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Let R be a finite dimensional hereditary algebra. We are concerned with the
problem of determining the indecomposable R-modules of finite length. This
problem completely has been solved in the case when R is of finite or of tame
representation type, but seems to be rather hopeless in the case of wild
representation type. [n this situation, the only known classes of modules are the so-
called pre-projective and the pre-injective ones. The remaining indecomposable
modules are called regular. In this paper, we want to initiate the study of the regular
modules. The result we obtain seems to be rather surprising: we will show that the
regular modules behave rather similar to modules over a serial algebra.

In order to state the main theorem, we need the notion of an irreducible
homomorphism, which was introduced by Auslander and Reiten [3]. Let X and Y
be two non-zero R-modules. A homomorphism f: X — Y is said to be irreducible, if
it 1s neither a splst monomorphlsm nor a split epimorphism, and if for any
factorisation X —— I—L5 Y of f, either f* is a split monomorphism or f* is a split
epimorphism. Note that an irreducible homomorphism is always either a
monomorphism or an epimorphism. A non-zero R-module § will be called quasi-
simple, if S is regular, and there is no irreducible monomorphism of the form U - §
with U non-zero. In this case, we will call the map 0§ irreducible.

Theorem. Let R be afinite dimensional hereditary algebra. Let M and N be regular R-
modules, and let

0=M0CM1C"'CMS_1CMSZM
and
0=NycN,c-cN_,cN=N

be chains of irreducible monomorphisms. Then we have:

(1) If M and N are isomorphic, then s=t and there is an isomorphism - M — N
with M, f =N, for all i.

(2) On the other hand, if s=t, and, for some i, M;/M,_, is isomorphic to N;/N,_,,
then M and N are isomorphic.
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(3) The factors M;/M,_, are quasi-simple.

Conversely, given a quasi-simple module S, a natural number s, and a natural
number i with 1 Zi<s, then there exists a regular R-module M with a chain 0
=MicM,c--cM,_,cM,=M of irreducible monomorphisms such that
M,/M,;_, is isomorphic to S.

One should be aware in (1) that in general not every isomorphism f: M — N will
satisfy M, f = N, for all i. In the last section, we will give examples of this situation.
This means that the analogy to serial modules is not complete. However, similar to
the case of modules over a serial algebra, we see that the classification of regular
modules completely is reduced to the classification of quasi-simple modules, as the
following corollary shows.

Corollary. Let # be the set of regular R-modules, let & be the set of quasi-simple R-
modules. Then there is a bijection # — & x N, where a regular module M with a chain
of irreducible monomorphisms 0=M,cM,c---cM, ;<M =M is mapped onto
the pair (M/M,_,,s).

Instead of considering only modules over finite dimensional hereditary
algebras, we will work most of the time in a more general setting. Let R be an Artin
algebra. Define the Auslander graph of R in the following way: its points are the
isomorphism classes of indecomposable R-modules (of finite length), and there is an
arrow [X]— [Y](where [ X] denotes the isomorphism class containing the module
X) if and only if there exists an irreducible homomorphism X — Y. This is a locally
finite graph, and we will consider its connected components. In Section 2, we will
show that for R hereditary, any component of the Auslander graph which does not
contain a projective or an injective module is “ quasi-serial”, In the rest of the paper,
we will consider modules belonging to quasi-serial components, and we will prove
the theorem above in this more general setting,

The author is grateful to R. Bautista, S. Brenner and M.C.R. Butler for helpful discussions during
the preparation of the paper. The methods we will use are mainly due to M. Auslander and 1. Reiten.
The author is indebted to P. Gabriel for pointing out an incomplete argument in a preliminary
version of the paper.

1. Preliminaries

Throughout the paper, R will be an Artin algebra, thus, the center C of R is an
Artinian ring, and R is finitely generated as a C-module. Usually, we will consider
left R-modules of finite length, and we will call them just modules. Module
homomorphisms will be written on the opposite side of the scalars, thus, for (left) R-
modules X, Y, Z and homomorphisms f: X - Y,g: Yo Z, the composition of f and
g will be denoted by fg. If f is a homomorphism, we denote its kernel by Ker f, its
cokernel by Cok f. The length of a module M is denoted by |[M|. If M and N are
isomorphic modules, we write M~ N. If X < Y, then we denote the inclusion map
usually by m: X — Y, and the projection map by p: Y- Y/X.

Also, N denotes the natural numbers, Ny =N {0}, Z the integers, and R the
real numbers.

1.1. The Auslander Construction. Let M be an R-module, let P, S, P, — M be the
first two terms of a minimal projective resolution of M. Applying the functor *
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=Homg( , R), we obtain amap f*: B — P* of right R-modules, whose cokernel (a
right R-module) will be denoted by Tr M. Let I be a C-module which is a minimal
injective cogenerator. Then D=Hom.( ,I) is a duality functor from (left) R-
modules to right R-modules, or from right R-modules to (left) R-modules. For any
R-module M, we have constructed in this way an R-module AM =DTrM,and an
R-module A~ 'M=TrDM.

Let M be indecomposable. Then AM and A~ ' M are indecomposable or zero.
And, AM #0iff M is not projective, and then M~ 4~ ' AM. Similarly, A~ 'M +0iff
M is not injective, and then M x A4~ 'M.

An indecomposable module M is called pre-projective iff A"M =0 for some
nelN, iff M & A~* P for some indecomposable projective module P and some kelN,.
Dually, an indecomposable module M is called pre-injective iff A="M =0 for some
neNN, iff M~ A*I for some indecomposable injective module I and some keN,,.

1.2. The Auslander Reiten Sequences. The link between the Auslander construction
on the one hand, and the irreducible homomorphisms on the other hand, is given by
a special type of short exact sequences which were introduced by Auslander and
Reiten (who called them almost split exact sequences).

Definition. X—.>Y-%+2Z is called an Auslander Reiten sequence, iff
0-X-L»Y-£,70is ashort exact sequence, and both fand g are irreducible
homomorphisms ([3], Prop. 2.15, and Prop. 2.6b).

We collect the main properties which we will need in the sequel. Assume
X-L5y-2.,7 is an Auslander Reiten sequence. Then X and Z both are
indecomposable, and the sequence 0—X /> Y270 does not split. In
particular, X is not injective, and Z is not projective. Given a map #: X — M which
is not a split monomorphism, it can be extended to Y, thus thereis #": Y — M with
=fH'. Dually, given a map h: M — Z which is not a split epimorphism, we can lift »
to Y, thus there is h': M — Y with h=n"g.

