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In the last years, certain diagrammatic methods have been used very success-
fully in the representation theory of Artin algebras. In 1972, P. Gabriel intro-
duced the notion of a quiver in order to deal with finite dimensional algebras
over an algebraically closed field which are either hereditary or have radical
square zero, and he proved that such an algebra is of finite representation type
if and only if the underlying diagram is a Dynkin diagram [8]. If the base field
is not necessarily algebraically closed, one has to use the notion of a species,
also introduced by Gabriel [9], and obtains a similar result [6]. Further investiga-
tions of representations of quivers and species have been carried out by Bernstein,
Gelfand, and Ponomarev [3, 10], Donovan and Freislich [5], Nazarova [15, 16],
and Dlab and Ringel [7, 19], in particular one obtains a complete classification
of all representations in case the underlying diagram is Euclidean. Other dia-
grammatic methods were introduced by Nazarova and Roiter in connection
with their positive solution of the second Brauer-Thrall conjecture for finite
dimensional algebras over algebraically closed fields [13, 17, 18], and they
can be adapted in order to deal with arbitrary base fields [20].

In the present paper we shall consider lattices over R-orders, where R is a
complete valuation ring, instead of representations of artinian rings, and show
that we can use similar diagrammatic methods in order to obtain analogues of
the above mentioned results.

More precisely, R is a complete valuation ring with field of quotients K,
A is a finite dimensional separable K-algebra and A an R-order in A. By ,M°
we denote the category of left A-lattices. We choose a fixed hereditary R-order
I" containing A and a two-sided I-ideal I in A such that I C rad(I"). Since
M e ,M is R-torsion-free, we have an embedding M ¢— K ®, M; the latter
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12 RINGEL AND ROGGENKAMP

is an A-module, and so we can form I'}M, namcly the I-lattice generated by M.
With AM e ;MM we associate the pair

MIM % TMIM,

where o is induced by the inclusion .M “— I'M. This construction induces
a functor F from 490 to the category € defined as follows: A .~ A'Jand B  I'/]
are artinian algebras; the objects in € will be pairs .\’ -+” ¥, where X is a finitely
generated left -module, Y is a finitely generated projective left B-module
and o is an A-monomorphism such that B(Im(s)) - Y. Morphisms in € are
commutative diagrams

X ——Y

3' iB
Y

7
AY' _‘_O_’—, }',

where a is an A-homomorphism and g is a B-homorphism.
The central observation, which has been made independently by Green and
Reiner [11], is the following:

THEOREM A. The functor F: ,9M° — € is a representation equivalence.

This result allows us to use freely the results from artinian algebras and
translate them to /-lattices.

Obviously, the category € has its simplest form if both 2 and B are semisimple.
This is equivalent to studying orders A such that the radical of A is at the
same time the radical of a hereditary order I'. It should be noted that every
order can be embedded in such an order. These orders have been studied by
Bickstrom [1] under some restrictive conditions. He has classified those
orders among these, which are of finite lattice type; without, however, listing
the indecomposable lattices explicitly. We shall call such orders Bickstrom-
orders (i.e., orders A, such that the radical of A is at the same time the radical
of a hereditary order I"). With every Bickstrém-order one can associate a valued
graph in the following way: Since the property of being a Bickstrom-order
is invariant under Morita-equivalence, we may assume /1 to be basic. Hence,

Afrad(A) == TT i,

Pjrad(T’) = [T (),

j=8+1
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where f;, 1 <7 <t are finite dimensional skewfields over R/rad(R), and (}),
denotes the full ring of # x n matrices over f. LetS;, s+ 1<j<tbe aful
set of simple I'/rad(I")-modules with Endp(S;) 2 {;. Then

S =1T®a8;,  1<i<s, s+1 <5<y,
are (f; , f;)-bimodules. Moreover, we put

4. — gdimf‘(fo), I<i<s, s+1<j<y,
Y0 else

dimfj(l:SJ')’ I <2< S, s+ 1 <J S A

0 else.

d;z'tg

Let (G, 8) be the valued graph with ¢ vertices v;, 1 <7<t and valuation
(dz'i ’ d;i)

Then we say that the Bickstrém-order A is of species (f; , :5;), and that
(G, 8) is its valued graph.

Using Theorem A, one obtains:

‘THEOREM B. Let A be a Bickstrom-order of species (fe » iS5). Then there is
@ representation equivalence between the category ,IN® of A-lattices, and the full
subcategory of the category of representations of the species (f: » ;) consisting of
those representations which have no simple direct summand.

Combining this with known results from the representation theory of species,
one obtains for Bickstrém-orders /A with valued graph (G, 8) the following
classification:

(i) 4 has only a finite number of non-isomorphic indecomposable
lattices if and only if (G, 8) is a finite union of Dynkin diagrams. In this case,
the isomorphism classes of indecomposable /-lattices correspond bijectively
to the non-simple positive roots of (G, 8).

