## **LETTER TO THE EDITOR**

## **One- and two-photon production of very highly excited states of caesium**

## A F J van Raan, G Baum and W Raith

Universitat Bielefeld, Fakultat fur Physik, D-48 Bielefeld 1, Federal Republic of Germany

Received **12** March 1976

**Abstract.** Very highly excited **p** states of Cs with principal quantum numbers  $30 \le n \le 85$ were produced by one-step photoexcitation with frequency-doubled light from a flashlamp-pumped dye laser. Field ionization was employed for selective detection. Ionization occurs at field strengths  $E \ge E_{\min}$  with a sharp threshold. The relation  $E_{\min}(n^*) \propto (n^*)^{-4}$ was verified over a wide range. Two-photon excitation to a very high state via a virtual intermediate state leads to immediate ionization of most of the excited atoms; in this case the ion signal as a function of the light intensity *I* is not proportional to  $I^k$ ,  $k \ge 2$ , whereas a direct two-photon transition into the continuum yields proportionality with *12.* 

Highly excited atoms are being studied in many laboratories with various techniques and different scientific as well as technical goals (cf *Physics Today* November 1975). Very highly excited H atoms with quantum numbers *n* up to 69 have been produced by Bayfield and Koch (1974) in charge transfer to fast protons; optically excited sodium atoms in s and d states up to  $n = 37$  were obtained by Ducas *et al* (1975). *So* far, photoproduction of highly excited atoms involved either one-photon absorption of already collisionally excited atoms (Latimer *et a1* 1975, Koch and Bayfield 1975, Koch *et a/* 1975) or two-photon absorption in a two-step process via a real intermediate state (Gallagher *et al* 1975, Ducas *et a1* 1975, Fabre and Haroche 1975, Ambartsumyan *et a1* 1975). Here we report the production and detection of very highly excited caesium atoms up to  $n \approx 85$  obtained with one-photon excitation from the ground state.

An atomic beam of caesium was crossed by a laser beam in a region between capacitor plates used for producing an ionizing electric field. The *Cs'* ions were extracted and detected by means of a channel electron multiplier.

Light from a flash-lamp-pumped dye laser, tuned by an intercavity interference filter and a Fabry-Perot etalon, was frequency-doubled by means of a KDP crystal. Since the wavelengths needed for one-step excitation of very highly excited caesium Light from a flash-lamp-pumped dye laser, tuned by an intercavity interference<br>filter and a Fabry–Perot etalon, was frequency-doubled by means of a KDP crystal.<br>Since the wavelengths needed for one-step excitation of very is favourable for the use of the dye rhodamin 6G dissolved in water. The laser operated with a peak power of about 1 kW after frequency-doubling. The light-pulse length was  $0.3 \text{ }\mu\text{s}$  and the line width about  $0.3 \text{ cm}^{-1}$ .

The principal quantum number *n* of the states formed was identified by measuring the wavelength of the dye-laser light with a monochromator (accuracy 0.01 nm), which had been calibrated with a He-Ne laser  $(\lambda = 632.8 \text{ nm})$ , and comparing the measured values with the very accurate spectroscopic  $\lambda$ (air) data of Kratz (1949). Given the



**Figure** 1. Ion signal plotted against electric-field strength for field ionization of caesium atoms in the 42 **p** state.

band width of the laser line and taking into account the frequency instability of the flash-lamp-pumped dye laser we estimate that above  $n \sim 40$  two adjacent states can be excited with one laser setting and three states above  $n \sim 70$ .

Under our experimental conditions (Cs atom density in the beam  $\sim 10^8 \text{ cm}^{-3}$ , interaction volume  $\sim 0.004 \text{ cm}^3$ ) we observed typically five very highly excited atoms per laser shot. Background counts were negligible. The atomic-beam system is differentially pumped and equipped with liquid-nitrogen-cooled slits and traps ; the pressure in the interaction region was about  $3 \times 10^{-9}$  Torr. The counting electronics are gated with an open time of 1 ms immediately after each shot; in this way multiplier dark pulses were sufficiently suppressed.

Figure 1 shows the ion signal as a function of the applied electric-field strength for field ionization of Cs(42 p) atoms. The very sharp threshold at  $E = E_{min}$  is similar to the measurements of Ducas *et a1* (1975) for field ionization of s states of sodium. On the other hand, Ducas *et a1* found a much less pronounced threshold for field ionization of d states of sodium.

The measurements of  $E_{\text{min}}(n^*)$  are shown in figure 2. The effective quantum number is given by  $n^* = n - \Delta$ , where  $\Delta = 3.6$  for the p states of caesium. Without the Stark effect, the theory gives  $E_{\text{min}}(n^*) = 16(n^*)^{-4}$  au (Ducas *et al* 1975); this relation is shown as a broken line in figure 2. Because of the Stark effect the actual minimum field strength is larger.

Two-photon excitation via a virtual intermediate p state was studied by simply removing the frequency-doubling crystal. We found that without any ionizing electric field between the capacitor plates about 80% of the very highly excited atoms were ionized immediately in the electromagnetic field of the laser light (peak power 80 kW without frequency-doubling). Immediate ionization was observed for  $29 \le n \le 85$ . Measurements of the ion signal as a function of the light intensity *I,* obtained with a photon energy equal to half the excitation energy of the  $n = 42$  state, are shown as open circles in figure 3. The signal does not increase proportional to  $I^2$ , as one would expect for a two-photon process. At high intensities the signal is proportional



**Figure 2.** Minimum electric-field strength for field ionization of caesium p states plotted against their effective quantum number.

two-photon excitation of the 42 p state (9 meV below ionization threshold); full circles: two-photon excitation of a continuum p state (88 meV above threshold).

to  $I^k$  with  $k \leq 1$ ; the measurements are not yet accurate enough to decide whether  $k = 2$  is approached at low light intensities. For comparison we measured the ion signal obtained with laser light of slightly shorter wavelength for which two-photon excitation led to a continuum state. For this direct two-photon ionization the ion signal is proportional to  $I^2$  (figure 3, full circles).

This research has been supported by the Ministry of Science and Research of the State of North Rhine-Westphalia under Grant No **I1** B 7-FA 6117.

## **References**

Ambartsumyan R V, Bekov G I, Letokhov V S and Mishin V I 1975 *JETP Lett.* **21** 279-81 Bayfield J E, Khayrallah G A and Koch P M 1974 *Phys. Rev.* A **9** 209-18 Bayfield J E and Koch P M 1974 *Phys. Rev. Lett.* 33 258-61 Ducas T W, Littman M G, Freeman R R and Kleppner D 1975 *Phys. Ret.. Lett.* 35 366-9 Fabre C and Haroche S 1975 *Opt. Commun.* **15** 254-7 Gallagher T F, Edelstein S A and Hill R M 1975 *Phys. Ret..* A **11** 15046

Koch P M and Bayfield J E 1975 *Phys. Rev. Lett.* **34** 448-51

- Koch P M, Gardner L D and Bayfield J E 1975 *Proc. 9th Int. Conf. on Physics of Electronic and Atomic Collisions, Seattle* (Seattle: University of Washington Press) Abstracts **pp** 473-4
- Kratz H R 1949 *Phys. Rev.* **75** 1844-50
- Latimer C, West W P, Cook T B, Dunning F B and Stebbings R F 1975 *Proc. 9th Int. Conf. on Physics of Electronic and Atomic Collisions, Seattle* (Seattle: University of Washington Press) Abstracts **pp**  847-8, 849-50