is b, the first letter of
D,C, is q, thus we have to consider K{bDe™ "), for the suitable direct letter e.
Now (bD,) D; ... is the left hand side of the generation form of bDe™!. Since
D,C,=D,E,bis a word and of length 24, also E,(bD,)= (E;b) D, is a word and
of length 2q. Thus, the left hand side of K(bDe™ ") is just E;1C,..., and by
definition, this is the left hand side of ¢(C).

Next, let |C,| <2g ~ 1. Then ID,}*0. Since D,bC, is a word, D11 starts with
a” ', and therefore we have to consider K(bDe™ '), for some direct letter e. Note
that now b-D;'D,... is the left hand side of the generation form of bDe 1.
Therefore, K(bDe™"Y=E;'E,E;"... where Eob, E\D,E,D,, ... are words of
length 2¢ and consist only of direct letters. As a consequence, Eg=A, E, =bC,,

E,=C,, and so on. This shows, that K(bDe™ ) is equal, on the left side, to
AT'BC,C5
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We have shown that Q*M(C)= M(E), where E coincides, on the left, with
¢(C). By symmetry, the same is true on the right.

Lemma. Let Ce ¥7'(q) with first letter direct, and last letter inverse. Let g
be the generating number of C. Then for any @€ grr-yM, QM(C, @)
=M(K(O).(—1F o)

Proof. Let ¢ be automorphism of the vector space ¥, and dim V' =m. Again,

g
we have to construct a free module P= () P, with P = §" free of rank n, given
i=1
in a similar way as in the previous lemma, namely

u/(;i) a m(i) b VVZ(I') a b I/Vq(i)i

N /

() . a L P S
PVZq—l pVZq—Z

where all W = V, and all maps are given by the identity map on V.
Let C=C,C;'...C;,}! be the generation form of C. Let j; be the length of
the word C,...C,,_,, and k; the length of C,...C;}. Then, M(C, ¢) has the form

where all arrows, except the first one VoV, give the identity map on V, whereas
YoV, is given by o.

Define a mapping (P-% M(C, @) by the following condition: For odd i, map
"",}91 =V by the identity map id onto V,» whereas, for even i, map Wq('_’ ; onto V;,
by —id. The kernel of this map can be constructed in the following way. Consider
the modules M(D{'D,), M(D;'D,), ..., M(D;;}_ D, ,), where K(C)=D7"'...D,,.
We want to identify the vectorspaces belonging to consecutive end points, in
order to get a module of the form M (K(C), y) for some y. Now, for every i with
I Si<g, there are given two indices v, v with 1 < u, v<2g— 1 and maps W9
and Wiitt V.. which are restrictions of &. One of these maps is id, the other one
I8 ~id, and the kernel of both together identifies two of those vector spaces.
[norder to identify the first vector space of M(D; ' D,)and the last of M(D3,_, D, ),
We use the two maps W9 -V, and WY -V, which are restrictions of ¢, again
for some u, v. The first of these maps is of the form (—id)? ', the second is of the
form ¢. Thus, the kernel of the combined map W9 @ WY 1, is just the graph of
the map (~1)? . Thus, we have constructed to the word K(C) a sequence of
vectorspaces and maps which give a module M(K(C), y). The only map which
1:S not the identity, is (— 1)? ¢ and is induced by the first letter of D. Since this is an
Inverse letter, we see that p =(—1)? ¢ ..

This concludes the proof of the lemma, and this obviously implies Q*M(C, ¢)
=M(C, ).
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