(1) If (G, ) is the union of Dynkin diagrams and Euclidean diagrams,
then the isomorphism classes of indecomposable /-lattices can be classified
in the following way: To every non-simple positive Weyl root, there exists
a2 unique indecomposable /-lattice. The remaining indecomposable A-lattices
correspond to the null roots.

‘Theorem A seems to be of interest not only for the investigation of such
special classes of A-orders as the Bickstrom-orders, but should also give some
possibility to transfer general results on module categories over Artin algebras
to categories of lattices over orders. Note that Theorem A gives a representation
equivalence [ between the category ,M° of A-lattices, and a full subcategory €
of the category € of all finitely generated modules over a certain Artin algebra D,
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It seems plausible that certain general results which are known to be true for
module categories, thus for €, are, more generally, true for well-behaved full
subcategories such as our category €. In this way, one should be able to use
the representation equivalence F in order to derive similar results for ,IR°.
In particular, we show in the last section that [ reflects certain types of chains
of indecomposable objects the existence of which established for € by the
recent proof of the second Brauer-Thrall conjecture [18, 20].

In order to make the paper rather self contained, we have included the defini-
tions and the statement of the theorems concerning representations of species
which are needed, and give full references to the proofs. Moreover, we have
included several examples to demonstrate how these methods can be used to
construct indecomposable lattices explicitly.

The results of this paper were presented at the Oberwolfach-meeting in
February 1977. The second author wants to express his gratitude to the Deutsche
Forschungsgemeinschaft for support. We shall use the following notations:

AM? — category of left A-lattices,
4D = category of finitely generated left W-modules,
aP’ = category of finitely generated projective left W-modules.

1. DESCRIPTION OF LATTICES viA PAIR CATEGORIES

In this section we shall reduce the description of lattices for orders to a
problem in the representation theory of modules over an Artin algebra where
we then can use known diagrammatic methods.

Notation. R is a complete valuation ring with parameter =, residue field f
and field of quotients K. A is an R-order in the semi-simple finite dimensional
K-algebra 4. (Note that some of the results will only be valid if 4 is separable.)

We choose I' to be an R-order in A containing A and assume that I is a
twosided I'-ideal contained in rad(A), the Jacobson radical of A. We observe
that then automatically I C rad(I"); in fact, I C rad(4), and so I is nilpotent
modulo 7A4; however, wA C #»I', and so I is nilpotent modulo = i.e., I C rad(I').

As special situation we have the following in mind:

(1) I is hereditary, and [ is a I-ideal;

(ii) I'is a twosided ring of multipliers of rad(A), where A is assumed to
be non-hereditary; i.e.,

I' = {ae A: a rad(A) C rad(1)} N {a € A: rad(A)a C rad(A)},

and I = rad(A). I' is then a proper over-order of A [12].
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Every /A-lattice M is canonically embedded in the 4-module K ®r M and
so we have a canonical injection ¢: M — I'M.

In the sequel we shall be concerned with the full subcategory of those
A-lattices M, such that I'M is a projective I-lattice; i.e.,

AT = {M e ;M0 TM € p1).

This is an additive subcategory of M, and AMMT") = MM if and only if I
is hereditary.
We put

UW=A4/I and B =IJI,
then 2 and B are finitely generated algebras over the commutative local artinian

ring R = R/(R N 1), moreover, the inclusion A ¢ I' induces an R-algebra-
homomorphism 2 c— 8.

(1.1) We construct the pair category G as follows: The objects consist of a
finitely generated left W-module U and a finitely generated projective left
B-module V, together with an A-monomorphism o: U — V, subject to the
condition B(Im(c)) = V. This object is denoted by U—° V. A morphism in €
is a commutative diagram

U=V
ai lB
U

where a is an 9-homomorphism and 8 a B-homomorphism.
We can construct in a natural way a functor as follows:

F: AW(P) —> (S,
M  — (M/IM > I'M|IM),
where ¢ is induced by the inclusion «: M — I'M.
Moreover, if o;: M~ M’ is a homomorphism of A-lattices, then it induces

a I~homomorphism g8,: I'M — I'M’ such that the following diagram is com-
mutative:

M —>TIM

a,l lel

M > TM

481/60/1-2
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But «, |y = B | » and so we obtain a morphism in €:

M|IM —— I'M|IM
a l lB
M'[IM' —— I'M'/IM’
It should be noted that I'M[IM e &’, since 'M e P, and B(M/IM) =
(I/IXM/[IM) = I'M/IM. Hence, F is a functor from AIMYT) to the category €.
(1.2) Tueorem 1. The functor F induces a representation equivalence between
ADT) and €.
We remark that a similar result was independently obtained in [11].
The proof is done in several steps:
(1.3) LemMA.  F és—up to isomorphisms—surjective on objects.

Proof. Let U V be an object in €. We may assume that o is a settheoretic
inclusion. Since V is a projective B-module, there exists—by the method of
lifting idempotents—a projective I-lattice O with Q/IQ ~ V as B-modules.
Let x: O — V be the induced epimorphism and put M = «~Y(U).

