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Let K be a commutative field. Let § = (F;, ;M,)i<i ;<o be 2 K-species,
connected and without oriented cycles. (That is, for all 4, 7, ;M is an F-F;-
bimodule, where F; and F; are division rings containing K in its center, and
such that K operates centrally on ;M; and dimg ;M; is finite. From S we
derive an oriented graph with edges e — o precisely when M, # 0.
Then, S is called connected, provided the correspondmg graph is connected
and an oriented cycle of S is given by a sequence 7 , Zy .., 34y, 4 = £ sSuch
that¢; e — e 7;,, for all 1 :<j <{ & — 1. Since we assume that S contains no
oriented cycles, we have, in particular, that ,M; = 0 for all 7, and that
M; # 0 implies ;M, = 0.) A representation (V;, ;p;) of S is given by
vector spaces (V;) _and F;-linear mappings V; ®; M; — V. Such a represen-
tation is called finite dimensional provided all the V; are finite dimensional
vector spaces. A homomorphism « = (a;): (V;, ;) = (Vy', s9/') is given by
F-linear mappings a; : V;— V' such that oy, = ;9 (o; @ 1). We denote
by £(S) the category of all representations of S and by I(.S) the category of
finite dimensional representations.

Given a K-species S, there is defined a quadratic form g on the n-dimen-
sional rational vector space Q" as follows: for x € Q7, let

g(x) = Zfixi2 - Z M XX
where f; = dimg F; and m;; = dimy M, . It is known from our joint work
with Dlab [6, 7] that S is of finite representation type if and only if the
corresponding quadratic form is positive definite. Also, in [7] the structure of
I(.S) in the positive semidefinite case was reduced to that of a certain abelian
full and exact subcategory by, called the subcategory of all homogeneous
objects. Our first aim is to determine the structure of this category. This then
shows that in the positive semidefinite case, all indecomposable finite dimen-
sional representations can be classified (S is *‘tame”).

‘Turorem 1. Let S be a connected K-species without cycles and with positive
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semidefinite quadratic form. Then, the category of all homogeneous representations
of S ts uniserial, and is the direct sum of uniserial categories of global dimension 1
with one simple object.

The theorem follows from a new interpretation of the quadratic form g.
Namely, we introduce a (usuallv nonsymmetric) bilinear form on Q" by

G(x,y) == Zfixiyi - Z m;x;y; -

The corresponding quadratic form obviously is just g, and it turns out that
for any two representations X and ¥ of S,

g(dim X, dim Y} = dimg Hom(.X, ¥) — dimg Ext}(X, Y),

where for a representation (V; , ;p,), we define [dim(V;, ;@,)] = dim (V) Fy e

Thus, we know that in the semidefinite case, there is a complete classifica-
tion of the indecomposable objects of I(S). On the other hand, we show that a
similar description is impossible in case the quadratic form is indefinite:
a K-species without cycles and with indefinite quadratic form is “wild.”

THEOREM 2. Let S = (F;, ;M) be a connected K-species without cycles,
and with indefinite quadratic form. Then, for any i, there is a commutative field
K" with KCK'CF;, and a full exact embedding w(K') — 1(S).

Here, w(K) denotes the “wild category” over K, defined as follows. Let
R = K{x, y) be the free associative algebra in two variables over K, and let
w(K) be the category of all R-modules which are finite dimensional as
K-vector spaces. Alternatively, we may consider w(K) as the category of all
finite dimensional vector spaces over K endowed with two endomorphisms.
Also, we denote by I(K) the category of all R-modules.

In order to prove Theorem 2, we will have to consider first a special case,
namely representations of a bimodule ;M , where F and G are two division
rings. Here, we consider ;M as a species with graph e — e. In dealing with
bimodules, we will also consider the “nonalgebraic” case (that is, we do not
assume the existence of a central subfield X with dimg M finite). In the
algebraic case, however, we are able to give a complete classification of the
dimension types of the indecomposable representations of ,M,. Given a
quadratic form q on a vector space Q" with a fixed basis, the Weyl roots are by
definition the images of the base vectors under the Weyl group. In the given
case, where # = 2, we will define the imaginary roots as those vectors x in
Z* which satisty g(x) << 0 (for a general definition, sce [11]).

THEOREM 3. Let ;M. be an algebraic bimodule. If V is an indecomposable
representation of (M., then dim V is either a positive Weyl root, or a positive
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tmaginary root. There is precisely one indecomposable representation for every
positive Weyl root, and (assuming that K is infinite) there are infimitely many
indecomposable representations for every positive imaginary root.

Let us mention certain applications. First, consider the bimodule M — K*,
where # is a natural number, with the canonic bimodule structure. The objects
in [( x4 ) can be considered as pairs of vector spaces X, Y together with #
linear transformations Xx— Y. Thus, we consider the classification
problem for 7 matrices A, ,..., 4, of equal size (namely, x X y-matrices, with
x = dim Xy and y = dim Yy). For n 2> 3, this problem is usually referred
to as unsolvable (“an impossible task™ [8]). The theorem above gives at least
the general conditions for which pairs (¥, y) every set of n x X y-matrices is
decomposable: namely, every set of # x X y-matrices can be decomposed if
and only if (x, v) is neither a Weyl root nor an imaginary root. And, if (x, ¥)
is a Weyl root, there is just one indecomposable set of # x X y-matrices—
every other set is either equivalent to this or can be decomposed.

As second application, assume that G C F is a finite field extension, and let
#Mg = pF¢, canonically. The objects (X, Y¢, @) in [(z}M;) with ¢ sur-
jective, correspond just to the G-subspaces of F-vector spaces: consider
ker @ as G-subspace of X . Again, Theorem 3 gives the precise condition for
what dimensions every pair consisting of an F-space together with a G-sub-
space, can be decomposed. Also, it is quite interesting to note here a conse-
quence for the endomorphism rings End(X 5;Ug) ={p € End(Xp)ip(U) C U}of
the pairs U, C X. In case dimFg < 4, these endomorphism rings are of
quite restricted type. Namely, if U; C X is indecomposable, or, what is the
same, if £ = End(X,; Ug) is a local ring, then E is a division ring, or, at
least, a uniserial ring. This follows from {7] together with our Theorem I.
On the other hand, in case dim F; = 5, any finite dimensional G-algebra is
of the form End(X;; Ug) for suitable Us C Xp. This is an obvious con-
sequence of Theorem 2. Similar results hold of course in case GCF is an
inclusion of division rings, provided there is a central subfield K of F with
K C G and dimg F finite.

In the nonalgebraic case, we have to restrict the investigation to bimodules
which are not simple, the other case scems to be harder to attack. Of course,
this implies immediately that dim zM > 2 and dim M, 3> 2. We begin with
the case dim (M = dim M; == 2.

THEOREM 4. Let Mg be a monsimple bimodule with dim (M =
dim My = 2. Then, in Yz My), there is precisely one indecomposable represen-
tation with dimension type (x,y), where X, ¥ are natural mumbers with
|x —v| = 1. All the other indecomposable representations have dimension
tvpe (x, x), with x a positive integer, and their direct sums form a full, exact,
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abelian subcategory v(zMy;). This category v(:M,) is equivalent to the product
categorymp X W, where R — F[T); ¢, 8] is a skew polynomial ring in one variable,
Jor some automorphism e and some (1, €)-derivation 8 of F, and mp is the category
of all right R-modules of finite length, whereas  is a uniserial category of global
dimension | and with only one simple object. Conzversely, given a division ring F,
an automorphism ¢, and an (1, ¢)-derivation § of F, there exists a bimodule
Mg with ¥(zMg) = my 1 for the corresponding R - F[T; ¢, §].

Using results of Cozzens [5] and of MacConnell and Robson [10], we get
the following corollaries.

CoROLLARY 1. There exists a bimodule M with dim (M -- dim M, - 2,

such that, for every positive integer n, the number of indecomposable representation
of pMg of length n is equal to 1 or 2.

COROLLARY 2.  There exists a bimodule .M. with dim rM = dim M, = 2,

such that there is a full exact embedding w(K) — | M), for some commutative
fleld K.

The two corollaries above show that the behavior of the category [( M)
in the case dim; M = dim Mg = 2 can be rather different. Also, the first
corollary shows that the second Brauer—Thrall conjecture, which was stated
for finite dimensional algebras over an infinite field (and recently proved over
algebraically closed fields [12]), cannot be generalized to arbitrary artinian
rings, say with infinite center. In fact, the matrix ring R = [{ 1] constructed
with the bimodule of Corollary 1, can have arbitrarily large center, and the
category g of right R-modules of finite length coincides with the category
[(Ms).

Finally, we consider the case (dim, M)(dim M) > 4. In this case, the
behavior of M is always wild, provided we do not restrict to representations
of finite length. The center Z of ;Mj; is defined to be the center of the matrix
ring [ ¢']- For technical reasons, we have to assume that the dimension of M

over Z'is not too large, namely < ¥, , the first strongly inaccessible cardinal
number.

THEOREM 5.  Let ;M be a nonsimple bimodule with (dim; M)(dim M) > 4.
Let Z be the center of M, and assume dim, M < X,. Then, there is a full and
exact embedding W(K)— R(.M,) for some commutative field K.