Existence and unicity: Given an indecomposable module X which is not injective,
there is an Auslander Reiten sequence X =Y —Z. Given an indecomposable
module Z which is not projective, there is an Auslander Reiten sequence
X>Y-»Z IfX->Y—>Zand X'- Y —Z are two Auslander Reiten sequences,
then the sequences are isomorphic iff X, X" are isomorphic, iff Z, Z are isomorphic
([2], Prop. 4.3, a, b, ¢).

Relation between Auslander Reiten sequences and irreducible homomorphisms:
Let f: X — Y be a homomorphism with X indecomposable and not injective, and Y
non-zero. Then f is irreducible iff there exists f': X — Y’ such that

x-L yey - Cok(f, f)

is Auslander Reiten sequence. Dually, let g: Y —Z be a hom-omorpl_lism‘ with ¥
non-zero and Z indecomposable and not projective, then g is irreducible iff there

exists g’: Y'—> Z such that
gr
Ker (j) -Y® Y'__(i)__,Z

is an Auslander Reiten sequence ([3], Th. 2.4).
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Relation between Auslander Reiten sequences and the Auslander construction: Let
X —» Y — Z be an Auslander Reiten sequence. Then X x AZ, and Zx A4 ' X ([2],
Prop. 4.3). On the other hand, if X —» Y — Z is an Auslander Reiten sequence, and X
is not projective, then there exists an injective module I and an Auslander Reiten
sequence AX -+AY®I - AZ ([4], Prop. 2.2b.1). Dually, if X>Y->2Z is an
Auslander Reiten sequence, and Z is not injective, then there exists a projective
module P and an Auslander Reiten sequence A" 'X A~ 'Y@®P - A4-'Z ([4].
Prop. 2.2a.11).

1.3. The Hereditary Case. We assume now that R is, in addition, hereditary
(submodules of projective modules are projective). Also, we may assume that R is
twosided indecomposable, thus the center C of R is a field.

LetS,,...,§, be a maximal set of pairwise non-isomorphic simple modules. We
assume that the indices are ordered in such a way that Ext'(S,,S;) 0 implies i > .
For any R-module M, let dim M be the dimension vector of M in N3 = R" with i-th
component (dim M), being the number of composition factors of the form S, in a
composition series of M. The elements b,=dim S, form the canonical basis of R".

We define on IR" a symmetric bilinear form B as follows: Let

B(b;, b;)=dim End(S,),

[ Rl )

and

B(b;, b;)= —3dim Ext'(5;,5)) for i>].

| R |

Let s; be the reflection of R” on the hyperplane orthogonal to b, with respect to B.
The linear transformation c=s,...s, of R" is called the Coxeter transformation
for R.

The bilinear form B can be used to define the representation type of R. Namely,
R is of finite representation type if and only if B is positive definite [ 7], and we say
that R is of tame type if and only if B is semidefinite, but not definite. In the
remaining case that B is indefinite, we call R wild. This is the case we are mainly
interested in. However, our results will also apply to the regular modules in the
tame case. For, in case R is tame, the full subcategory R of all regular modules is
abelian, and it is a serial category which has no non-zero objects which are injective
or projective in this subcategory. (For tensor algebras, this has been established in
[7],Th. 3.5,and [9], Th. 1; there is only one remaining case, namely a ring of type A4,
with a non-split bimodule extension, and this case has been treated in [8].) As a
consequence, we see a monomorphism X — Y with X, Yindecomposable regular, is
irreducible if and only if Y/X is simple when considered as an object of R. Thus,
in this case, the “quasi composition series” asserted by the theorem is given by an
ordinary composition series inside the category R.

An element x=(x,,...,x,)elR" will be called positive iff x,>0 for all i. The
following criterion due to Berman, Moody and Wonenberger [S5] will be very
useful: The bilinear form B is positive semidefinite, but not definite, if and only if ¢
has a non-zero positive fix vector. For, our bilinear form B is given by a Cartan
matrix, and, using Lemma 1.3 of [7], an element xeR" is a fix vector for ¢ if and only
if it is a fix vector for all the reflections 5;, and this is equivalent to x being a null root
in the sense of [5].
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Since R is hereditary, the construction Tr is in fact functorial, and therefore A
and 4 ! are functors. In this case, the functor A is left exact, whereas the functor
A - !is right exact; in particular, A preserves monomorphisms, and A~ ! preserves
epimorphisms.

Also, in this case, the effect of 4 and 4~ ' on indecomposable modules can be
measured rather easily using the Coxeter transformation. Namely, if M is
indecomposable and not projective (so that AM +0), then

dim AM=(dim M),
whereas if M is indecomposable and not injective (so that A~ 'M +0), then
dimA 'M=(dimM)c "

In the case of a tensor algebra, this has been shown in [7] for the Coxeter functors,
and Brenner and Butler have proved in [6] that 4 is a Coxeter functor. The general
case has been considered in [1].

2. The Regular Modules over a Finite Dimensional Hereditary Algebra

The main result of this section will be the theorem that every regular module over a
finite dimensional hereditary algebra belongs to a quasi-serial component of the
Auslander graph. Here, a component € of the Auslander graph of an Artin algebra
is called quasi-serial if it does not contain any {)rojective or any injective module,

and if for any Auslander Reiten sequence X > P Y, »Z in %, wehave k<2, and, in

i=1
case k=2 and |Y,| £|Y,), then |Y,| <|X|<|Y,| and |Y,}<|Z|<|Y,]. The reason for
calling such a component quasi-serial will be seen in the next sections.

71 Lemma. Let X, Y be indecomposable modules over a finite dimensional
hereditary algebra, and let X —'Y be an irreducible homomorphism. If one of the
modules X, Y is pre-projective, both are. If one of the modules X, Y is pre-injective,
both are.

Proof. First, assume Yis pre-projective, say ¥ = A -k P for some kelN, and some
indecomposable projective module P. Now either A*X =0, and then X is pre-
projective, or, using the results of 1.2, there is an irreducible homomorphism
A*X — A*Y=P. Since P is projective, this cannot be an epimorphism, thus itis a
monomorphism, and therefore (since the algebra is hereditary), A* X is projective.
This shows that X has to be pre-projective.

On the other hand, assume X is pre-projective. If Yis not projective, there exists
an Auslander Reiten sequence of the form U —» X @ X'~ Y for some modules U and
X'. Thus, we have an irreducible homomorphism U — X, and by the first part of the
proof, U is pre-projective, say U = 4~ ! P’ for some le N, and some indecomposable
projective module P'. As a consequence, YaA-'UaxA~'"!Pis preprojective.

The pre-injective part of the statement follows by duality.