Claim. Me M) and F: M — (U —° V') (up to the isomorphism). Since
BU =V, we have I'M + IQ = Q, and so by Nakayama’s lemma I'M = Q;
consequently JM = II'M = IQ), and we have an isomorphism:

M[IM —— TM/IM
l l
U -2 Vv

It is clear that M is a AA-module, and so (1.3) is proved.
It should be noted that F is additive. If M — Mi®M,, M; #0,i=1,2
and M e ,M(T"), then M; € ;M) and M,[IM, £ 0,i = 1, 2, by Nakayama’s

lernma.

(1.4) LEMMA. F s surjective on morphisms.

Proof. Given a morphism («, 8) in €. Because of (1.3) we may assume, that
we have the following commutative diagram

MIM s I'MIM
| e M e ). (1.5)
M IM < 'M' IM’
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Now, I'M € P/ and so we can complete the following diagram commutatively
by I'-homomorphisms

M -*> 'M/IM —- 0
Bll ls
'M' — PM'{IM’ — 0.
We have the following A-isomorphisms:
I'M|M ~ (F'M/IM){(M/IM) =: C,
I'M'IM’ ~ (P’'M'[IM")[(M'[IM’) =: C’,

and so the commutative diagram (1.5) induces a A-homomorphism y: C — C”,
Hence we can find a A-homomorphism a, , making the following diagram
commute:

O ——e M/IM ——> FM/IM »> C =" 0
/ -4 ‘/' .} / v
O — M ‘i“[‘M —}" Cc (4]
o 2
1 1 v
0 Aj——’ M'/IM"l—' I'M'/IH"I——'C' —* 0
/ u/ /

O ——=M'" —=ry - ct —» o

Since B is uniquely determined by 8,, we conclude that F is surjective on
morphisms. This proves (1.4).

(1.6) LemMA. [ recovers decompositions.

Proof. In view of (1.4) it suffices to show that F recovers 1somorphisms.
So let—with the notation of the proof of (1.4)—(a, B) be an isomorphism.
We have to show that o, —cf. above—is an isomorphism. From Nakavama’s
lemma it follows that «, is an epimorphism, and so the R-rank of .M is at lcast
as large as the R-rank of M'. By using the inverse of (a, B) we conclude that M
and M’ have the same R-rank; hence, o, is an isomorphism.

This completes the proof of (1.2).

(1.7) Remark. (1.2) holds in the following more general situation —the
proof being verbatim the same. Let N, ..., N, be a finite set of indecomposable
I-lattices, and let ! be the full additive subcategory of M generated by
IN woow N} and put £ ={Me M. TMecR. The canonical projection
xk: N — N'IN, N e £ induces a homomorphism

HomAN", N) > Hom{N", N IN) = Hom{N" IN", N IN).
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Put 2y = Im(x,) and define the category & to have objects N = N/IN,
N e ] and morphisms §(N', N) = 482, . The category E(R) has as objects
pairs U—°V, where Ue (I, VeR, o is an UA-monomorphism with
B Im(c) = V. Morphisms are commutative diagrams

U—>V
Ll
U -y

where « is an 2(-homomorphism, and B a morphism in K.

(1.8) CoroLLARY. If I is hereditary, then , M0 is representation equivalent to C.

We remark, that in case A is separable, there always exists such a hereditary
order.

(1.9) ExampLE 1.
4=(ap RET=(p 2
and
1= (g )

all these are viewed as matrix rings. Then

A = (

R R R R
0 B R B

—~8=(z g

where R = R/n*R. B has—up to isomorphism—only one indecomposable
projective left module G = (§). The Loewy series of G as B-module is

(2)> ()20

the lattice of maximal submodules of G as W-module is

5(0)3
WEL
> (7g) 2

where €, and e, indicate the extension classes.
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As indecomposable objects one notes at once the following objects in @:

0 o) =@ ® (D@ @ {0

However, ("R) c—» (B) is not an object in our category €, since

R R R
8 () =(r) * (z)
Since /A has exacfly three non-isomorphic indecomposable lattices (cf. Sec-
tion 3), the above listed are all indecomposable objects in .

ExampLE 2. Let

(5 P eneden)

We indicate this by writing
R, #nR
4= (ﬂR\ R )
We choose I' = (} §) and I = ("R %), Then we have

I 0

Q[=(o\f)—ﬁ—“ic_*ﬂ3=(f f)‘

It

B has one indecomposable projective module G = (}), and this module is
B-simple. As A-module, however, G =~ ¥ @ I. The objects

toto-ot— (oo o)
- n — — n -1 -,

where the inclusion is induced by

O (1 1 A )

i+1

surely are indecomposable, and for different n they are not isomorphic.