Of course, K will always contain the center Z. However, we do not know,
whether we always can choose K — 7.
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1. FiniTE LocaLizaTioN, THAT Is: SIMPLIFICATION

Our final aim is to construct indecomposable objects in an abelian
category €. Always, there will be certain obvious indecomposable objects, and
we want to use them in order to build larger ones. Namely, given indecom-
posable objects ., and Y, we will look for nonsplit exact sequences

0—->XN—->F—->1Y->0,

hoping that E is indecomposable, again. But of course, this is quite rarely the
case. There is, however, one situation, where for trivial reasons every nonsplit
exact sequence gives rise to an indecomposable extension, namely when both
X and Y are simple. Now, if X and Y} are not necessarily simple in €, but
belong to a full, exact, extension closed abelian subcategory i of €, such that
X and Y are simple, when considered as objects of 1, then again, every
nonsplit extension E is indecomposable (E is indecomposable as object of
U, and therefore as object of €). Thus, given .\ and Y, we try to find such a
subcategory U where .X and Y are simple, and we will call this the process of
simplification. Now, necessary conditions cbviously are that the endo-
morphism rings End(.\') and End(Y") both be division rings, and that either
X and Y be isomorphic, or that Hom(Y, 1) == Hom(Y, X) = 0. As we will
see, these conditions are also sufficient for such a subcategory 2l to exist. We
have reserved this section for considering the process of simplification in
more detail.

1.1. Let € be an abelian category. An object .\’ with End(.Y) a
division ring (or, the isomorphic class of X) will be called a point
of €. Two points X and ¥ are called orthogonal, provided Hom(\\, V') =
Hom(Y, X} = 0.

ExampLE |. Let A be a commutative ring, and € == 9 the category of
all A-modules. There is a canonical bijection between the points of ;M and the
prime ideals of A. Namely, if [ is a prime ideal of .4, let Q(AT) be the quotient
field of A/I. Then End(,Q(4/I)) = Q(A'I), thus ,Q(A/I}is a point, and I is
its annihilator. Conversely, let ..\’ be a point, say with endomorphism ring
D = End(,X), and let J be the annihilator of ,X. Now A/I embeds into the
center Z of I, and since Z is a field, also Q(A/I) can be embedded into Z.
Therefore, X may be considered as a Q(A/I)-module, and D = End(,X) =
End(p(4,n-¥) (note that the inclusion End(,X) 2 End(gesn-Y) is trivial,
whereas any p € End(,X) commutes with all elements of Z, thus with the
action of Q(A4/I) on .X). But Q(A/(I) is a field, and the full endomorphism ring
End(y(4.)X) of a vector space is without zero divisors only In case
dim o0, nX = 1. Thus o0 X = o(am@(A/), and therefore X = ,004T).

481/41/2-3
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ExampLe 2. Let R be a (not necessarily commutative) ring, and € = It
the category of all left R-modules. A point X in g9 with D = End(X) can
be considered as a right D-vector space X, and X is said to be a
finite point in case X is finite dimensional. There is a canonical bijection
between the finite points of N and the ring epimorphisms R — S with S a
simple artinian ring (where we identify R — S with R — § 5 S’ for any
isomorphism «). Namely, it is well known that a ring homomorphism R —» .S
is an epimorphism if and only if the forget functor (Mt — ;MM is full. Thus,
if R — S'is a ring epimorphism, and ;. is the unique simple module over the
simple artinian ring .S, then D = End(;.X') — End(z.X) is a division ring, and
Xp 1s finite dimensional, thus z.X is a finite point. Conversely, let .\ be a
finite point, and S = End(Xp). We claim that the canonical map R — S
is an epimorphism. Since S is simple artinian, there is only one simple
S-module, namely (X, and every S-module is a direct sum of copies of
sX. Let ¢4, (B be S-modules, and f: ;.4 — ;B be an R-homomorphism.
Now ¢d = &, X,, and (B = @, X, with X; = X, -~ X, and f is given
by its components ( f;;), where all £;; : X; — X belong to D. Thus, the maps
fi; are not only R-linear, but even S-linear, and therefore f itself is S-linear.

As we have seen in the previous example, every point in IR, for 4 commu-
tative, is finite, and P. M. Cohn has proposed to call the set of finite points of
g (with a suitable topology) the spectrum of R.

1.2. Let Z be a set (or class) of pairwise orthogonal points in €.

If A is an object of €, then an Z-filtration of A is given by a sequence of
subobjects

I

O:AOC—:—AIQA2(~; An:A)

with 4,/d; e #, for ] <17 < n

THEOREM. Let X' be a class of pairwise orthogonal points in the abelian
category §. Let W(ZT') be the full subcategory of all objects of € with an -
Jiltration. Then W(Z') is an exact abelian subcategory which is closed under
extensions, and the set X is the set of all simple objects in W(Z).

Proof. It is obvious that 1(%') is closed under extensions. Let

0=4,CA4,C--CA4, =4
and

O:BQQBIQQBW = B

be two Z-filtrations, with #, m > 1. Let f: A— B be a morphism. We prove
by induction on # that the image of f has an 2 -filtration.
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By induction, we can assume that f(4;) % 0. We even may assume that
f(4,) = B,. Namely, there is some i with f(.4,) C B, and f(,) ¢B;,.
Then

4,5 B, 5> B,/B,

(with the canonical projection ) is a nonzero homomorphism, and therefore
an isomorphism, since both .4; and B;/B,_; belong to £". As a consequence,

f(Al) &, Bi—l - Bi .

If we replace B, by B) -+ f(4,) + B;_, for | < j <(i, and take B)" == B, for
i << j - m, then we get another & -filtration of B and f(4,) = B,". Now we
apply induction to the induced map f: /.4, — B/B, , and note that the image
of fis an extension of the image of f by B, .

Also, the kernel of f has an Z-filtration. Namely, if .4, is contained in
ker(f), the result follows by induction. And, if A; € ker(f), then, as above,
we have A4, Nker(f) = 0, and we may assume f(4;) = B,. But ker(f)
is isomorphic to the kernel of the induced map f: 4/4, — B/B, . Similarly,
the cokernel of f has an 4 -filtration.

As a consequence, (2} is an exact abelian subcategory. It is easy to see that
the elements of 2" are simple objects in M(#’). Also, every object of U(L) has
a composition series with factors in &, thus all simple objects of U(#) belong
to 7.

1.3. Perhaps we should give an indication why we consider the
process of simplification as a type of localization, namely as the finite localiza-
tion (as compared with the injective and the inversive method of localization;
see [3]). Finite localization should mean that we try to construct the modules of
finite length over the appropriate localized ring (provided such a ring can be
defined). However, we do not even define a localization functor (that is, a
left adjoint to the inclusion (%) C €), which, of course, could only be done
in case § itself is a length category, whereas otherwise we would have to
replace 2(Z') by a larger category, say the profinite closure of (X)) in €.

1.4. The class of points in a given category usually will be rather
large. An indication for this can be derived from a theorem of Corner’s, which
we state here also for later reference. A Corner quintuple (A; A;) of rank s is
given by a free abelian group A and five subgroups A, of A such that both
A; and A/ A, are free of rank 4, and such that for all abelian groups B and
B, the canonical map § —f ® 1

Hom(B, B') — Hom((B ®) A; B® A4,), (B’ &4, B' 2 4)))
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is bijective. Here, of course, the right Hom-set consists of all homomorphisms
y:B® A B (% A, such that y(B X A)CB & A, for all 1 <7 < 5.
And, two Corner quintuples (4; 4;) and (A, ;') are called orthogonal
provided

Hom((B > 4; B 4), (B @ A B 7 A'))
=0 =Hom((B &, A5 BT A/), (B © A; B = A,))
for all abelian groups B, B’

TueoREM (Corner [4]). Let w be a cardinal number, u: < N, the first
strongly inaccessible cardinal number. Then there is a set of 27 orthogonal
Corner quintuples of rank .

Let K be a field, let R == K<x, ,..., x; . be the free associative K-algebra
with five generators, and let m be a cardinal number with max(Ny, | K'|) <C
o < N,. If (4; 4,) is a Corner quintuple, let ,X be given by the K-vector
space kK (< 4 such that the multiplication with x; on X is a vector space
endomorphism with image (K ()7 4, (here, Z denotes the ring of all rational
integers). Then, End(zX) = End(xK) = K, thus r<X 18 a point. Starting with
2 orthogonal Corner quintuples of rank », we define in this way 2* ortho-
gonal points X with | X! = ,,.

On the other hand, the class of finite points is always a set. Namely, as we
have seen, the finite points correspond to the epimorphisms R — S with S
simple artinian. However, for any epimorphism R -» S, we have
| S < max(Ny, | R}) [9]. Therefore, there are in the category IR at most

2" different finite points, with . — max(¥, , | R ).

1.5. We are not only interested in constructing objects of finite
length, but also larger ones, namely to build prescribed extensions of homo-
geneous semisimple objects of type Y by homogeneous semisimple objects
of type X, where X and ¥ are nonisomorphic simple objects, or, more
general, orthogonal points. The extension group Ext!(X, V) will usually be
denoted just by Ext(X, V). Note that Ext(X, Y) is, in a natural way, an
End(Y)-End(X)-bimodule. In order to specify certain types of extensions,
we will consider End( Y)-End(X)-submodules of Ext(X, Y).

Given division rings F and G, and a bimodule ;N , denote by £*(;N ;) the
category of all triples (4;, B, ¢) where ¢: Ag — B; Xg Ny is F-linear,
and with morphisms (o, B): (4, B, ¢)— (4, B, @) given by a:A—Af,
B: B -> B’ satisfying ¢'a = (B ® 1)g. Note, that this corresponds just to
Gabriel’s definition of the representations of a species [8]. In case dimg N is

finite, we have LeNp) = L(Homg(,N,, ¢G6)). The following lemma
seems to be well known,
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LeEMMA. Let € be a Grothendieck category. Let X and Y be orthogonal
points with End(X) = F, End(Y) = G, and let ;N be a submodule of
Ext(X, Y). Then there is a full exact embedding 8*(;Ng) — €, such that
(Fg, 0, 0) goes to X and (0, G , 0) goes to Y.