In order to show that certain components of the Auslander graph of an Artin
algebra are quasi-serial, one may use induction on the length of the modules. The
following lemma can be used in this situation.
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2.2. Lemma. Let € be a component of the Auslander graph of some Artin algebra, such
that € does not contain any projective or injective module. Assume there is some teIN
with the following property:

k
(S)) If X > @ Y, - Zisan Auslander Reiten sequence in € with Y, indecompos-

i=1
able for all i, and |A* Z| <t for some zeZ, then k<2, and, in case k=2 and |Y,| Z|Y,),
then |Y,| <|X| <|Y,l, |Y,| <|Z| <|Y.
Let M be an indecomposable module in € with [M|<t, and let

0=M,cM,c.-.cM, .cM =M

be a chain of irreducible monomorphisms with s 2 2, and M, indecomposable for all i.
Then MM, =~ A*"'(M/M__)) for 1<i<s, and, for 1<j<i<s—1,

m (")
M;‘/Mj—l"‘(P_')“*Mi/Mj@MH;/Mj-1—p’Mi+1/Mj

is an Auslander Reiten sequence.
Proof. We use induction on s. The first case we have to consider is s=2.Consider the
Auslander Reiten sequence ending with M,, say AM,— @ Y.-> M, with Y

indecomposable. Since {4~ AM | |=|M,|<|M|<t, we can apply (§,) in order to
conclude that k=1, the case k=2 being impossible since otherwise we would have
an irreducible monomorphism, say Y, - M,, contradicting the assumptions.
Applying A~ ', we see that the Auslander Reiten sequence starting with M, has the
form M, >A~'Y, > A~ ' M, in particular, the middle term is indecomposable.
Since we know that the inclusion M, - M, is irreducible, we can conclude that
M,—->M,—M,/M, is the Auslander Reiten sequence.

Now assume the result is true for s — 1. In particular, we have for 2<i<s—1 the
Auslander Reiten sequences

M,_ 2" M, M, @M,.—(-—P)_,M,./M,,
from which it follows that all the inclusions M;_ /M, > M /M, (2<i<s—1)are
irreducible. Also, we will use that the projection M, , - M__ /M, is irreducible.
Since [M,_,|<|M|<t, we can apply (S,) in order to conclude that the middle term of
the Auslander Reiten sequence starting with M__ | is the direct sum of at most two
indecomposable modules. Since we know the two irreducible maps m: M, _; —» M,
and p: M, =M, _,/M,, we can calculate the cokernel of (p,m) and see that

M, -2 M. M, @M, ( )M/M

5—1

is an Auslander Reiten sequence. As a consequence, also the inclusion
M, /M,—>M/M, is irreducible. The induction hypothesis now applied to the
chain 0=M /M, cM,/M,c---.cM _ /M,cM /M, of irreducible monomor-
phisms shows that all the remaining sequences

m )
MM, 2" MMM, /M, —E5M, /M,
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with j=>2 are Auslander Reiten sequences. Also, by induction we know that
MM, (=41 (M,_/M,_,)for I<i<s—1. The Auslander Reiten sequence

i

Ms—- I/Ms-—l_)Ms/Ms—ZH’Ms/Ms—l

shows that M _ /M _ ,~AM/M__). This concludes the proof.

2.3. Theorem. Let R be a finite dimensional hereditary algebra. Let M be an
indecomposable regular R-module. Then the component of the Auslander graph which
contains M is quasi-serial.

Proof. By 2.1, if two modules belong to the same component of the Auslander
graph, and one of them is regular, both are. Thus, if X - Y — Z is an Auslander
Reiten sequence, and one of the modules is regular, then 4°X —» 4?Y » A*Z is an
Auslander Reiten sequence for any zeZ, and all the modules A* X, A%Y, A*Z are

regular.
Let X - Y — Z be an Auslander Reiten sequence with regular modules. Let Y

k
= @ Y, be a decomposition of Y into indecomposable modules ¥,. Note that Z
i= 1

=A4~1X. We want to show that k<2, and that in case k =2 the modules Y, and ¥,
satisfy the appropriate length conditions. This will be shown in several steps.

() If Y=Y®@Y", and |X|LZ|Y’|, then |X|>|Y"|. For, assume we have both
IX|<|Y’'|and |X|<|Y"|. The map X - Y'@ Y" breaks up into two irreducible maps
X - Y'and X - Y” which have to be monomorphisms. Let m be a natural number
with [4™ X|<|4A™ ! X|. Since X is regular, there is the exact sequence

0o A" X 5 A™ LY @A™ Y 5 A" X -0,

Now A preserves monomorphisms, thus the maps A™*'X - A"*'Y’ and
A1 X 5 4™+ 1 Y" have to be monomorphisms. Therefore

JA™ LY 4 1A+ Y =A™ U X 4 A7 X | £2-|A™ X
<|A™HLY|+{A™ Y

leads to a contradiction.

(2) For i#j, we have |X|<|Y]+|Y)|. For, assume |X|2|Y,® Y}, then the given
irreducible map X — ;@ Y;has to be an epimorphism. Choose a natural k such that
JA"*X|<|A-*"'X|. Since A~ preserves epimorphisms, the corresponding maps
A*X > A Y, ®A*Y, and A7 X5 AT Y, @A 1Y, are again epimor-
phisms. With X also Y, is regular, and the Auslander Reiten sequence ending with ;

has the form
AY,»X®C;~Y,

for some module C,. Applying A~*~! we get the exact sequence
0o A Y, A 1 X@A*1C,>A 1Y -0,

and similarly

0 A~FY, > A+ X DA+ 1C,» A1 Y, -0,

L W in
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Thus
2| ALY SIATRY )+ AR Y AR Y AR Ty
<|A*"Xi+[A"‘“Xl,

a contradiction.

(3) k<3,and,incase k=3, |Y| < |X1| for alli. For,ifk 24, then | X| <| Y @Y, and
| X <|Y;@ Y, by (2), contradicting (1). Similarly, ifk=3 and |X|<|Y/ for some i, say
i=1, then |X|<|Y,®Y;| by (2), and thus again we get a contradiction to (1).

4) If k=2, and |Y,|£|Y,], then 1Y, <|X|<|Y,|, and |Y,|<|Z| <|Y,). For, by (1)
and the fact that X — Y, is either a proper epimorphism or a proper monomor-
phism, in particular |X|+|Y), we see that either IYIS1Y,) <|X], or |V, <|X| <Y,
By duality, either |Y,|<|Y,| <|Z|, or IY1<|Z|<]Y,]. Since | X| +1Z|=1Y,||+1Y,], we
conclude that it is impossible that at the same time IY1I=1Y,|<|X| and
IYiIS1Y,|<|Z], and we see that 1Y <IX]<|Y,| iff |Y,]| <|Z| <|Y,].