This shows that € and hence also ,?® have infinitely many non-isomorphic
indecomposable objects, though % and B have only one indecomposable
module each.
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ExampLE 3. Let

'R #«R R R
#R R R R B
A=1,R =R R =R and I'=(R)y, I = (mR)q .
#R =R nR R
Then
t 0 ¢t ¢
Ot t t
= C——) ==
U 0 0 F O B = (D,
0 0 0t

and 9 is the tensoralgebra over { of the graph
. t .
f f
I
and hence, it has infinitely many non-isomorphic indecomposable finitely
generated modules (Donovan—Freislich [5], Nazarova [16], for a proof see also
[7])-

On the other hand, A has only six non-isomorphic indecomposable lattices
(cf. Section 2), represented in matrixform as follows:

R R R R R R

R R R { R 7R R
RY R Y aR |’ 7R |’ 7R |’ 7R |’
R 7R 7R "\ R R 7R

\

and so € is of finite representation type.

2. BACKSTROM-ORDERS AND VALUED GRAPHS

(2.1) DeFiNITION. An R-order A in a semisimple K-algebra 4 is said to be:

(1) a B-order if there exists an R-order I' 2 A with rad(I") = rad(4),

(1) a Bdckstrom-order, if there exists a hereditary R-order I') A with
rad(I") = rad(A).
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Remark. In his thesis [1] Bickstrém has characterized all Bickstrém-orders
of finite lattice type under the following hypotheses:

(i) Kis a local algebraic number field,

(i) End(P,)/rad,(P,) =1 is the same for all indecomposable projective
A-lattices.

(2.2) LeMMA.  The class of B-orders and Bdickstrom-orders vesp. is invariant
under Morita equivalence.

Proof. Let P be a progenerator for A, then I'P is a progenerator for I
We put 4 = End4(P) and Q = End(I'P). By [21, I, Ch. IV, 3.8] we have
rad(d) = Hom (P, rad(A)P) = Hom (P, rad(I") I'P)
= Hom(I'P, rad(I") I'P) = rad(®).
Moreover, if I' is hereditary so is Q.
Let A be a non-hereditary R-order. Then there exists a unique order A,

different from A and maximal with respect to rad(4) being an ideal over A,
provided A4 is separable.

(2.3) ProposITION. Let A be an R-order and A, be as defined above.
() If Ais a B-order, then Afrad(A) 5= Ayjrad(A,).
(1)  Assume that Ajrad(A) 5= Ao/rad(A,) and that

Aofrad(A) == Ayfrad(dy) @ X,

then A is a B-order. (This latter condition is satisfied if Ay[rad(A) is a F-algebra.)

(iit) There exists a B-order A, with AC A, C Ay such that Afrad(A) =
A, [rad(4,), if Afrad(A) = Ag/rad(A,).

(iv) A is contained in a Bickstrém-order A, with Afrad(A) ~ A, /rad(4,).

Proof. (i) Assume that A is a B-order, then A CI'CA,, and so
Afrad(A) & I'frad(A4) C Ayjrad(4,), since rad(sly) N I' = rad(I") = rad(A), and
so Afrad(A) 5= Ayfrad(,).

(i) Assume that the condition of (ii) is satisfied. We then have an injection
Afrad(A) — Agfrad(A) =~ A,frad(4,) @ X.

If A, is the inverse image of Ayfrad(4,) under the canonical homomorphism
Ay — Ay/rad(A), then surely rad(4) = rad(4,), and hence, A is a B-order.
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(i) We have a natural injection
Afrad(A) — Ayf(rad(A) + =A,),

and we let 4, be the inverse image of A/rad(A) under the natural homomorphism
Ay — Ay/(rad(A) + =A4,), then 4, is a B-order by (1) and A C A, CA4,.

(iv) Let A’ be the pullback of the following diagram of natural homo-
morphisms

Afrad(A) — Ayjrad(4,)

I I

a4 — 4,

Then Afrad(A) = A’'frad(A’). If A = A’, then rad(A) = rad(4,) and so the
ring of multipliers of rad(A4,) coincides with Ay ; ie, A, is hereditary [12].
Repeating the same construction with A’ we eventually will reach a Bickstrém-
order A, with Afrad(A) >~ A,/rad(4,).

ExaMPLE. Let
o mR
a4 = g(vr’R x + ﬂzR)' GER}.
Then

0= (2N,

and there is no Bickstrém-order between A and A, .
We shall next associate with every B-order A with corresponding order I'
such that rad(A) = rad(rI), a valued graph in such a way that the non-simple

indecomposable representations of that graph over T are in bijection to the
indecomposable lattices in the category

AM(T) = {M e ,D0: TM e ).

(2.4) Notation. Let A be a basic B-order contained in I" with rad(A) =
rad(T"). (A basic order A is one for which A/rad(A) is a product of skewfields.)
In view of (2.2) the above assumption is no restriction. Then

A'rad() = ] .,

LTS

Frad(l") > [T (i), ,

Jmgal
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where f;, 1 <7 <{¢, are finite dimensional skewfields over t, and (f)n denotes
the full ring of (n X n)-matrices over §. Let S;y s+ 1 <j<t, be a full set
of simple I'/frad(I")-modules with End{(S,) =¥, .