Proof. (cf.[1, 8]). First, we want to construct the image of (N, G¢, id).
In order to do so, consider “all possible” extensions of ¥ by X which belong
to ;N . That is, assume the extensions

0>V, —>2Z;—> X;—0, with YV, =Y, X,=X,and:iel

form a basis of N . Let U be the kernel of the canonical map @;; ¥; — Y,
and let Z = (D, Z;)/U. Obviously, Z looks really similar to (N, G , id).
Now, everv object A of *(;Ng) is the kernel of a map

@;(Ng, Gg ,id)— @ (FF, 0,0),

and such a map is given by its first component which is of the form (f;;;):
@D, Fr — @, Fr . But this map can also be considered as a map

@ Z > @, Z]Y = T Xy > D X,

since F' = End(X). The image of .4 will therefore be just the kernel of this

2. HoOMOMORPHISMS AND EXTENSIONS FOR SPECIES

2.1. Let S =(F;, ;M,)1<:.;<n be a species. Given two representa-
tions 4 = (4, , ;p;) and B = (B, jp;)[we denote the maps by the same
letter @), we define a map y,p as follows

yaz: @D Homp(4;, B;) = (P Homp(4; &; M;, By),
i i,

with y 4(a) = 8, where §; = jpi(oe; ® 1) — ;. The importance of the
map y,p rests in the following fact.

LEMMA. ker y,5 = Hom(4, B), cok y 5 = Ext(4, B).

The first assertion is obvious. And, for any & € @ Hom(4; ®; M;, B;),
define an exact sequence E(8) as

0 (B ) (B @ A4 [5 1]} 5 (5,190 0




278 CLAUS MICHAEL RINGEL

with the canonical inclusion p and the canonical projection e. It is easy to
check that every extension of B by A is given by such an exact sequence
E(8). Now, E(8) and E(8') are equivalent (that is, they define the same element
in Ext(A, B)) if and only if there is a commutative diagram

0~»B-—>(B,-@Ai,["g‘ ;i::])-%q—»o
X N
0~+B—»(B,-@Ai,[’{g" ’;2;‘:])%‘4-»,0.

The map &, : B; @ A, —> B, @ A, can be written in matrix form, and taking
into account that the squares in (*) commute, it follows that &; =- [§ 3] with
a; : A; — B, . The fact that xis a map of representations is expressed by the

equalities
0, .82.’ i Ao
5 %l e =f ¥ 2
for all 7, j. The only nontrivial term is

s @ 1) + 8 = 8, +- o5p;

Thus, E(8) and E(8') are equivalent if and only if there exists a family o =
(a;); of maps «; : 4, — B, such that

Pl @ 1) + 8, = Bi + ap;

Thus, E(8) and E(8') are equivalent if and only if there exists a family « = (&;);
of maps «; : 4, B, such that

B — B = Pl @ 1) — ayp;
thatis, 8 — & = y p(a). This proves cok y 5 = Ext(A4, B).
2.2. In case of a K-species, we want to use the previous lemma in

order to give another interpretation to its quadratic form. Let f; = dimgF;
and m;; = dimg ;M . Define a bilinear form on Q" as

f(x,y) = Zfixi.yi - Z m;%; V5 for x == (x), ¥ = (y;)eQn
i i

Note that § is usually not symmetric, and that the corresponding quadratic
form is just g.
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LEMMA. Let A and B be representations of the K-species S with bilinear
Jorm §. Then

g(dim A, dim B) = dimg Hom(4, B) — dimy Ext(4, B).

Proof. 1f dim A - (a,,.., a,), and dim B = (b, ..., b,), then the K-
dimension of @®; Hom (A;, B)) is ¥, fia;b;, whereas the K-dimension of
™, ; Homg (4, 69; M;, B) is given by ¥, ; m;a;b; . Therefore, the lemma
follows from the previous one.

2.3. We want to use this interpretation of the quadratic form g of a
K-species S, in order to distinguish the behavior of points with respect to
extensions.

LemMA. Let X be a point in I(S), and let W(X) be the local subcategory
generated by X. Then we have:

(a) g(X) > Oiff W(X) s semisimple,

(b) g(X) == 0iff W(X) is uniserial and not semisimple,

(c) q(X) < O iff the objects of height << 2 in U(X) form a subcategory
which is not of finite representation type.

Proof. We only have to note that Ext(.X, X) is an End(X)-End(X)-
bimodule. Thus, if dimgEnd(X) > dimg Ext(X, X), then obviously
Ext(X, X) = 0, and consequently W(X) is semisimple. And, if the dimensions
are equal, then the vector spaces guq(nExt(X, X) and Ext(X, X)gnacx) are
one-dimensional, which implies that W(X) is a uniserial category. Finally,
if dimyg End(X) < dimg Ext(X, X), then the vector spaces enanExt(X, X)
and Ext(X, X)gnq(x) both are m-dimensional, for some m > 1. But since this
is also true inside the full subcategory of all objects of U(X) of height < 2, it
follows that this category cannot be of finite representation type.

2.4. Inaspecial case, we want to give a precise formula for Ext(4, B).
Let ;M. be a bimodule. For 0 # x in M, denote by (x) the representation
(Fr, M/xG, w) with 7 = =, the canonical projection.

LEMMA. Let 0 5 x, y tn M. Then Ext{(x), (3)) = M|Fx -+ G,

Proof. Define e Hom(Fy ® fMs , M|yG)— M|Fx + 3G by €(d) =
81 ® x) + Fx € M/Fx + yG. Obviously, € is surjective. We have ey =0,
since for a: Fr — Fp and : M/xG — M[yG, we have

V(o B) = dmfa ® 1) — fm) = m(x @ (1 @ 1) — ol @ ),
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and this last element is just Fx -+ yG. Finally, let & be an element of
Hom(Fp @ Mg , M/yG), then we may write 8 = =, 8 for some
8 Fp @ pM— Mg . If €8) = 0, then §(1 ® x)eFx + G, therefore,
there is some f € F with 8'(1 ® x) — fx € ¥G. If we denote by o, : F. — Fj the
left multiplication with f, then 8 — 7(ay @ 1): Ff ® zMg — M/ yG maps
x to 0, therefore we may factor this map through =,. That is, we
find B: MJxG — M[yG with 8 = m(a; @ 1) — B, = yi(a » B)-

3. ALGEBRAIC BIMODULES

3.1. We assume in this section that ;M is a bimodule which is
algebraic over K. Our aim is to prove Theorem 3.
Let @ = dim Mg, b = dim ;M. The bilinear form § is given (up to a
scalar multiple) by the matrix
[a —ab]
0 51

the corresponding quadratic form again will be denoted by g. Note that in our

case the Weyl group is generated by two involutions, so there are just two
Coxeter transformations, namely

€= [ab__;;l —a1]

and its inverse. The imaginary cone is defined to be the set of all positive
elements (x, y) in Q2 with g(x, y) < 0, and it is easy to see that its boundary
consists of the nonnegative eigenvectors of ¢. The positive imaginary roots
are, by definition, the integral elements in the imaginary cone.

For a representation (X,, Y, ¢) of Mg, let x =dim X, and

¥ =dim ¥ . We want to determine the possible pairs (x, v) for indecom-
posable representations.

3.2. For any positive Weyl root there is precisely one indecomposable
representation, and all others belong to tmaginary roots.

Namely, if (x, v) is positive, but does not belong to the imaginary cone,
then either there is some 2 with *(x,¥) = 0 and c**)(x, ) 2 0, or there is
some 7 with ¢="(x,v) > 0 and ¢ 1x,9) 22 0. Let C~ and C- be the
Coxeter functors on I(rM;) which correspond to ¢ and -1 [7]. If A 1s an
indecomposable representation, then either C*+(A) is again indecomposable,
and then dim C*+(4) = ¢(dim 4) or else 4 is of the form (0, G¢, 0) or



REPRESENTATIONS OF K-SPECIES AND BIMODULES 281

(Fr, Mg, id). In the first case, we stress the fact that ¢(dim 4) > 0. Thus,
if dimA = (v, 9), and c"(x,¥) > 0, but ¢"(x,y) 2 0, then *(x, ¥y} 1is
equal either to (0, 1) or to (1, @), which implies that (x,y) = ¢ "0, 1) or
= ¢ (1, a) is a Weyl root. And, in both cases, also A is uniquely determined,
namely, either 4 = C ™0, G;,0) or 4 = C*(Fg, M, id). A similar
argument of course works in case that dim 4 = (x,v) and ¢ (x,y) = 0,

but c=*Yx, y) 3 0.

3.3, It remains to construct enough indecomposable representations
for any imaginary root (x, y) > 0. It is easy to see that we may assume x < 3.
Namely, if R is a ring, denote by R° its opposite ring. We claim that the
categories I( ;M) and [(goM o) are dual to each other. In order to prove this,
define a contravariant functor I{zMg)—1*(M*)by (X¢, Yo, @)= (Y*,X*,0%)
where * denotes the duality with respect to K. Note that Y* is a right G°-
space, and X* a right F?-space. Also, M* is an FO-G-bimodule. Obviously,
this functor has an inverse functor, and therefore defines a duality. But
obviously, [*(M*) is equivalent to I{goM o).

3.4. InQ2, the fundamental cone is defined to be the set of all positive
elements (x, y) with

He—1) <x/y <a—1 in case a, b > 2,
2 <y <<a—2 in case b = 1, and
b —2) < xly <3 in case a = 1.

LemMa, For ab = 4, the fundamental cone and the imaginary cone coincide.
For ab >> 5, the fundamental cone is the closure of a fundamental domain of the
action of ¢ and ¢~ on the interior of the imaginary cone.