(5) It remains to exclude the case k=3. There is an epimorphism X — Y, for
all 1 £i<3, and therefore we obtain an epimorphism

3 3 3
AZ=DX> DY >Z.
=1 i=1 =1

The same argument for A‘Z instead of Z yields an epimorphism

3
@A Z > 4'Z. Using Konig’s graph theorem, we obtain a chain of maps
=1

. LA A IINy T SERN L BN S (BN

such that the composition g,= £, ... f, is non-zero for all teN. The images I, of g,
form a decreasing chain of submodules of Z, thus I,=1, for all 5,t =N, for some
NeN. Let I =Iy. Then, for t = N, the map g maps A'Z onto I, thus A" g, maps
Z onto A™'I, thus dimA—'I<dimZ. Since there is only a finite number of
different positive dimension vectors <dimZ, we conclude that dim A-5]
=dim A~'1 for some s+, say s <. Since I is an epimorphic image of AN Z, it
has no preprojective direct summand, and since [ is a submodule of Z, it has no
preinjective direct summand, thus I is regular, and therefore dim A'I=(dim])c
for all ieZ. Let

1 t
q= ) dimA~[= Y (diml)c-"
i=s+1 i=s+1
Then ¢ is a positive vector in R” fixed by the Coxeter transformation c.
However, this is only possible in case the quadratic form belonging to R is semi-
definite, by the criterion of Berman, Moody and Wonenberger. But then R is tame,
and the category of regular modules is abelian and serial, and therefore the Aus-
lander Reiten sequences of regular modules are known: they can be constructed

in this subcategory, and the middle term has at most two indecomposable sum-
mands. This shows that the case k=3 cannot occur,

R -
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24. Again, let R be hereditary. We want to add the precise conditions for the
existence of an R-module M with A*M ~ M for some keNN.

Theorem. Let R be a twosided indecomposable finite dimensional hereditary algebra,
and M a non-zero R-module. Then A* M x M for some keN ifand only if R is tame and
M is a direct sum of regular modules.
k-1 k-1
Proof. Assume we have A*M ~ M forsome keN.Then } dimA'M= ¥ (dimM)¢
i=0 =0
is a non-zero positive fix vector for the Coxeter transformation ¢, and therefore, by
the criterion of Berman, Moody and Wonenberger, R has to be tame. Assume now
that R is tame. We know from [7,9, 8] that for any regular module M, there exists
d

keN with A*M ~ M. If M is arbitrary, say M = @ M, with M, indecomposable for
i=1

alli, and one of the summands, say M 4» 18 pre-projective or pre-injective, then 4° M p
=0 for some zeZ, and therefore A°M is the direct some of less than d

indecomposable summands. This shows that we cannot have A*M ~ M for any
keN,

2.5. We end this section by listing some other Artin algebras which have quasi-
serial components.

First, let R be an artin algebra with (rad R)2=0. It is well-known how to analyse
the R-modules: one constructs the hereditary Artin algebra

R,_(R/radR 0 )
“\radR R/radR

and a functor o from R-modules to R’-modules with oao(M)=M/rad M@rad M.
Then a preserves the length of modules, and, if X - Y — Z is an Auslander Reiten
sequence of R-modules with X not simple, then o(X )= a(Y)—a(Z) is an Auslander
Reiten sequence of R-modules [4]. We call an indecomposable R-module M
regular provided the component of the Auslander graph which contains M does not
contain a projective or an injective module. (In case R is hereditary, this definition
coincides with the previous one according to 2.1.) It follows easily that the image of
a regular R-module under a is regular, and that the components of the Auslander
graph of R which contain regular modules are quasi-serial.

Let G be a dihedral 2-group, thus G is generated by two elements g,, g, such that
gi=g2=1 and (81 8,)"=1, for some power g of 2. Let F be a field of characteristic 2.
The indecomposable FG-modules have been determined in [10], and M.C.R.
Butler has calculated the Auslander Reiten sequences. In particular, he has found
that all components which contain modules of the second kind are quasi-serial, and
that there are, in addition two other components which are quasi-serial, namely the
components which contain the modules FG/F G(g,—1) and FG/FG(g, - 1).

3. Quasi-Serial Components

Let R be an Artin algebra. We will consider quasi-serial components of the
Auslander graph of R. For brevity, we will call an indecomposable module quasi-
serial if it belongs to a quasi-serial component. Note however — that in contrast to
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the property of being serial — the property of being quasi-serial depends strongly on
the whole category of R-modules. In particular, if the module M is annihilated by
some ideal I of R, then M may be quasi-serial as an R-module without being quasi-
serial as an R/I-module. The notion of a quasi-serial module is self-dual. Thus, with
any assertion which is valid for quasi-serial modules, also its dual assertion is valid.

3.1. Let M be quasi-serial. We call M guasi-simple in case there does not exist an
irreducible monomorphism U —» M with U non-zero. Now, if M is quasi-simple,
and AM — Y — M is an Auslander Reiten sequence, then Y has to be indecompos-
able. Applying A~ ', we see that the middle term A~ 'Y of the Auslander Reiten
sequence M > 4~ 'Y > A~ 1M alsois indecomposable, thus there does not exist an
irreducible epimorphism M — V with ¥ non-zero (and conversely). If M is quasi-
simple, we will call the two maps 0—M and M — 0 irreducible.

3.2. Let M be quasi-serial.

(@) If 0=MocM,c---cM, cM_=M is a chain of irreducible monomor-
phisms, then the modules M /M ; with 0Lj<i<s are indecomposable; the modules
M/M;_ | with 1 Si<s are quasi-simple and MM, _ = A*"{(M/M,_,), and, for
1<j<i<s—1, the sequences

m (™
MM, =" MMM, M, — D

are Auslander Reiten sequences.

(b) If 0=M,c=M,c-..cM,_ | =M, =M isa chain of conclusions, then this is a
chain of irreducible monomorphisms if and only if

M=M/My—>M/M,~ - -M/M,_,~M/M,=0

is a chain of irreducible epimorphisms,

() f 0=M,cM,c-.cM, ,=M,=M and 0=MycM\c---cM, =M,
=M are two chains of irreducible monomorphisms, then s=t, and, Jorall0<j<i<s,
we have M /M~ M /M.

Proof. First, assume 0=M,cM, c-..cM,_, <M_,=M is a chain of irreducible
monomorphisms. Consider an Auslander Reiten sequence AM — Y — M. Since
M,_, =M is irreducible, M,_, is a direct summand of Y. However, any direct
decomposition of Y has at most one indecomposable summand Y, with |Y,| < |M|.
This shows that M__, (if s> 2) is indecomposable. By induction, all M, with 1 <i <s
are indecomposable. Since the condition (S,) is satisfied for all telN, we can apply
Lemma 2.2,andobtainthat M /M, _, ~A*~(M/M,_ )andthe formofthe Auslander
Reiten sequences as stated in (a). From the form of the Auslander Reiten sequences,
it follows that the modules M,/M,_, are quasisimple and that the canonical
epimorphisms M/M,_, - M/M, are irreducible. This proves one direction of (b),
the other follows by duality. The duality arguement also shows that the modules
M/M;, with 0<j <, are indecomposable. Consequently, all modules M i/M;, with
0<j<i<s, are indecomposable.