Since A is basic, f;, 1 <7 < 5, is a twosided simple /A-module, and so

iSJ' - fl' ®A SJ':

I <i<s, s+1<5<t,

are (f; , f;}-bimodules. Moreover, we put

’d dimg (;:S;),
Y0 else

g . dimg (;Sy),
Y770 else

l<i<s, s+ 1<jgy,

1<i<s, s+ 1<y5<y,

(2.5) DEFINITION. Let (G, 8) be the valued graph with vertices v, , 1 <7 < ¢

and valuation (d,; , d;;). Then (G, 8)
A with corresponding T,
ExampLe 4.

R =R

is said to be the valued graph of the B-order

R R R

R
A=|2R R R, F:(R R R],
nR #nR R 7R =R R

then
#nR R R
rad(1) = rad(I') = {#R =R =R,
R R =R
3
Afrad(A) "_.UH L, L~t 1<1i<3,
i1
Iirad(T") == (1,), H L, t,~f~1
Then
4
S, = (1), Sg = 1, ,
4 (f‘) 5 ]
and so
4 t
19 =1 Qa4 (l’:) = (0) = 13 195 = 0,
H
15 =1 X4 (f:) = ((f)) = 543 155 = 0,
4
QS‘ == tz @A (f:) - 01 3S‘ - 3t‘
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Hence, the associated graph is
1 (1.1) 4 (1.1) ) 3(1.1) 5.

It should be noted that the graph is not connected, though A4 has no central
idempotents.

ExampLE 5.

R WR), F:(R R

A=\ r g) rd() =rad(r) = (

TR )

Afrad(1) = {,;, Drad(I") = (1,), , =1
f i
Sy = (f:)s 192 = T @4 (f:) =1, @b,

and hence the associated graph is

. (.0

ExaMPLE 6.
R N R R R R R R R
A_|=” >R «R =R} . [sr R R R
" \#nR #R R =R} " {»R R R RV}
nR #wR =nR R #sR R R R
#snR R R R
aR R #nR =R
ad(d) =radl)={ ' » R -R =R ’
aR nR #wR =R
and so

Afrad(A) =L TILTI L, L=t =123
Ijrad(I") = §, T ({5)s

I
S4=f4, 5 — f-
t

1S4 == 1f4 ’ 135 =15,
zS4 =0, 255 = 2f5 ’
aS4 = 0, 385 = 3f5 .
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Hence, the valued graph is
2

lu.n

4 (1.1) 1 {1.1) 5 (1,1 3.

ExaMpLE 7. Let L be a quadratic extension field of K with ring of integers
S and assume that rad(S) = =.S. Then [S/rad(S): R/=R] = 2.
We put

(RIS e (S,
then

rad(4) = rad(I') = (.,’Zﬁ :9)
and

Ajrad(A) =~ ¥, , Iirad(I") = ], I K, R, == K =~ Sfrad(S).
Then the associated graph is
380 4,

(2.6) We have to recall briefly some concepts from the representation theory
of valued graphs (for the general theory we refer to [7].

A valued graph (G, 8) is a finite set G of vertices together with non-negative
integers d; and d; for all pairs 7,j € G such that d,;, = d, — 0, and subject to
the condition that there exist non-zero natural numbers J: satisfying

dyf; = dif;  forall i jeG.

(Note that there is a one-to-one correspondence between valued graphs and
symmetrizable Cartan matrices [14].)

An orientation 2 of a valued graph (G, 8) is given by prescribing for each
edge {7, j} with d,; 5 0 an order—indicated by an arrow 7 = J- An orientation
is said to be admissible if there exist no oriented loops, i.e., no circuits with
orientation ij => 7, = " = i, > g =1, .

A modulation M of a valued graph (G, d) is a set of skewfields f: » 1€ G, which
are finite dimensional over f, together with (f, , f;)-bimodules ;M; for all edges

{7, 7} of G, such that

dimg (;M,) = d,;, dimy (;M;) = dj;,
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and with (f;, f;)-bimodule homomorphisms
Homf‘(‘ﬁlj y f|) o~ Hom"(.‘l‘*lj » f,')o

This is certainly satisfied if f, and f; are finite dimensional over a common
central subfield. We put

M| = Homf,(iM; » fi) =~ Homf,(ile » F1)-

A realization (M, 2) of a valued graph (G, 8) is a modulation N together
with an admissible orientation 0.

A representation X = {X,, ;p;} of a realization (M, Q) of (G, 8) is a set of
finite dimensional left f,-vectorspaces X i +1 € G, together with f,-linear mappings

i My R, Xy — X, for all oritented edges i — -
A morphism «: X = X' between representations X = {X,, ,;p;) and X' =

{X; , j:} is defined as a set o« — («) of {-homomorphisms making the following
diagrams commute

M, @y, X, L5 X,
1®°‘4l l“i , for each edge 1 — .

M ®y, X X,

These representations form an abelian category, denoted by (M, Q).
Given a representation X — {X:, i} of a realization we define the dimension-
map:
dim: (M, 2) — QF,
where QF is the rational vectorspace of dimension | G |, by
dim: x - (xi),-ec,- y X = dimf‘(Xi)'

The vector dim(X) is called the dimensiontype of the representation X.