For the proof, we only note that in case ab >> 5, the fundamental cone 1s
contained in the interior of the imaginary cone, and that the boundary lines
of the fundamental cone are mapped into each other under ¢ and ¢t

3.5. The integral vectors in the fundamental cone which are of the
form (1, y) are called fundamental vectors; in the case @ = 3, b = 2, also (2, 3)
is considered as a fundamental vector, and in the case a = 5,b = 1, also (2, 5)
is considered as fundamental vector.
Thus, the sequence of fundamental vectors is for @ = 3,b = 3

(l,a—1), (La—2,., (L2 (1, 1),
fora =3, b ==
(1,2, 3, @41
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fora =26,b =1
(I, a — 2), (1, a — 3),..., (1, 3), (1, 2),
and fora = 5, b =1

(1,3), (2,5, (1, 2).

We say that the fundamental vector # follows the fundamental vector z,
provided in the above ordering, u comes directly after 2. We note the following
facts:

(1) Ewvery integral vector (x, y) in the fundamental cone and with x <y

ts an integral linear combination of two fundamental vectors u and v, where u
Sollows v.

(2). Ifuandv are fundamental vectors, where u follows v, then §(u, v) < 0.

The proofs are rather obvious.

3.6. LemMa  Let (1, y) be a fundamental vector. Then, there are two ortho-
gonal points Ay and A, in (M) with dim A, = (1, y),fori =1,2. In case K
is infinite, there are infinitely many pairwise orthogonal points A; with
dim 4; = (1, y).

Proof. The indecomposable representations 4 with dimension type
dim A4 = (1, y) are, of course, just given by epimorphisms ¢: Mg — Y,
with dim Y; = y, therefore they correspond to the (a — y)-dimensional
G-subspaces of the a-dimensional G-space M, [taking the kernel of ¢].
Thus we have to look at the grassmanian Gr,.,., with respect to G. This is a
variety of dimension (@ — y) - y - g over K, where g = dimy G. The multipli-
cative group FXof F operates on it as an algebraic group,and K* C F* operates
trivially. Thus, if we denote f = dimgF, then the closure of any orbit has
dimension < f — 1. But one easily checks the following inequality

J=1<(a—w»y-g

for2 <y <<a~—2itisa consequence of ¢ << (@ — y) - y, and otherwise we
are in the situation & > 2, which means 2f < ag. Therefore, if K is infinite,
Gr,_,., cannot be covered by a finite number of such orbits, and this implies
that there are infinitely many pairwise nonisomorphic indecomposable
representations 4; with dim A4, = v Obviously, every such representation is
a point, and nonisomorphic ones are orthogonal. In the case where K is
finite, the number of elements of Gr,_y,y is well known, and it is easy to

check that the group F*/K* cannot operate transitively on Gr,_,, ,, .
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3.7. We can give now a proof of Theorem 3 in case ab < 4. The case
ab << 3 is well-known [6], but follows also from 3.2, since in this case, there
does not exist any imaginary root. In case ab = 4, all imaginary roots are
integer multiples of the fundamental root (1,¥), with y =1 in case
@a==5b=2 and y =2 in case a = 4 and b = 1. By the previous result,
we have enough points 4; with dim 4; = (1, ¥), and in the full subcategories
M(A4,) we find indecomposable representations for any positive multiple of
(1, y). Here, we use that U(4,) is not semisimple, but hereditary (in fact,
U(A,) is a uniserial category of global dimension 1 with one simple object—see
(2.3) or Section 4).

It remains to consider the case ab >> 5. First, we restrict to the cases where
all fundamental roots are of the form (I, y), that is, we assume that
a--b-+ab > 12.

3.7. LeMMA Leta -~ b + ab = 12.Let (1, y)and (1, y -+ 1) be fundamental
vectors. Let A be a point in [(zMg) with dim A = (1, v + 1). Then there is
another point B, orthogonal to A, such that dim B = (1, »).

We start proving the inequality

Wy + )b+ a < yab. (%)

Consider first the case & > 2. Since (I, y + 1) is a fundamental vector, we
must have y -+ 2 < a. In case a/b << y, we have

Wy +Db+a<yy+1)b+3<yy+2)b < yab.

Next, for 2/(b — 1) <y < afb, the inequalities y -+ 2 <yband yb << a
imply

Wy +D)b+a<(y+Data=(y+2a<yab
It remains the case b = 2, y = 1. In this case, a = 4 implies our inequality.

In the case b = 1, we have even y << @ — 3. Thus, if in addition @/2 < ¥,
then

yy+1)+a<ya—2)+a=xya
In case 3 <{ y < a/2, then

W+ ta<@)y+hrta=(@)y-a<a

I
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Finally, for y = 2, we remind that 6 = 1 implies a >> 6, and therefore our
inequality. This proves (*).

Now, let f = dimgF, g = dimg G. Then ag = bf. Thus, multiplying (*)
with g/b, we get

Wy + D g+ f < yag. (**)

'The indecomposable representations B of the form (1, y) correspond to
(orbits of) elements (x,,...,u,) in (M*)Y = M* @ - @ M*, namely, we
consider the representations (Fy, (G¢)", ¢) with @: Fr @ pMg — (Gg)? being
determined by the map @: Fp— (G;)Y @ M* = (M*)? with 1 > (4 ,..., ).
In order to get an indecomposable representation, we have to assume that the
elements u, ,..., u, are independent in the G-vector space ;M*. Note, that the
last condition defines an open and dense subset of (M*)v, since it is the
complement of some closed subvariety of lower dimension. Therefore, this
subset has dimension yag. Now, given a representation A4 of dimension type
(1, y -+ 1), say given by elements v, ,..., v,., € M*, then there is a nonzero
homomorphism 4 — B if and only if we have

[ } € M,y 1.,(C) - [ : ] F,

u?l ‘v‘lH-l

where M, (G) denotes the set of p X g-matrices over G. For fixed (zy ,...,
?y.1), its image under the mappings defined by the elements of M, (G) F is
of dimension < ¥(y + 1) g + f — 1. Here, the last summand —1 comes from
the fact that K operates centrally.

Now using the inequality (**), we conclude in the case where K is infinite
that there exists an orbit which corresponds to some indecomposable represen-
tation B such that Hom(4, B) = 0. Of course, we also have, for trivial
reasons, Hom(B, A) = 0. In the case where K is finite, a similar argument
counting elements, gives the same result.

3.8. The proof of Theorem 3 in case a + b - ab > 12 is now quite
easy. In fact, we show: If K is infinite and (x, ¥) a positive smaginary root, then
there exist infinitely many pairwise orthogonal points A; with dim 4; = (x, ).

Let (x, y) be an element of the fundamental cone, and x < y. First, assume
that (x, y) is a multiple of some fundamental vector u, say (v, y) — m - u, with
meN. Then, let 4, and 4, be representations with dim 4; = (x, y), and
which are orthogonal points. We simplify 4, and 4, , and construct in this
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subcategory a serial object with m — 1 composition factors of the form 4, and
the top composition factor of the form 4,

iy
« 4,
|

| A

. 1 .
Otherwise, (x, y) can be written as (x, ¥) = mu + M2, where m, , my > 0,
and x and © are fundamental vectors such that % follows z. In this case, let
A, B be orthogonal points with dim 4 = v, dim B = u. We simplify again,

and form a serial object of length m, 4 m,, with the first m; composition
factors of the form B, the other ones of the form 4

- A4
I

a
IB

lB.
Obviously, in both cases, we get a point with dimension {, y). And, in case K

is infinite, we can construct infinitely many isomorphism classes for any
such (x, 1). The result follows, using Coxeter functors [7] and (3.4).

3.9. Consider now the case (a,b) == (3,2). First, we look at the
variety of all 3-dimensional subspaces Ug of Mg @ M , on which the group
of all invertible 2 x 2-matrices over F operates. Also, we are interested in the
variety of all 2-dimensional subspaces, and its images under the maps
M, — M @ M, given by nonzero pairs (fi, f,) of elements of F. We call
the subspace U; C Mg @ Mg proper, provided there 1s no nonzero homo-
morphism ( f, , f,): M¢ — Mg @ M, which maps a 2-dimensional su‘bspae:e
Vg into Ug . A dimension argument shows that there are two (and, if K 18
infinite, even infinitely many) orbits of 3.dimensional proper subspaces.

Now, the 3-dimensional proper subspaces U, CM; ® Mg correspc.)nd
just to representations B = (Fr @ F M, @® Mg/Ug , m)ywith the canonical
projection, which have the properties

o M
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(1) dim B = (2, 3),
(2) if 4is an indecomposable representation with dim .4 - - (1, I), then
Hom(A4, B) = 0.

From this, it is easy to derive several other properties, namely,

(3) if C1is an indecomposable representation with dim € = (1, 2), then
Hom(B, C) = 0.

For, any nontrivial homomorphism B — C has to be an epimorphism, and

therefore the kernel has dimension type (1, 1) which is impossible according

to (2).

(4) 1If By and B, both satisfy (1) and (2), then any nonzero map B, — B,

1s an isomorphism,
For, the proper subobjects of B, are of dimension types (1,2), (1, 3), or
(0, 1), but B, has no such homomorphic image. We may formulate this also as:

(4") If B, and B, both satisfy (1) and (2), and are nonisomorphic, then
they are orthogonal points,

We construct now for every integral element in the fundamental cone an
indecomposable representation using similar methods as in 3.8. However,
in this case, we are not always able to simplify, and therefore have to use the
following lemma: If X and Y are indecomposable, with Hom(Y, V) = 0,
and if 0 - X — E — Y — 0 is exact, and defines a nonzero element in
Ext!(Y, X), then E is indecomposable. Note that in this case the fact that Y

and X are points does not imply that £ is a point, since we may have nonzero
maps ¥ — X,

3.10. Inthe case(a, b) = (5, 1) we argue as in the previous case, with
the only difference that now we want to construct representations B with
(I) dim B = (2, 5), and

(2) if 4 is an indecomposable representation with dim 4 — (1,2), then
Hom(4, B) =- 0.