It remains to prove(c). We will show by induction on s that s = t,and M, ~ M for
all i. If s=1, then M does not contain a non-zero submodule with irreducible
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inclusion, thus also t=1. Now assume s > 1, t > 1. The inclusions m: M,_, - M and
m:M; ,—»M are irreducible, thus there are homomorphisms f:X — M,
S X"—> M such that

m

f

both are Auslander Reiten sequences. By the uniqueness, we see that
M,  ®Xx~M;_,®X'" Now this module is the direct sum of at most indecompos-
able modules Y, @Y, with |Y|| <|M| < Y,]. Since [M,_,| <|M|, and IM,_I<|M|, we
conclude that M ,~Y,~M,; ,. By induction, s—1=t—1, and M,xM, for
I =i=<s—1. Using again duality, we also conclude that M/M,~ M/M; for all i, and
this combines to the assertion of (c).

(F)

Ker( ).,Ms_,@m—,M, Ker(':,)—»M;_,@X'LLM

3.3. Asaconsequence, we sce that the following concepts are of importance: Let M
be a quasi-serial module with a chain O0=MycM,c..cM, ,cM =M of
irreducible monomorphisms. We will call s the quasi-length of M, and denote it by
I(M). By the previous result, this is an invariant of the module M, and it also
coincides with the length of a chain of irreducible epimorphisms starting with M
and ending with 0. The quasi-simple modules are just those quasi-regular modules
which have quasi-length 1. The quotients M /M, _, in the chain above are quasi-
simple, and independent of the choice of the chain, we call them the quasi
composition factors of M. Since M,/M; ,~A*"{M/M,_,), any one of them
determines uniquely the other ones. In particular, we will concentrate our attention
to the top factor M/M,_,, which we will denote by t(M). Note that for an
irreducible epimorphsim M — M’ with M’ 0, we have t(M)=1t(M"), whereas for an
irreducible monomorphism M’ - M with M’ +0, we have tM")=At(M).

Let & be the set of isomorphism classes of quasi-serial R-modules, and & the set

of isomorphism classes of quasi-simple R-modules. By the previous remarks, there
is a well-defined map

R~ xN, defined by M— (¢(M), (M),

Our aim is to show that this is a bijection. First, we will prove the surjectivity.

3.4. Let S be a quasi-simple module, and s N. Then there exists a quasi-serial module
M with t{M)=S and (M) =s.

Proof. Induction on s. For s= 1, nothing has to be shown. In case s = 2, consider an
Auslander Reiten sequence A4S - M — S. Since S is quasi-simple, M is indecompos-
able. Since 0 — AS - M is a chain of irreducible monomorphism, /(M) =2, and (M)
=§.

Now, let s>2. With § also 4-!8§ is quasi-simple, since the Auslander Reiten
Sequence starting with S and ending with 4~ 'S has indecomposable middle term.
By induction, there is a quasi-serial module X with t(X)=A"'S and [(X)=s—1.
Let X -+ Y— A~' X be an Auslander Reiten sequence starting with X Since X is
not quasi-simple, Y decomposes as the direct sum of two indecomposable modules,
Y=Y, @Y, with |Y|| <|X|<|Y,|. Let M = Y. Since there is an irreducible mono-

morphism X - Y,, we know that IM)=1(Y,)=l(X)+1=s, and t(M)=1(Y,)
=At(X)=AA"15=S5,
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The injectivity of the map 2 — & x N will be considered in the next section; it
will follow from a general extension result for homomorphisms. We end this section
by pointing out the effect of the construction A,

3.5. Let M be quasi-serial. Then ((AM)=At(M) and (AM)=I(M).

Proof, by induction on [(M). If M)=1, then M is quasi-simple, and the Auslander
Reiten sequence ending with M is of the form AM — X — M for some indecompos-
able module M. Therefore also AM is quasi-simple, and HAM)=AM = A1(M).

Now, let I(M)=2. Let M—M be an irreducible epimorphism. Let
AM'—>M @Y — M’ be an Auslander Reiten sequence, with Y indecomposable or
zero. Applying A, we get an Auslander Reiten sequence AM’ > AM®AY — AM'.
If (M)=2, then M’ is quasi-simple, and therefore Y=0, thus AY=0, thus
AM — AM' is an irreducible epimorphism. If (M) >2, then |M|>|M’| shows that
|Yl<|M’|, thus there is an irreducible monomorphism Y — M’, and therefore I(Y)
=s—2. By induction, (AY)=I{Y)=5-2, {AM")=1(M')=s—1, thus the given
irreducible homomorphism AY — AM’ cannot be an epimorphism, and therefore
has to be a monomorphism. This shows |[4Y|<|4AM’|, and therefore |AM'| <|AM|.
Consequently, the given irreducible homomorphism AM — AM' has to be an
epimorphism. Thus, in both cases we have shown the existence of an irreducible
epimorphism AM — AM'. Asa consequence, [(AM)=/(AM')+ | =I(M')+1=I(M),
and t(AM)=t(AM')= At(M')= A 1(M).

4. Extensions of Homomorphisms

We consider the following problem: Let M be a quasi-serial R-module, let M'c M
be a submodule with irreducible inclusion. Under what conditions is it possible to
extend a given R-homomorphism f': M’ — X to M? Thus, we are looking for an R-
homomorphism f: M — X with f|M’=f". It will be seen that this is possible under
rather weak conditions on X, and we will later use this in order to extend
endomorphisms of submodules of M to endomorphisms of M.

4.1. Let M be a quasi-serial R-module with a chain 0=M,c M, <. oM, ,cM,
=M of irreducible monomorphisms. Let X be an indecomposable R-module with
XxM,_ /M, for 0Zi<s—2. Then, any homomorphism M, | — X can be extended
to a homomorphism M - X.