For each ke G let r, € QS denote the vector with x, = 1, x, = 0 for { £ 4,
and for each k € G define linear transformations

Tyt QG - QG’
r—n,

with x; = y, for i 5 %k and Ve = —Xp + Yieq driy .
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W will denote the Weyl group of G, i.e., the group of all linear transformations
of Q¢ generated by the reflections o, k€ G. A vector r € QF satisfying tw = ¢
for every w e W is said to be stable. A vector re Q€ is called a root of (G, $),
if r = r.w for some ke Gand we We . A root r is said to be positive if x; =0
for all i e G(xr = (x;)) [2].

For the representations of a realization (0, Q) of a connected valued graph
(G, 8) we have as main result:

(2.7) THeorem (Dlab-Ringel [7]):

(1) LM, Q) is of finite representation type tf and only if (G, 8) is a Dynkin
diagram, i.e., a valued graph of one of the following forms:

A,‘ 7 o o a *** 0 o,

Bn s o (l.i)o o ter o o,
. . (a1

C',I T o o o,

/ b
o]
=]
Eo:c ] !, o °,
[s]
E7:° l O 0,
[o]
Es:c o cl o e o,
C o 1.2

G2 . 0(1.3) .

If there is no valuation written, then this shall mean that the valuation is (1, 1).
Moreover, the mapping dim: @M, Q) — Q induces a bijection between the
isomorphism classes of indecomposable representations of (I, 2) and the positive
roots of (G, 8).
(1) If (G, 8) is an Euclidean diagram, i.e., a valued graph of one of the
Jollowing forms

/qll - o 1.9 o,

ﬁlﬁ ‘o {2.2) o,
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3
//
N\

Bn olne) o f2.1) ’
~ {2.1) (1.2}
Cﬂ . 2 =] O O———=G ’
o~
BC,: o (.2 JS.2) ,
n . N (2.1
CD, : ) : L VN
[
[¢]
Y h (1,2)
DD,, . /6 o = o—"—0 ,
O
o] (¢}

Q
o]
o)
O

- o0

—_—0

Fn - R (1,2 o,
qu ‘o (2,1 o,
Gy o——oll:Bo,
G22 : oo lB2) y

then the category (M, 2) has two kinds of indecomposable representations: Those
of discrete dimension types and those of continuous dimension types. The mapping
dim: &M, Q) — QO induces a bijection between the isomorphism classes of inde-
composable representations of discrete dimension type and the positive roots of (G, d).
The continuous dimension types are the positive integral multiples of the least stable
positive integral vector of Q°.

The explicit data for constructing the representations can be found in [7].
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‘The aim of this section is to show that the indecomposable A-lattices in
AMMYI") of a B-order are in bijection to the non-simple indecomposable repre-
sentations of the graph (G, 8) of (2.5), (2.6), with the following orientation and
modulation: There are arrows i —»j, if di; % 0 and 7 <j. This surely is an
admissible orientation. The modulation is given as follows: The skewfields
are the f,, 1 <{i < ¢, with bimodules #5; , as defined in (2.4).

Hence, in the examples we have the following situation:

ExampLE 4.
t 4 t . o
F>1T—>1f I—>1 isof type 43U 4,
ExamMpLE 5.
f—ﬂ» I isof type A,
ExXAMPLE 6.
i
|
i t t .
t—>f—> I —1 isoftype D,
ExampLE 7.

/Ry fRg . ) . ~
R «——1I——> K, is the Euclidean diagram C,.

We shall next construct— for a B-order /1 —a functor from A7) to L(M, Q),
where (M, 2) is the above realization of the graph (G, 8) of the B-order A.
We shall demonstrate this first with Example 4:

ExampLE 4. It is easily seen that the following are all indecomposable
A-lattices—up to isomorphism:

R T R R
P, = |=R], P,=| R | P, =|R]), M={ R|.
R TR R 7R

Passing to the category @, we obtain the following indecomposable objects:

U e L het— ()

1.__,((1)), n-—»(?), 1 —> 1, (1,1)&-»(;).
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Before we can go on with this example, we have to prove a general result:

(2.8) Lemma.  With the notation of (2.4), and for X, and X, finite dimensional
fi~ and fvectorspaces resp., there is a natural 1somor phism

®: Homy (X, , (S, &4, X)) = Homy(,S, Gy, X,, X)),

where as above
PA YR Homf,(isf » f5)-

Proof. For brevity we write
S = Homy(;S;, ).
Then we have isomorphisms
Homy (X, , S; @y, X;) ~ Homy (X, .S, oy, Xj) =~
Homy (X; , Homy (; S, X)) = Homy (ST 4, X, X).