We do not know whether it is possible in the cases (a,b) = (3,2)and (5, 1)
to construct enough orthogonal points for every imaginary root.

4. K-SPECIES WITH SEMIDEFINITE QuapraTtic Form

4.1. Let S be a connected K-species without cycles, and with positive
semidefinite quadratic form g. The elements x € Q" with ¢(x) = 0 form a one-
dimensional subspace of Q", and we denote by % a generator of this subspace.
We want to consider the full subcategory B(S) of I(S) of all homogeneous
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representations of S. Recall from [7] that an indecomposable representation of
S is said to be regular, provided C**(X) # 0and C-*(X) # 0, for all natural
n, where C+ and C- denote the Coxeter functors for S. The direct sums of
regular indecomposable representations form an abelian exact subcategory,
denoted by 1(S). Then, a simple object X in t(S) is called homogeneous in
case g(dim X'} = 0. And an arbitrary object in £(S) is called homogeneous,
provided it has a composition series with simple homogeneous factors. In
particular, for every homogeneous object X, g(dim X) = 0, and therefore,
there is some 2z, in @ such that dim X = 2y " 4.

Now let V" and ¥ be homogeneous representations. We denote by § the
(nonsymmetric) bilinear form introduced in 2.2 and corresponding to g. The
interpretation given there yields

dimgHom(X, Y) — dimgExt(X, Y) = §(dim X, dim ¥} = 22y - g(h,h)y =0.

Therefore, Theorem | follows from the following general result.

4.2. LeMMA  Let © be an abelian K-category, where every object has finite
length. Assume that for all objects A, B in ¢, dimg Hom(A, B) =
dimy Ext(4, B). Then G is the direct sum of categories which are uniserial, have
global dimension 1, and contain a unigue simple object.

Recall that a category is called a length category, provided every object
has a composition series. And € is called uniserial, provided every indecom-
posable object has a unique composition series, and all the simple factors in
this composition series are isomorphic. Finally, we mention that a category is
a K-category, provided K can be embedded into the center of € (the center of
€ is the endomorphism ring of the identity functor); in this case, we fix an
embedding, and then all abelian groups Hom(4, B) and Ext(4, B) become
K-vector spaces, and dimgHom(A4, B) is assumed to be finite.

Proof of the lemma. 1f A and B are nonisomorphic simple objects, then
Hom(A, B) = 0 implies Ext{4, B) = 0. As a consequence, € can be written
as the direct sum of categories with a unique simple object in each of them.
Therefore, we may assume that @ itself contains only one simple
object, say C. Now we have dimg End(C) = dimg Ext(C, C), in partic-
ular, Ext(C, C) # 0. But Ext(C, C) can be considered as an End(C)-End(C)-
bimodule, and the equality implies that both vector spaces ena@ Ext(C, C)
and Ext(C, C)gpacc) are one-dimensional. As a consequence, ¢ has to be
uniserial. Finallv, given an exact sequence

O—+B'—~+B—+B”‘—>O,
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we get in any abelian category an exact sequence

0 — Hom(4, B') — Hom(4, B) — Hom(4, B") —
Ext(4, B') - Ext(4, B) — Ext(4, B"),

for arbitrary A in €. But this is a sequence of K-vector spaces and K-hnear
maps, therefore our dimension condition implies that the last map i1s an
epimorphism. As a consequence, gl.dim. € = 1. But since Ext(C, C) + 0,
we know gl.dim. € = 0. This concludes the proof.

5. K-Species WITH INDEFINITE QUADRATIC ForRM

5.1. LemMA  Let S be a K-species without cycles and with indefinite quadratic
form. Then there exists a bimodule M which is algebraic over K, and which

satisfies (dimy MY(dim M) == 5, such that there is a full exact embedding
(M) — 1(S).

Proof. We may assume that S is connected. Let F; denote (not only the
field but also) the one-dimensional representation with (F;); the one-dimen-
sional vector space (F;)p , and with (F;); == 0 for i + j.

Assume that there exists a subset J of the index set of S, such that S T
has semidefinite quadratic form (and is also connected). Let el and jel
be neighbors. Now there exists an indecomposable representation X on [
such that (1) ¢(dim X) > 0, (2) End(X) = F;, and (3) dim X is arbitrarily
large. (Namely, a representation of the form C-™P; , with P, the projective
cover in [{S P I} of F;, and C~ the Coxeter functor for .S | I, satisfies the first
two conditions, and dim X, increases with m [7]). Now X" and F; obviously are
orthogonal points, and in case ;M; + 0,

dimyg Ext(X, F)) = —§(dim X, dimF)) = m,x, ,

whereas in case ;M # (

dimg Ext(F;, X} = mx;,
so these dimensions can be arbitrarily large, respectively. We consider only
the first case. Let F =F;, G = F;, ;N = Ext(X, F;), and ;M = N* the
dual module (that is, the K-dual, or the G-dual, or the F-dual, all are iso-
morphic as bimodules). By 1.5 there is a full exact embedding [*(;Ng) — I(S),
however, [(zM;) and 1*(cN;) are isomorphic as categories. This proves the
result in case such a restriction S | J exists.

Now assume, for any subset I of the index set of S, the corresponding
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quadratic form is positive definite. Then either S itself is just a bimodule, or
else the index set of .S consists of three points {1, 2, 3}, and we may suppose
My =0 = M, . Instead of considering the species, we will look at the
whole moduled graph: that is, if ;M, 5 0, then we define ,M;, = (;M,)*,
and so on. In this way, we deal with all possible cases at the same time. But in
order to consider a specific species, we have to introduce an orientation.
There are three different orientations

°o->0-—> 0 denote the species by &,
s—o—>0 denote the species by 57,

¢o—>o<0 denote the species by S”.

Also there are functors §;,~: [(8") — I(S"), and s,": [(8") —I(S") which kill
just one indecomposable representation, namely F;, and F,, respectively.
Now there is an obvious full embedding I(,M, (& ;M) —[(S"), given by
(X,V,p)—>Vwith V, =X, V, = X®,M,, V3 =7, and it is easy to
see that also the compositions with s,~ and 5,75, are embeddings (here, we
use that ,M, is not at the same time one-dimensional as a left vector space
and as a right vector space).

5.2. It remains to prove Theorem 2 in case S is a bimodule. Now
given a bimodule ;Mg 5 0, its center 1s defined as the set of all elements
(f,g)€F X G with fm = mg for all me M. If (f, g) belongs to the center of
M, then f belongs to the center of the division ring F, and g to the center
of G. For, let f' €F, and 0 % m e M. Then

f(f'm) = (f'mg = f'(mg) = f'fm,

and therefore ff' = f'f. Also, if (f, ), (f, &) and (f, g') belong to the center
of M, then f = f" and g = g’. Therefore, often we will identify the center of
M with its projection into F, or into G. Note that #n case dim Mg = 2, the
center of M is then just the set of elements f € F with fm e mG for all me M.
For, we claim that from fm, = m g, fmy = mygs (0 7 my, my € M)
we may conclude g, = g, . There is an element m € M, such that m and m; ,
and similarly m and m, are linearly independent in M . Let fin = mg. Then
fm + m) = mg + my g, € (m + m)G implies g = £, , thus alsog =g, -

Of course, if ;M is algebraic over K, then K is canonically embedded
into the center of M, and M is algebraic over its center.

5.3. We assume now that M, is an algebraic bimodule with center
K, such that (dim M)(dim Mg) = 5. Let f = dimg F, and g = dimy G.

If max( f, g) > 1, we construct orthogonal points A, , A, such that End(4,)

481/41/2-4
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has K-dimension < max( f, g) and Ext(4, , A;) 5 O for all choices | -7 1,j < 2.
Consider first the case that both dim ;M and dim M; are > 2. Since
max(f, g) > |, there is a, such that either Fa, £ 4,G or &,G{ Fa, . Let
A, = (a,) = (Fr, M/a,G, 7). Since End(4,) can be identified both
with {feF ! fa, € a,G} and with {ge G| a,geFa}, it follows that
dimyg End(4,) < max( f, g). In case K is infinite, we have seen previously in
Section 3 that there is some other a, # 0 in M such that 4, and A, = (4.)
are nonisomorphic. In case K is finite, a counting argument shows that Fa,G
is a proper subset of M, and therefore there is again such an element a4, .
The assertion about Ext(4;,A4;) is a consequence of the fact that
G(dim A, , dim 4;) < 0.

Next, consider the case dim ;M — |, thus ;Mg = ¢F; . Let Ufi = 1,2)
be 2-dimensional subspaces of F; such that fU, # U, for all feF, and
A; =(Fr,F/U;, 7). Then End(4;) can be embedded into End(Us),
therefore dimy End(4;) << 4 - g < f. Again, the assertion about Ext follows

from the value of the bilinear form §. A similar argument works in case
dim M; = 1.

5.4. We show by induction on max(f, g) the existence of a full exact
embedding w(K’) — I(;M;), where K’ is an extension field of K. If
max( f,g) = |, then F = K -= G, and therefore ;M is of the form K",
with m = 3. Obviously, there is such an embedding of w(K) into I( fMe).

If max(f,g) > I, then we have those two orthogonal points A;, 4.
We construct two representations X and Y as extensions of the form

4
« 4 « A
XJ;, Y|A2.
¢ 1y !' 1
.Al

That is: if we simplify 4, and 4, , then X and Y are both serial objects, and
the composition factors are as indicated. Then X and ¥ are again orthogonal
points, and their endomorphism rings can be embedded both into End(4,).
It remains to consider the End(Y)-End(X)-bimodule Ext(X,Y). Now,
Ext(X, Y') maps as End(Y)-module onto Ext(4, , Y), and it is easily seen that
the End(Y)-vector space Ext(4,, Y) is at least three-dimensional. Also, as

End(X)-vector space, Ext(.X, ¥) maps onto Ext(X, 4,) and this vector space
1s at least two-dimensional.