Proof, by induction on s. If s=1, then nothing has to be shown, since M, | =0.
Now, let s>1. By 3.2, there is the Auslander Reiten sequence

Ms— IM_’MS— I/Ml @M"L_IJ—’I))M/MI’
where m, m” are the canonical inclusions, and p, p” are the canonical projections.
Let f: M, | - X be a given homomorphism. Since X &M, |, fcannot be a split
monomorphism, thus f can be extended to M,_,/M,®&M along (p, m), thus there
are homomorphisms g: M__ /M, - X and h: M - X with

S=pg+mh.
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We will use the fact that f —mh=pg factors over M__,/M,. By 3.2,
0=M,/M,cM,Mc--.cM, /M,cM/M,

1s a chain of irreducible monomorphisms. and, for
ISi<s—2 (M, /MMM )xM,_ /M =X,

thus, by induction, the homomorphism g: M, /M, - X can be extended to a
homomorphism g": M /M, — X, that is g=m’'g’, where m': M__ /M, > M /M,
denotes the canonical inclusion. Let p': M — M /M, denote the canonical
projection, thus mp’=pm’. Therefore

pg=pm'g'=mp'g’.
This shows that
S=pg+mh=mp'g' +mh=m(p'g’ +h)
factors through m, and that p’'g’+ h is the extension of f to M we were looking for.

42. Corollary. Let M, N be quasi-serial with [(MYZI(N). Let M'cM be an
irreducible monomorphism. Then any homomorphism f': M’ = N can be extended to a
homomorphism f: M — N.

Proof.Let0=M,cM,c---c M, ,=M_=M be a chain of irreducible monomor-
phisms such that M'=M__,. Then, for 0<i<s—2,
IM,_,/M)=s—1—i<s=I(M)<I(N),

thus M,_,/M,; and N cannot be isomorphic.

4.2*, The dual statement: Let M, N be quasi-serial with I(M)=1(N). Let N » N’ be

an irreducible epimorphism. Then any homomorphism f*: M — N’ can be lifted to a
homomorphism f: M - N.

43. Let M, N be quasi-serial, let

O0=M,cM,c---cM, ,cM =M,
0=Ny,=N,c:-cN_,cN=N

be chains of irreducible monomorphisms. Let 0<j<i<s. Then, given any homom-
orphism f: M,/M,— N/N,, there exists f: M —» N with M;f<N;,, M, f SN, such

that f induces ;. And, in this situation, i is an isomorphism if and only if fisan
isomorphism.

Proof. Given f/: M/M;— N,/N,, we may consideritasa homomorphism into N/N,
an.d by 4.2, we may extend it to a homomorphism fi:M/M i~ N/N,. Considerinjg
this as a homomorphism from M to N /N;, we may use 4.2* in order to find a lifting
J: M= N. Thus, we have a commutative diagram
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MM, —m s M/M e =—M

| |
" ]ff |7

" o l
Ni/N]—mL, N/Nj « P2 N

with canonical inclusions m, and canonical projections p. If f is an isomorphism,
then clearly also f/ has to be an isomorphism. On the other hand, if f7 is an
isomorphism, say with inverse g/, then we get similarly g: N — M with N;g=M;and
N;g =M, such that g induces g/. The endomorphisms fg of M and g fof N cannot be
nilpotent, since otherwise also the endomorphisms f; g/ of M /M ;jand g! f7 of N;/N,
would be nilpotent. Thus fg and gf are automorphisms, and therefore Sand g are
1somorphisms.

4.4. Let M, N be quasi-serial with t(M)~t(N) and I(M)=I(N). Then M xN.

Proof. Since (M) =[(N), we can apply the previous lemma. Let M’ M and N' = N
be irreducible monomorphisms. By assumption, there is an isomorphism f':
M/M’'—N/N', and the previous lemma tells us that f' is induced by an
isomorphism f: M - N.

Combining this assertion with 3.6 we get the following reduction theorem for
quasi-serial modules:

4.5. Theorem. Let R be an Artin algebra. Let R be the set of isomorphism classes of
quasi-serial R-modules, & the set of isomorphism classes of quasi-simple R-modules.
Then there is a bijection # — & x N which is given as follows: a quasi-serial module
M withachain0=M,cM,c-.-cM_,_, <M =M ofirreducible monomorphisms, is
mapped onto the pair (M/M__|,s).

We note another consequence of 4.1.

4.6. Let M be a quasi-serial module with a chain0=M ,c Mc-.cM,_,cM =M
of irreducible monomorphisms. Let S be a quasi-simple module with S = M JM;_ | for

1=i=s—1. Then any homomorphism M, — S can be extended to a homomorphism
M-S,

Proof. By assumption, S & M, /M, _,, andalso SxM, /M, for0<i<s-3,since
S is quasi-simple. Thus, we know from 4.1 that any homomorphism M,_, — § can
be extended to a homomorphism M — S. The result now follows by induction on s.

4.6*. Let M be a quasi-serial module with a chain 0=M,c M, --. cM, cM,
= M of irreducible monomorphisms. Let S be a quasi-simple module with S % M/M,
Jor 2<i<s. Then any homomorphism S— M/M__, can be lifted to a homomorphism
S-M.

5. The Endomorphism Ring of a Quasi-Serial Module
Our first aim is to show that every endomorphism of a quasi-serial module M is the

sum of a nilpotent endomorphism and an endomorphism which preserves a given
chain of irreducible monomorphisms.
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5.1. Let M be a quasi-serial module, and let 0=M,cM,c---cM__, cM,=Mbea

chain of irreducible monomorphisms. Let E be the set of endomorphisms f of M such
that M, f =M, for all i. Then End(M) = E +rad End(M).

Proof, by induction on s. For s=1, nothing has to be shown. Let s> 1. Define E’
={feEnd(M,_))IM,f =M} for | i<s—1.By 4.3, the restriction map p: E— E/,
defined by p(f)=fIM, ,. is surjective. Denote by u: E—End(M), u:
E'—End(M,_,) the inclusions, by n: End(M) - F (M)=End(M)/rad End (M), and
n': End(M,_,)—> F(M,_,) the projections. Consider the End(M,_,)—End(M)-
bimodule N(M,_;,M)=rad(M,_,, M)/rad®>(M,_,,M), which is, in fact, an
F(M,_,)—F(M)-bimodule. Since we are working in a quasi-serial component, we
know that both the left vector space ror,. oV(M,_, M) and the right vector
space N(M_, M)py, are one-dimensional. If we denote the canonical inclusion
M._, =M by m, then the residue class m of m in N(M__,, M) is non-zero, and

s— 1>

therefore we can define an isomorphism y: F(M)— F (M,_,) by mg=y(g)m for
geF(M). We claim that the diagram

E—*— EndiM) ——F(M)

p] b
i 1
E’_E:_PEnd(Ms_ 1)_£-_—°')F(Ms-1)

commutes. For, let feE, then mf=p(f)m by definition of p, thus
W p(f)-m=p(f)-m=m-f=im-np(f)=ynpf) @,

and therefore n' W p=yn p.

Now, by induction, 'y’ is surjective, thus also 7’y p is surjective, and therefore
T4 is surjective. This proves the lemma,

5.2. Let M be quasi-serial with a chain 0=MycM,c--cM, . cM =M of

irreducible monomorphisms. We recall from 4.3 that any endomorphism of some

quasi-composition factor M;/M; | is induced by some endomorphism of M.
We consider now the corresponding question of extending homomorphisms

between different quasi-composition factors of a quasi-serial module M to
endomorphisms of M.