Under this isomorphism, the above indecomposable objects in Example 4
correspond to the following representations of (M, £):

LI LSt .. L IR - H
The above are indeed all the indecomposable non-simple representations of

AU 4,.
We shall next define a functor

G: € — M, ).
To do so, let X —»° ¥ be an object in €. For 1 <7 < s we put
X; = Homy(f, , X);
then X = @;_, X,, and for s + 1 <J <t we put
X; = Homg(S;, Y);

then with V, = )y, X; we have

t
Y-:: @ Vj.

=gl



REPRESENTATION THEORY OF ORDERS 31

Moreover, ¢ is an A-monomorphism ¢: @;_, X; — (—B;_,, +1 Vi, and hence
it decomposes uniquely —observe that the X, and Vi 1 <i<<s,s+ 1 <5<,
are uniquely determined, not just up to isomorphism—into fi-homomorphisms

#f:X"-—P Vf = SJ’ ®fi Xj.
By (2.8) this determines a unique f,~homomorphism
iPi s 9 ®f,- X, — X;.

Hence, we have constructed a representation in £, ).

(2.9) TueoreM II. G is a categorical equivalence between € and the Sfull
subcategory of all objects in (M, Q) without simple direct summands.

Proof. Recall that the simple objects in (M, Q) are exactly those
I = {X, ’ j@f} With Xiﬂ = f"o and X,' =0 for '] 9& io

—i.e., the objects of dimensiontype t; - Thus the image of G does not contain
any simple representation in £(MM, 2).
The remainder of the proof will consist of several lemmata.

(2.10) LemMaA. G is a functor.

Proof. Given a morphism in €

X 25> Y

al ls

p (A
F |

With the above decompositions we get commutative diagrams

&y
x, 24 v,

l lB,-

¢l

x; 2 v

Recall that V; = S; ®y, X; and that V; is a left module over (f)n, » thus
Hom(S; ®y, X;, S; @4, Xj) = Homy(X;, Hom(S; , S; ®y, X}))

= Homg(X;, X),

481/60/1-3
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hence, §; is of the form
1 @B S, Gy, X; — 85y, X7
Because of the isomorphism @ in (2.8), we get the commutative diagrams

S -@f‘ Xy — X

1 @“il lﬁj
JSi @f‘ X i’ e X;
and therefore G is a functor.

(2.11) LemMma, If X —° Y in € is indecomposable, so is its image under G.
Proof. The proof of (2.10) shows that

Morphg(X 3 ¥, X’ %> ¥’) = Morphgwn o)(G(X 2> Y), G(X’ T V'),

and clearly isomorphisms and split morphisms are preserved and recovered;
whence the statement of (2.11).

(2.12) Lemma. Let ¥ = {X;, ;0;} be a non-simple indecomposable object in
LM, £2), then it lies—up to isomorphism—in the image of G.

Proof. We put V; = S; ®y, X;, s + 1 <5 < t; the morphisms
iPi 9 @f‘ X, — X;
induce—because of (2.8)—f;~homomorphisms
P Xy — V5.

We now put

B t
X:'@IX,-, Y:@Vj, U=@§¢£.

j=3+1 L 1% ]

Then X is an W-module, Y is a B-module and ¢ is an A-homomorphism.
If we can show that o is monic and B Im(o) = Y, then X —° Y @, and surely
G:(X—>°Y)~ X

Claim. o is monic.
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Proof. Assume to the contrary that Ker(o) £ 0, then

Ker(o) = @ (Ker (@ ,-@,—));

i

3

ie., Ker(o) = @; X; with X[f,-submodules of X,, not all zero. Now, X' =
{X;, 0} is a representation in £(k, 2), which is different from zero, and which
is a direct summand of X, since the following diagram is commutative

jSt' ®f. ‘Yi _i"—t—)' XJ'

b1,

S @, Xi— 0

where .;: X; — X, are the inclusions; the splitting X; — X; obviously also
makes the diagram commute. Hence, by the indecomposability of ¥, either
X=X or X' =0.1If X =X, it is easily seen, that X — X’ is a direct sum of
simple representations, a contradiction to our assumption. Whence Ker(o) = 0.

We now assume that 8 Im(s) 54 Y. Let C = Y/('B Im(o)). Then a similar
argument as above shows that X must be simple. This completes the proof of
(2.12) and also that of Theorem II.

We can now state the main result in this section, which follows easily from
Theorems I and II.

(2.13) Treorem III. Let A be a B-order with valued graph (G, §).

()  AMT) is of finite lattice type if and only if (G, 8) is a finite union of
Dynkin diagrams. In this case the isomorphism classes of indecomposable A-lattices
correspond bijectively to the non-simple positive roots of (G, 8).

(i) If (G, 8) is the union of Dynkin diagrams and Euclidean diagrams, then
the isomorphism classes of indecomposable A-lattices in ,INNT) can be classified
according to the classification of the indecomposable vepresentations of the diagrams
m (2.7).

(2.14) Remarks. (i) It should be noted, that in both cases the indecompos-
able representations of ,9R%(I") can be listed explicitly (cf. examples below).

(i) It is remarkable that Bickstrdm [1] has proved the first part of (2.13)
for some Bickstrom-orders by computation without reference to Dynkin
diagrams, in case f; = f; = R/rad(R) is finite; he has even given a bound on
the number of generators for the indecomposable representations, though he
does not indicate how to classify them.