On the other hand, we have a full exact embedding

[(Ext(X, Y)*) 2> [{Ext(X, Y)) & [(;Mj),
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therefore, the result follows by induction. Note that the center of Ext(X, )
contains K, but perhaps may be larger—this is the place where the extension
field K’ comes in.

6. BiMopULES WITH CONSTANT DIMENSION

6.1. Let ;M be a bimodule. Denote by .W* = Hom(zM¢; , £FF)
and by MR = Homg(zMc , ¢G¢) the dual modules with respect to F and G
respectively. Both ML and MR® are G-F-bimodules, and we may continue
the process. Thus, let Mg = M, and define

Mg,y = M for i=0,

1M(1;1) = J‘/Iﬁf' for 1< 0.

In this way, we get a family Mg, of F-G-bimodules, indexed over the
integers Z. If all My, are finite dimensional on either side, then we have for
all 4, Mg = MER and M_y = M. Now (Mg is said to have constant
dimension (with respect to dualization) provided dim (A = dim ;M and
dim M, == dim M, for all , and these dimensions are finite.

Note that dim(M*); = dim zM, and dim o(MR) = dim(M*R); , provided
these dimensions are finite. In particular, if £}, has constant dimension, then
all the bimodules My and M, have equal F-dimension, and equal G-
dimension.

6.2. If M, is a bimodule with dimpM = 1 = dim M, then
M. has contant dimension. Namely, in this case, we may identify M with
F, since ;M is one-dimensional, and then we may identify G with F, since
G is just End(zM) = End(;F) == F. Thus, we may identify M with the
canonical bimodule Fr.

6.3. Extensions of bimodules with constant dimension have constant
dimension. For, let ;M be a bimodule, and assume X is a submodule such
that both X; and g(M/X); have constant dimension. Consider ML, Let
X+ = {¢| ¢ € ML and p(X) = 0}; this is 2 G-F-submodule of M~. But it is
well known that X is isomorphic to (M/X), and that M4/ X" is isomorphic
to XL, both as G—F-bimodules. From this it follows that dim, M = dim(M")g
and dim M, = dimg(M™h).

6.4. We will call ;M affine, provided (dim MY dim Mg) = 4
(the diagram of the species ;Mg is just an “affine” diagram). Every affine,
nonsimple bimodule (Mg has constant dimension. Namely, let (X be a nonzero
proper submodule of M. Then dim; X = dim ((M/X) =1, and
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dim X; = dim(M/X); = 1, and therefore, both X; and M/X); have
constant dimension. As we will see, in this case it is quite easy to give an
explicit formula for the dual MZ.

Let M. be affine and not simple. Let X; be a nonzero proper sub-
module of M. Let 0 # xy€ X and t € M\X. We may identify X with
rFr using the element x; as 1 € F. In particular, we have identified F with G,
and X is an F-F-bimodule such that x,f = fx, for all fe F. Since x,, t is a
basis of M, we may define (set-)mappings 8, e from F into F by

tf =f8 x4+ fc-t, for feF.

Obviously, & and € both are additive, and the equality

(fufe)xy + (fife)t = tffe) = () fe = (% + HDx + (fife)t

shows that ¢ is an endomorphism of F and that 8 is an (e, 1)-derivation. Also,
Fx, + Fet 1s a right F-subspace of M}, and therefore equal to M. Thus, it
follows that « is also surjective, thus an automorphism. Conversely, let F be
a division ring, and ¢ an automorphism of F, § an (e, 1)-derivation of F.
Define an F-F-bimodule M(e, 8) in the following way. Let M(e, 8) =
¢F @ gF, with right F-structure given by

(a,b) - f = (af + bf%, bf), for a,b,fekF.

Since ¢ is an automorphism, dim M(e, 8); = 2, thus M(e, 8) is affine. Also,
F @0 is an F-F-submodule, so M(e, §) is not simple. This shows: the affine
nonstmple bimodules are just those bimodules which are of the form M(e, 8).

If we do not allow the identification of the two division rings operating on
the bimodule via the operation itself, we have to consider another auto-
morphism of F. Let «, € be two automorphisms of the division ring F, and

let 8 be an (e, x)-derivation of F. We define M(a, €, 8) as F @ ,F with right
F-structure given by

(a,b) - f = (af* + bfo,bf),  for a, b, feF.

(If we allow the identification, then M(a, €, 8) becomes just M(a'e, a'8).)
We claim that M(a, €, 8)F = M(e!, !, —a~18¢-1). In order to sec this,
consider the left F-subspace U of ;¥ = M (o, €, 8) ®p M(e™L, a L,—a e 1)
generated by the elements (1, 0) ® (1, 0),(0, 1) ® (0, 1), and (1, 0) ® (0, 1)—
(0,1) ®(1,0). Then U is in fact an F-F-submodule, and f(V]U)g is iso-
morphic to the canonical one-dimensional bimodule .F; . The epimorphism
7V ¢ — pFp defines an isomorphism

M(e?, ot, —a 1 §et) — Hom(;M(«, ¢, 8), cF) = M(a, ¢, 8)*.
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Similarly, M(x, €, 8)® = M(e}, o !, —e~18a?). Note that in this way, we
may get bimodules with constant dimension such that M* and MF are non-
isomorphic.

6.5. Let S = (F;, ;M)cijcn be a connected species without
oriented cycles, such that all bimodules f (;M;)F, have constant dimension.
Then we may define the Coxeter functors C*+ and C- as usual [7], except that
C+ and C- now are no longer endofunctors of I(F;, ;M;), but

C+: I(Fi_iMj) - I(Fi.z'M;'ij)’

with ¢; = LR or = RL, and similarly (but with reversed ¢;;) for C-. But
nevertheless, for all representations V' = (V;, ;) in I(F;,;M;) and in
I(F, , ;M4), we may suppose dim V' = (dim(V;)g); to lie in one and the
same vector space Q". Then there is again the Coxeter transformation ¢ on
Q" which satisfies

dim C+V = ¢ dim ¥,

for all representations ¥ in I(F;, ;M;) which are indecomposable and for
which C+V = 0. Here, of course, we use precisely the condition that all
:M; have constant dimension. As usual, we may describe those indecom-
posable representations I of S, which satisfy either C* V=0orC ™V =0,
for some natural m. Indeed, such a representation must be uniquely deter-
mined by its dimension type, thus, for certain dimension types x € Q", we get
again with purely combinatorial arguments the existence and unicity of an
indecomposable representation V' with dim V' = x. Therefore, if the graph
of S is a Dynkin diagram, then we have the usual bijection between the
indecomposable representations of .S and the positive roots of the Dynkin
diagram. Similarly, if the graph of S is not a2 Dynkin diagram, then obviously
we have infinitely many indecomposable representations, namely at least the
2n infinite series C—"P; and C+mQ;, with 1 <¢ < n,and meN, where the
P, are the indecomposable projective representations, and the Q; are the
indecomposable injective representations.

6.6. Returning to the case of a single bimodule A, with
constant dimension, and assuming that (M is affine, that is,
(dim M) - (dim M) = 4,

we conclude that the four infinite series C-™P;, C*"Q;, 1 <1 < 2, exhaust
the set of all indecomposable representations I with dim C-V 5 dim V.
Namely, in Q?, any Weyl root can be obtained from a base root by applying
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(positive or negative) powers of a fixed Coxeter transformation. In the case
dim; M = dim M, = 2, we therefore have:

LEMMA. Let ;Mg be a bimodule with constant dimension and dimy M =
dim Mg = 2. Then, for every positive element (x, v) in 72 with | x — y | = 1,
there is precisely one indecomposable representation V = (Xy , Y , @) such that
dim Xy = x and dim Y = y, and all the other indecomposable representations
of p M, satisfy dim X; = dim Y, .

7. THE CATEGORY ¥(;M¢) FOR A NONSIMPLE AFFINE BIMODULE

1.1. Let ;M be an affine bimodule with constant dimension. Given
an indecomposable representation (X, Y, ¢), its defect 9V is defined by
0V = dim X; — dim Y, in case dim M; = dim; M = 2, and by ¢V =
2-dim Xp — dim Y, in case dim M; = 4 and dim; M = 1. A repre-
sentation is called regular provided it is the direct sum of indecomposable
representations with zero defect. We denote by v(zM;) the full subcategory

of I(zM;) of all regular representations. As usual, we have the following
equivalences,

7.2.  The following assertions are equivalent for a representation V
(1) Visregular,

(i1) ¢V =0, and 0V’ < 0, for every monomorphism V' — V,

(i) ¢V =0, and V" 2= 0, for every epimorphism V — V.

‘The proof uses only that the Coxeter functor €+ preserves monomorphisims,
in order to get (i) = (i), and that C- preserves epimorphisms, in order to
get (1) = (iii). The remaining implications are trivial.

7.3. COROLLARY ¥(; M) is an abelian exact subcategory of 1(zMg), and
closed under extenstons.

We show only the last statement. Let 0 — ¥/ — ¥ —» J'* — ( be an exact
sequence in I(zM), and assume ¥’ and V" both are regular. Since o is
additive on extensions, o1 = 0. Let U beasubobject of V. Then UN V'isa
subobject of V', thus (U N V') < 0. Also UUnV)y=U+TV[V'isa
subobject of V”, thus also dU/(U N V') < 0. Again, since ¢ is additive on
extensions, ¢UU < (0. Thus (11) is satisfied for V.

N 74. If ¢ is an automorphism and & an (¢, 1)~derivation of some
division ring F, the skew polynomial ring F[T; ¢, 8] has as elements the formal
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sums Y _, £, T%, with f; € F and n € N, and the multiplication is induced by the
multiplication of F and the rule

Tf = fT +f° for feF.