5.3. Theorem. Let M be a quasi-serial module, let 0=M,cM,c-..cM_ cM,
=M be a chain of irreducible monomorphisms. Assume that the quasi composition
Jactors M,/M., _, are pairwise non-isomorphic. Let | <i,j<s,and i%j. Then, givenany
homomorphism f,;: M/M; ,—-M #/M;_, there exists a nilpotent endomorphism fof
M with M. feM, M;_yf=M;_\, such thar f induces fij

Proof. First, we consider the case J<i. Using 4.3, we see that the homomorphism

Sij m
Mi/Mij_p_’Mi/Mi—l__*’Mj/Mj—l"“‘—’Mi/Mhl’
with p the canonical projection, m the

canonical inclusion, is induced by some
endomorphism f: M — M satisfying M, f



250 C.M. Ringel

module M;_,/M;_, lies in the kernel of p f;;m, the endomorphism f cannot be an
automorphism, and therefore is nilpotent.

Next, consider the case i <j. With a similar argument as above, we may assume i
=1,j=s.For,ifwecan find to f;;: M;/M,_, - MM, _, anilpotent endomorphism
S MM, ,—>MyM,_, whichinduces f;;, then we can use 4.3 in order to see that f*
is induced by an endomorphism [ of M. Thus, assume there is given a
homomorphism f,;: M, —-M/M__,, with 1 Ss5s—1. By 4.6% we find a lifting
fi: M, - M,such that f, p=f, , where p: M — M/M__, is the canonical projection.
Now, by 4.2, we can extend the homomorphism f,: M, — M to a homomorphism f:
M — M. We do not know whether the so constructed f is nilpotent. However, using
5.1, we can write f=g+h where M;gc M, for all i, and h is nilpotent. Since
M gesM, =M _,, we sce that the induced homomorphism g, : M, > M/M,_, is
zero. Thus hy =fi,—g,,=f},

Remark. The assumption that the quasi composition factors of M are pairwise non-
isomorphic, cannot be deleted. This is shown by the example of a tame hereditary
algebra. There are quasi-simple modules S with A4S ~S§. Taking a quasi-serial
module M of quasi-length > 1, and with t(M)=S§, all quasi-composition factors of
M are isomorphic to S. However, M has only one chain of submodules with

irreducible inclusions, so this chain has to be preserved by the endomorphisms
of M,

As a consequence of the theorem above, we get in this case the precise
conditions for the uniqueness of a quasi composition chain:

5.4. Corollary. Let M be quasi-serial, and assume its quasi-composition factors are
pairwise non-isomorphic. Let S =t(M). Then the following conditions are equivalent :

) If0=MycM,c--.cM, ,cM =M and
0=MocMc---cM, cM,=M

are two chains of submodules of M with irreducible inclusions, then M, = M for all i.
(iiy Hom(A4*S,8)=0 for all 1 <k ZI(M)—1.

Proof. We can identify Hom(4*S,S) and Hom(M,_,/M,_, _,, M/M,_,). Thus,
assume there is O+g: M, /M, _, ,—>M/M,_,. By the theorem, g is induced by
some endomorphism fof M, and therefore M,_, fEM__ | thusM__ fEM__,, for
k=1.1f f is an automorphism, let M;= M, f, otherwise let M; = M,(1 + f). Then we
have the different chains M; and M.

Conversely, suppose there are two different chains {M,} and {M;}. We show
that M, < M; for all i. Suppose there is some i with M; & M,. Choose { minimal.
Choose j minimal with M, =M ;. Thus, M; & M, |, and therefore the composition
of the canonical maps

M, cM->M/M,;_,
is non-zero. [t maps M; into M;_,,and M;_, into 0, thus it induces a non-zero map
AT ISEM/M, (MM, =~ AS.

If we apply A=°*J, we get a non-zero map 4"'S— S, and 1 <j—i<s—1.

B

5
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6. Examples

Let F be a fixed (commutative) field. We consider the algebra R given by the quiver

. /L\ B
- . ¢ e ——— ®
]'\\T/ 2 3

over F. thus R is the matrix ring

X, I
, 0 x, 0 N I
— l “.} ".2 -Yl .\'*._‘J-l.l'J .

Vi Vo Yoo Xy

An R-module is given by V=(1. 1, b o b, - 1, by—= 1) where 17, 15,15
are F-vector spaces, and a, ¥, f8 are linear transformations. Note that dim |’
=(ty,t;5,¢05) with ¢; the dimension of the vector space 1,. The quadratic form
associated to R is

X1+ X3I4+X2-2X,X,-X,X,.

6.1. We determined in this paper the structure of the Auslander graph of all
components which contain regular modules. There are two remaining components,
one consists of the pre-projective modules, the other of the pre-injective ones. The
pre-projective component has the form

211 430 1283
/ N s N 7
210 641 16 11 3
7N 7N\
100 320 962 23 16 9

the preinjective component has the form

485 233 0190 001
N Ve N / N 7
611 8 243 011 R

ANy

916 12 364 1 22

Here, the double arrow X =Y indicates that the space
N(X,Y)=Hom (X, Y)/rad?(X, Y)

of

A irreducible maps is twodimensional over k. Note that the pre-projective and
t

¢ pre-injective modules are uniquely determined by their dimension vector.

.We also want to list some of the dimension vectors in four types of components
Which contain regular modules: There is a one-parameter family of indecompos-
able modules of dimension type (1 1 0), indexed by the projective line IP,(F)over F,
gamely S,=(F,F, 0,A,: F>F, 43 F—F, 0) where L=/, :2,)€IP, (F), and were for
41€F we also denote by #; the multiplication by 4. The dimension vectors in the
Component containing S, are as follows:
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354 121 111 110 321
N 7 ~ e " 7 N e
475 232 221 431
e N / A 7 h e N

11 20 14 586 342 542 1182
N e N 7 N e N 7
12 21 15 696 663 1293

7 N 7 ™ 7’ h¥ 7 "

To repeat: for any element ZelP, (F) we get a component of this type.

There is only one indecomposable module of dimension type (1 2 0), thus there
is only one component of the following form (note that the indecomposable module
with dimension vector (1 2 0)is injective when considered as a module over

./—\I
. 1\__/2’
but regular, when considered as module over R).