‘THEOREM. Let € be an automorphism and 8 an (e, 1)-derivation of the division
ring F. Let M = M(c, 8) and R = F[T;¢,8]. Then v(M) = mg X 1, where
W #s a uniserial category with one simple object and gl.dim. u = 1.

Proof. Let e =(1,0), t =(0,1)eM =F@F. Let N =Fe =¢F,
and 7: Fx ®y Mz—(M|N) the canonical projection. Then S=(F¢, M|N, =)
is a simple regular representation, and we define u as the full subcategory of
all objects in (M) with all composition factors isomorphic to S.

If (X, Y, p) is a representation of M, let 4 = {ac X | pla ® e) = 0} and
B ={becX|thereisac X withpla®e+ b ®1) =0} Note that 4 and B
are F-subspaces of X . This is obvious for 4, and with a @ e + b ®talso
(@®e+bROD =(a+ bf<79) @ e + bf @t belongs to the kernel
of .

If V= (X,Y,¢)is now a simple representation in t{M), then either
V =S, orelse 4 =0, and B = X. Namely, assume there is 0 £ ac A.
Then V' = (aF, p{aF @ M), ¢') with ¢’ the restriction of ¢ to aF, satisfies
oV’ 22 0, so by 7.2, 9V’ = 0, and therefore V"' is regular. Since V is simple,
we conclude V' = V, and obviously F' is isomorphic to S. Thus, we may
assume A = 0. But since ¥ = 0, the condition ker p N X ® e = 0 implies
kerp + X Qe = X ® M, thus B = X.

If T is simple in ¥(M), and not isomorphic to S, then Ext(T, S) = 0.
Namely, let 0 — .S ¢— V2 T—0 be exact, with V =(X,Y,¢), S=
(S,,S,,n and T = (T}, Ty, ¢). Form B(V), and we claim that
S, N B(V) = 0. Otherwise, there is some a () ¢ + b®tinker pwithbe S;,
and under y we get @@ ® e € ker . Now, since A(T) = 0, @ = 0, and there-
fore aeS,, thus be B(S;) = 0. Also, we claim S, + B(V) = X. For,
B(V)maps under y onto B(T) = T, . Letd;, 1 <t <m, be a basis of B(V).
Since S, ® e C ker @, and S; @ B(V)} = X, there are elements a; € B(V)
such that a; Qe + b; ® t e ker g, for all 7. It then follows that ker ¢ ==
(S, ® M Nker ) ®(B(V)® M N kerg) and therefore V' is the direct
sum of S and T.

Also, if T is simple and nonisomorphic to S, then Ext(S, T) = 0. Again,
let S = (8,,S,,n), V=XY,gand T =(Ty, T, , ) and assume there
is given an exact sequence 0 — T — V2 §->0. We need in X an element
a + 0 with pla ®e) == 0. Leta @ e + 5 @t be an element of ker ¢ which
does not belong to Ty ® M. Then, under y, we get @ &e-—b"®tin
ker 7 = S, ® e, and therefore b = 0, which means beT, = B(Ty). As a
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consequence, there is @’ X e + b X ¢ in ker ¢, with @’ € T, . It follows that
(@ — a') ® e belongs to kerg, and a — a’ 5 0. The last inequality is a
consequence of the fact that a’ € T, , whereas a¢ T, since A(T) = 0.

Next, we will show that Ext(S, S) is one-dimensional both as left End(.S)-
vector space, as well as right End(.S)-vector space. The endomorphism ring
End(S) of S consists just of the left multiplications by elements of F, since
the canonical projection m: Fr X My — (M|N); is, in fact, an F-F-homo-
morphism. On the other hand, using the notation of 2.4, we have S = (e),
and therefore Ext(S, S) = Ext((e), (¢)) =~ M/Fe + eF = M'N. Obviously,
this isomorphism is an isomorphism of bimodules, namely of the End(S)-
End(S)-bimodule Ext(S, S) and the F-F-bimodule ,(M/N);, with respect
to the identification of End(S) and F mentioned above. As a consequence, u
is a uniserial category. It is well known that the category [(M) is hereditary.
Using Corollary 7.3, we see that the same is true for r(M), and therefore also
for the subcategory u, since (M) is the direct product of u and some other
subcategory m. Since Ext(S, S) # 0, we conclude gl.dim. u = 1.

It remains to determine the category m. Now m is the full subcategory of
(M) of all objects with composition factors of the form ¥ == (X, Y, ¢) such
that 4(V') = 0 and B(}J') = X, and we want to show that it is equivalent to
the category m, of all R-modules of finite length over the skew polynomial
ring R == F[T; ¢, 8]. Given such an R-module A, , define D(4;) = (4r,
Ay, ¢) where : Ay @p My — Ag is given by p(a Q) ¢) = a and g(a ® 1) =
aT, for a€ 4. It is an easy calculation that ¢ is indeed F-linear, and that D is
a functor from m, into m. Conversely, given an object V' = (X, Y, ¢) inm,
then ¢(? (¥ ¢) is an isomorphism of X, onto Y, and X, becomes an R-
module, if we set aT = b, provided p(a ® t) = (b %) ¢), that is provided
the element a % # — b ) e belongs to the kernel of ¢. This then shows that

D is an equivalence of categoties. Therefore, ¥(M) is the product of the
categories mp and u.

7.5. We have proved Theorem 4 of the introduction. Let us derive
from this the corollaries mentioned there. Let F be a differentially closed field
with derivation 8. Then, as Cozzens [5] has shown, R = F[T; 8] has just
one simple module, namely F, and this module is injective. Therefore,
FMy = M(1, 8) furnishes an example for Corollary 1. On the other hand, let
F = K(Y') be the field of rational functions in one variable ¥ over a field X,
and let § be the usual derivation in K(Y). Again, we consider the ring R =
F[T;8). If K is algebraically closed, then for any simple R-module, 4,
End(4) = K, whereas Ext(4, B) is infinite dimensional as K-vector space,
for any two simple R-modules 4 and B. This was shown by MacConnell

and Robson [10]. But we know that this implies that w(K) can be embedded
into v(;M;) where M = M(1, 8).
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8. NONSIMPLE, AFFINE BIMODULES

In this final section, we give a proof of Theorem 5. Thus, let ;M be a
nonaffine bimodule with center Z, and assume dimz M < X, . Note that Z
operates centrally on every Hom-set and every Ext-set of the category
LQ(pM). Let 0 7= U +# M be a proper F-G-submodule of ;M .

8.1. There are two orthogonal points A, B in L(:M;) with
Ext(A, A) # 0 and either Ext(4, B) = 0 or else Ext(B, 4) 5 0.

Proof. Let 0 # ae U, and be M\U, and consider the representations
A = (a) = (F¢, MjaG) and B = (b) = (Fr, M/bG) introduced in Section 2.
Then both 4 and B are points, and Ext(4, 4) = M|Fa + aG 5 0, since
Fa + aGC U. If dim; U > 2, then Fa -+ bG # M, since Fa is properly
contained in U, and G N U =0.If dim(M|U); =2, then again Fa+bG # M,
this time since Fa + bG -~ U/U = bG + UJU 1is a proper subspace of
MJU. In both cases, therefore, Ext(4, B) = M[Fa + bG 5 0. Similarly,
if dim U, > 2, or if dim f(M/U) = 2, then Ext(B, A) # 0. It is obvious
that A and B are orthogonal.

8.2. There are countably many pairwise orthogonal points A; in
Q(Mg) such that Ext(A4; , A;) 7 0 for all 1, j.

Proof. We assume, the points 4 and B of 8.1. satisfy Ext(B, 4) # 0,
the other case can be proved dually. Simplify 4 and B. Let e = () yoes €5)
be a sequence with e; = 0, or 1. Given such a sequence ¢, we define a represen-
tation X(e) of length n + ¥ ¢, as follows. X{(e) contains a uniserial subobject
Y, of length 7 with composition factors of the form A, such that X(e)/¥Y,is a
direct sum of copies of B. Obviously, Y,, is uniquely determined as subobject
of X(e). Moreover, if e; = 1, then X(e) shall contain a serial subobject
of length ¢ + 1, such that its hat (the upper composition factor) is of the
form B, and all the other composition factors are of the form 4. The structure
of X(e) can be illustrated by the following pictures.

e=1(0,0,1,1) e=1(0,01,0,1)

B B.
B \. A \- A
N B. 4
e N\
7, 4

/1
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Of course, such an object X(e) usually is not uniquely determined. However,
objects with the prescribed structure do exist, since we are working in a
global dimension | category with 4 and B simple.

Now, assume there is a homomorphism X(e) - X(f) given, with
e =(e;,...,e,) and f = (f;,..., f) O, I-sequences. Then Y(e) is mapped
into Y(f), say onto a subobject of length k. It follows that e,,_;,; < f; for
I << << k. Having this in mind, it is rather easy to see that for e = (0, 1),
0,0,1,1),(0,0,1,0, 1, 1),..., we get an infinite set of orthogonal points. Here,
the nth term will be the sequence (0, e,,..., &5, ,, 1) with e,; == 0, and
e, = 1 for 1 <7 < n. Also, since Ext(B, A) # 0, it follows that for
arbitrary sequences e and f, we have Ext(X(e), X(f)) # 0.

8.3. There are two orthogonal points X, Y such that the End(Y )~
End(X)-bimodule Ext(X, Y) contains a submodule of the form @, N, with
N; 5 0 for all 1.

Proof. Let A,,..., A, be five pairwise orthogonal points with Ext(4,, 4;) #0
for allz, 5. Simplify those 4,’s. Let X = A, , and construct an indecomposable
Y with an exact sequence

3
0—>®Ai—> Y—>A4,-0.
i=1
Of course, Y is again a point, and any automorphism of Y leaves invariant the
subobjects A;, 1 <<7 <{ 3, of ¥. We consider the corresponding long exact

sequence with respect to Hom(X, —). Since Hom(X, 4,) = 0, we get an
exact sequence

3

0 — Ext (X, ) Ai) “ Ext(X, Y) — Ext(X, 4,)

i=1

and the decomposition

3 3
Ext (X, Ai) = P Ext(X, 4,)
i=1 i=1
is a decomposition of End(Y)-End(X)-bimodules. Of course, by assumption,

Ext(X, 4;) # Ofor all i. Thus, let N, be the image of Ext(X, 4,) in Ext(X, Y)
under y.

8.4. Let D = End(X), E = End(Y) and (N, = @%, N, . Accord-
ing to 1.5, 8*(cNp) can be considered as a full exact subcategory of €(zMp)-
Let K be the center of ;N , then Z can be considered as a subfield of K.
It is easy to see that with dim, M < ¥, also dim, N < N, and therefore, a
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fortiori, dimgy N <7 N, . Again, we will use that K operates centrally on all
Hom-sets and all Ext-sets, now of the category £*(zNp).

8.5. There extst two orthogonal points 4, B in Q*(gNp) with End(A1) =
K = End(B) and dimg Ext(4, B) = 3.

Proof. Let (C,; C,) be a Corner quintuple of rank = max(®,, dimg N).
Let I, be a base of C,,/C; and J, be a base of C; . Since both sets have the same
cardinality, we may choose a bijection =; : I; > J;, for I <1 < 5.

Let P, be a basis of N; over K. The cardinality of P; is < dimg N, therefore
there is a surjection ¢; : I; = P;, for 1 <7 <3.

We want to construct a representation 4 = (C;, @z Dp, Cy @7 EE, ¢),
where @: C, ®; Dp — Cy ®7 Ex ® N. The ith component ¢, : Cy ®z Dp —
Cy, ®z Ex ® N, of ¢ will be defined as the composition of

Co Xz Dp— (Co/Ci) ®i Dp—C; ®z N;— Co &z Er ® N;,

where the first map is the canonical projection, the last map is given by the
inclusion C; C C, and the canonical isomorphism N; — Ex @g N;, and the
middle map is defined by

kR d—m(k) ® e(k)d, for kel;, deD.

Note that the kernel of this map @; : Cy ®z Dp— Cy @z Eg @ N, is precisely
C, ®; Dp, and that the set {x € Cy ®z Eg | there is ke l; with
(x ® N;) N ok @ D) # 0} generates just C; @z £ .

Now, let («, B) be an endomorphism of 4 = (Cy @z Dp, Co @z Ek, @)
Then « € End(C, %7 Dp) has the property o{C; ®z Dp) € C; ®z D), for all 4,
and since (C, ; C;) is a Corner quintuple, « is just scalar multiplication by
some d € D. If « = 0, then obviously also 8 = 0, thus we may assume d 5 0.
We want to show that 8(C; ®; Er) C C; ®z Eg. Thus, let x € Cy ®z Eg,
and 0 s y e N; such that x ®y belongs to ¢,(k @ D), for some kel,,
say x ®y = @k ®d’), with d’€ D. Then

prRy = (BR1) ek @) = palk ® d) = gk @ dd’),

and therefore also fx e C;, ®z Er. As a consequence, B is given by scalar
multiplication by some ec E. We claim that xd = ex for all xe N. First,

let x € P, , so there is ke I; with (k) = x. Then

mi(%) @ xd = @k ®d) =k ®1) = (B Nk ®1) =
== m,(k) X ex,

and therefore xd — ex, for x € P;. But P; is a basis of N; over the field K

e e
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which centrally operates on N, and consequently xd = ex for all xe N;.
But this, of course, implies that the pair (e, d) belongs to the center K of the
bimodule N, . Namely, e belongs to the center of E, since for ¢’ € E and any
0 s xe N, we have

(ee')x = e(e'x) = (e'x)d = €'(xd) == e'(ex) = (ee)x,

and similarly, d belongs to the center of D.

If (Cy; C;) and (Cy’; C/) are orthogonal Corner quintuples, and if we
construct representations A == (Cy Wz Dp, Cy ®z Eg, ¢) and B =
(Cy ®zDp, Cyf @7 Ep, ¢') as above, then 4 and B are orthogonal
points. For, if (a, B): A — B, then a: C, ®; Dp — Cy ®z Dp
satisfies o(C; @7 Dp) C Cy' ®; Dy, since C; ®y Dy is the kernel of g,
and C;’ ¥z Dp is the kernel of g,". Therefore o = 0, and then also 8 = 0.

In order to show that Ext(4, B) is sufficiently large, we use that
Ext(4, B) — H/W, where

H = Hom(C) ®; D, , Cy ®7 Ex® Np),

and

W={(1®e®lp—¢(l ©d)ieck deD},

which is proved in a similar way as the corresponding assertion for £(;Mj),
see 2.1. We introduce

H;, = Hom,(C, Xz Dp, Cy ®z Ex ® Ny,
W, = {yeH;| YC; ®z D)C CY @z Eg @ N}

Then H = @-_, H,, and W, is a proper K-subspace of H;. But
it is easy to see that W C @ll W;, since ¢ vanishes on C; ®; D, and
tp’(:‘C0 ®z D)C C/ ®z Eg @ N;. As a consequence, Ext(4, B) has
@1 Hi/W, as an epimorphic image, and thus dim; Ext(4, B) = 3.

8.6. There is a full and exact embedding of W(K) into L(zMy).

Proof. Recall that W(K) is defined to be the category of all right R-
modules over the free K-algebra K<x, y> in the two variables x and y. Let U
be a three-dimensional K-subspace of yExt(4, B), with basis uy , s, Us -
There is a full and exact embedding of I(K) into £*(xUx) mapping

the R-module M, onto the representation (Mg, My, @) with ¢: Mx—>
M}( ®K UK' deﬁDEd by

e(m) =mQu, + me Qu, + my Qus.
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Also, by 1.5, there is a full and exact embedding of 2*(¢Uy) into L*(eNp),
so all together, we have the following functors.

W(K) — L¥(xLx) — L*(eNb) = L(eMo),

and all three are full and exact embeddings.

Note added in proof (June 17, 1976). In this note, we want to comment on some of
the results of the paper and to add several remarks on further developments.

The homological interpretation of the quadratic form g and its corresponding
bilinear form § given in Lemma 2.2 is crucial for the paper. It is possible to give
another (and even easier) proof of the equality

d(dim 4, dim B) = dimg Hom(4, B) — dimy Ext'(A4, B).

Both sides obviously are additive with respect to extensions (the right side, since we
are working in a hereditary category), therefore one may assume that both represen-
tations 4 and B are simple, say A = F;and B = F;. But then either 7 = J, and then
dimg Hom(A4, B) = f;, Ext(4, B) = 0, or else i # i and then Hom(4, B) =0
and dimy Ext(4, B) = m,; . In categories which are nonhereditary, but which have
finite global dimension, the corresponding bilinear form

Y. (—1)* dimg Ext*(4, B)
k30

should turn out to be of equal importance.

For two affine algebraic bimodules, namely, for R¥H and CCR ® REC (where
R, C, H denote the fields of real, complex, and quaternion numbers, respectively)
an explicit description of all finite dimensional indecomposable representations has
been worked out in detail by V. Dlab and the author {(“Real subspaces of a vector
space over the quaternions,”’ to appear, and “Normal forms of real matrices with
respect to complex similarity,” to appear in Linear Algebra and its Applications),
using Theorems 1 and 4 of this paper.

M. Auslander has introduced the notion of an almost split exact sequence, and this
concept turned out to be very fruitful. For algebraic bimodules rMg , it is possible to
describe completely the almost split exact sequences: There are the obvious ones for
the preprojective representations, namely,

0 — C-*P, > @ C-*1P, - C*P, — 0,
0 —>C*P,— @ C*P,— C*1Py -0,
b

where P, = (Ff¢, Mg, id), P, = {0, Gg, o) are the two indecomposable projective
representations, k >: 0, and a = dim Mg, b = dim (M. There are similar ones for
the preinjective representations C* t (where I'is indecomposable injective and k > o),
the middle term is again a direct sum of a or b indecomposable representations. The

remaining almost split exact sequences

0->A4—-+B-~>C—>0
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have the property that B is the direct sum of at most two indecomposable representa-
tions. This shows the amazing fact that the regular representations of an algebraic
bimodule (i.e., those corresponding to imaginary roots) behave (in some respect)
like serial objects. An account of this will be given in a forthcoming paper.

It has been shown in the paper that there is a clear distinction between three types
of K-species: The species may be of finite, tame, or wild representation type. This
distinction 1s, however, of relevance only for finite dimensiona! representations;
the difference between “‘tame’ and ““wild’’ disappears if we consider infinite dimen-
sional representations. Namely, it can be shown that for any K-species S with non-
definite quadratic form, there is a full and exact embedding 2B(K’) C £(S), where K’
1s an extension field of K contained in one of the fields F, . (This is only true provided
we exclude, as we have done in the definition of a species, oriented cycles: in fact,
there is no such embedding in case of a K-species of type A, with cvclic orientation.)
This embedding shows that the infinite dimensional representations also of a K-species
with semidefinite quadratic form are rather awkward. On the other hand, in this case,
there is one particular class of infinite dimensional representations which can be
described completely: The locally indecomposable representations (a representation
is called locally indecomposable provided every finite dimensional subobject is con-
tained in a finite dimensional indecomposable subobject). For a discussion of infinite
dimensional representations of K-species we refer to “Unions of chains of indecom-
posable modules,” Communications in Algebra, 3 (1975), 1121-1144, and a forthcoming
paper.
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