5106 344 120 322 540
N 7 N / N Ve N /
8 14 10 464 442 862
7 N Va ~ / N Ve N

23 40 30 9 16 10 786 982 2316 6
\ / N / N\ 7 N /
24 42 30 1218 12 21026 24 18 6

e N 7 N 7 N a N~

Next, we consider the components containing quasi-simple modules of type
(2 3 2). Note that there are also quasi-serial modules of type (2 3 2) with quasi
length 2. In fact, if M is indecomposable, and dim M =(2 3 2), then /(M)=2 if and
only if the restriction M of M to the subquiver ZCE decomposes (it decomposes

then into the sum of the injective module (1 2) and a module of type (1 1)). The
modules with indecomposable restriction are of the form

1 00
010)

FZ/—\F3 B F2
w
0 01

where £ is a monomorphism. Thus, the set of isomorphism classes of quasi-simple
modules of type (2 3 2) can be indexed by the set of two-dimensional subspaces of
F?, that is, by the projective plane IP,(F). A component containing a quasi-simple

I module of type (2 3 2) has the form:
i 475 232 221 431 1072
N 7 N / N / N /
' 610 7 453 652 1410 3
/ N / N 2 N 7 N
16 28 20 8128 884 16 12 4 40 28 8
\ 2 N / N 7 N /
18 30 21 12159 18156 4230 9

7/ N\ e N 7 N e N
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Finally, there is only one indecomposable module of type (2 3 0), and it is quasi-
simple. The component containing it has the following form:

6127 455 230 643 1291
~ / N /s N 7 N e
10 17 12 685 8§73 18 13 4
s N 7 N 7 N e "

28 48 36 1220 12 12 12 8 20 16 4 52 36 12
N 7 N e ~ 7 N e
30 51 36 18 24 15 24219 54 39 12

7 N e e e N a ~

It is easy to check that the only regular modules of length <35 are of dimension
type (1 10, (1 11),(120),(121),(220,221)or(230), and all but (220)
belong to components described above.

As a consequence, any indecomposable module M of dimension type (3 3 1) or
(4 5 2) is quasi-simple. For, (3 3 1) and (4 § 2) are not dimension types of pre-
projective or pre-injective modules, thus M has to be regular. If we assume that M is
not quasi-simple, then one of its quasi composition factors would have length <5,
thus either M belongs to one of the components described above, or the
components of dim M would be divisible by 2, both being impossible.

6.2. We are going to construct a module M with two different submodules M’ and M"
such that 0= M'— M and 0 > M"” - M are chains of irreducible monomorphisms,

Let S=S, for some AelP, (F), say A=(/,:4,)=(1:0), be one of the indecompos-
able modules of type (1 1 0). Then AS=(F, F, F; A;:F—>F, A,:F—-F, 1: F>F)
For, dim AS=(1 1 1), and the described module is the only indecomposable
module T with dim T=(1 1 1) and Ext'(S, T) 0.

Let V be the following module

G38 @
P P —F.

(0 1 0)
0 0t
0 00

Then V is indecomposable, of dimension type (3 3 1), and it has unique submodules
Vi<V, suchthat V, ~ A4S, V,/V, = S, and V/V, ~ S. If we apply A, we get the module
AV with submodules AV, <AV, such that AV, x~A%S, AV,/AV,xAS, and
AV/AV,~ AS. In particular, there is a non-zero homomorphism AV— V with
kernel AV, and image V,.

Let M be the quasi-serial module with t(M)=V and !(M)=2. Thus, dim M
=(6 7 4). According to 54, M has two different submodules M’ and M with
irreducible inclusions. This can be seen, in this example, directly. By construction,
M contains a submodule M with irreducible inclusion, and M’ ~ 4 V.M/M' = V. As
a consequence, there are submodules X, Y of M with X cM’<Y such that
M'/X~ASxY/M'. The fact that M'—>M - M/M’ is an Auslander Reiten se-
quence, implies that Y =M@ Y’ for some submodule Y'. Let f': M'— Y'bea fixed
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epimorphism with kernel X, and let M"c M’ @Y’ =Y be the graph of f". We claim
that the inclusion M” = M is an irreducible monomorphism. For, using again that
M ->M-M/M is an Auslander Reiten sequence, we see that M'/X has a
complement, say X'/ X, in M/X. Let f be the composition of f* and canonical maps

MoM/X'xM/X Loy M,

Then fI|M’'=f", and therefore M" is the image of M’ under the automorphism | +/.

6.3. Next, we want to construct a module M with two different chains
0cM,cM,cM,0c M, cM;,cM of submodules with irreducible inclusions such
that M, € M5

Again, let S=S5,,.,,, and let V be the regular module of dimension type (3 3 1)
having submodules V, =V, such that V|, x A4S, V,/V, = V/V, =S which was con-
structed in 6.2. We claim that Hom(A2S, V)=0. In order to see this, it is enough to
show that Hom(4’S, AS)=0=Hom(A4’S, S). Now clearly Hom(7,5)=0 for any
indecomposable module T of dimension type (1 11) or (010), thus
Hom(A%S, A5)~Hom(AS, S)=0, and also Hom(432S,8)=0, since A°S is the
extension of an indecomposable module of type (1 | 1) by the module of type
(010).

Since Ext'(V,4?S) contains Ext!(AS, 425) as a submodule, we see that
Ext!(V, 4%S)is non-zero. Using the fact that Hom(A*S, V) =0, we see that any non-
zero element in Ext!(V, A*S) gives rise to an indecomposable module W with a
submodule W, = A2S, and W/W, = V. Thus, W has submodules W, c W, = W, such
that W, x A%S, W,/W, ~ AS, W,/W,xW/W,xS. The dimension type of W is
(4 5 2), thus W is quasi-simple.

We fix such a quasi-simple module W. Applying 47, we get the module AW
with a factor module A2W/A2W,~ A2S, thus Hom(42W, W)=0.

Now, let M be the quasi-serial module with ((M)=W and (W)=3. Its
dimension type is (22 36 24). Let 0 = M, = M, = M be a chain of submodules with
irreducible inclusions. Given a non-zero homomorphism f': M, =A’W-W
=M/M,, there exists feEnd(M) such that f° is the composition
M,=M—L5 M - M/M,.In particular, M, f € M,.1f f is an automorphism, let M;
=M, f, otherwise, let M;=M (1 +f).

6.4. We use this opportunity to point out that for the projective module P with
dimension vector(2 1 1), no simple submodule A4 is a direct summand of the radical
rad P of P, whereas all the quotients P/A are quasi-simple, since they are
indecomposable and of type (1 1 1). This answers a question raised by Auslander in

[3].

Note Added in Proof

The author was informed that on the basis of a partial result presented by the author June 1977 in
Oberwolfach, M. Auslander, R. Bautista, M 1. Platzek, [. Reiten and 8.0. Smalg were able to give an
independent proof of Theorem 2.3. This proof will appear in a paper entitled * Almost split exact
sequences whose middle term has at most two indecomposable summands™,
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