(i) To every oriented admissible valued graph with d; < d;; for an
arrow { — j, one can construct a Bickstrém-order which has this graph.
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(iv}) In case of Dynkin diagrams, the indecomposable representations are
determined by their dimension types (2.7). In terms of lattices this means that
the indecomposable lattices M in JMMO(I") are uniquely determined by "M and
Mrad(M).

(v) Tt is interesting to note that the finiteness of the representation type
does not depend on the choice of R, if one considers Bickstrém-orders. In

general this depends heavily on the ground ring, e.g., for integral group rings
of finite groups.

(vi) There may be more than one Bickstrém-order corresponding to a
fixed valued graph: e.g.,

A= A{(r,r - 7R), rc R} and A" : (-:‘8 I[‘;

both have graph -« - —» - i ie., 4;.
There are some immediate consequences for general orders.

(2.15) ProrosITION. Let A be an arbitrary R-order, and choose a hereditary
order I' such that rad(A) C rad(I"). Then I'[rad(I") is a A[rad(A)-module, and as
in (2.5) we may associate a graph (G, 8) , with A. If (G, 8), is not a disjoint union
of Dynkin diagrams, then A is of infinite lattice type.

Proof. Since rad(A) C rad(I'), we conclude that A/rad(A) ~ (A + rad(I"))/
rad(I"). Now A, = A + rad(I') is a Bickstrém-order with graph (G, 8),. If
A is of finite type, the same must hold for A4, and so (G, 8), must be a union
of Dynkin diagrams.

From this follow many of the well known necessary criteria for /A to be of
finite lattice type, e.g.

(2.16) PropositiON (Dade [4], [22]). Let A be an R-order in A, and let e
be a primitive idempotent of A. If Ae is the direct sum of t simple A-modules with
t 2> 4, then /A is of infinite lattice type.

Proof. Because of (2.15) we may assume that A is a Bickstrém-order. If
t 2> 4, then (G, 8) has a subgraph of one of the following types:

(1.9 ., (3.3) (2,2 I

’ e e 3 y e P ’ [ T e .

In each of these cases (G, 8) can not be a union of Dynkin diagrams.

Remark. Trom the above one can easily derive the dual statement: There
can not be ¢, t > 4, non-isomorphic projective /I-modules, which contribute
to one projective module over the hereditary order.
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We shall conclude this paper by giving some explicit examples.

ExampLE 4. (G,8) = 4, w A4,, and so there are 4 non-simple positive
roots; i.e., the representations listed above form a complete set of indecomposable
ones.

ExampLE 5.

_ (R =R (2,2)
A = (wR\ R) has graph o-2% o

and so it corresponds to the Euclidean diagram A4, . For the sake of simplicity
we assume that { is algebraically closed. Then there are five types of indecom-
posable -lattices:

@M M, = (ﬁ\,g\ﬁ\fff\ﬁ\ﬁ\wﬁ)

R, -  R_R_R
P )

RRR)

(i) Mao = (N RN RN N RN RN K

. - Ry R, 7R
V) My =

£ 7y Ty Ty )
ar, ) +ar, ry--arg r, ;4 ar,

riERs,

where in (v) the element « runs through a complete set of representatives of
the non-zero residue classes in Rjm. (If T is not algebraically closed, then the
eigenvalues « have to be replaced by the compagnion matrix of the corresponding

irreducible polynomial.)

ExaMpLE 6.

R R R R
TI'R\ R R =R
7#R =R R 7R
7R wR =R R

2
J
A = , (G, 8) =4« 15«3

The graph is D;, and it has 20 indecomposable representations, among them
five simple ones. Hence from these representations we obtain the indecomposable

A-lattices as follows:
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0
l R
F«l f— > 0«0; R
TR
7R
0
l R, R
pdd p 1d g 0- ‘H'R\R
’ mR =R
#R =R
f
lld R R
F g 1d 0- -nrR\R
’ R R
R =R

fidfid f id f;

fidfidfidf;

0—1F- 29, «0;

R
7R

lm

0e——TF—% t «—0:

"R



8.)

9.)

10.)

11.)

12.)

13.)

14.)
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£
0«19, 4 ¢

0«19, 5 A4 ¥

lm

O«—O0—t -(-ld—f;

04—-—0-——>f<-1~d-—f;

lm

0«—0—sf <2 0,

R
,,R)
R
7R
R R
R R
R = R
7R R
R R
R N R
7nR R
7R =R
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f
|4 R_R R
N
15) f<2—po 14, g2 2 ¥ wR\ R R
. ’ ‘Ti'R R = R

R R R

Here id stands for the identity map, ¢, and ., indicate injections and =, =,
projections onto the indicated components: 4 is the diagonal map.

ExaMPLE.

‘' fR #=R R R R R R
mR « R R R R R
nR =R o« R R R R

A=:|7nR nR nR o« 7R R R |a=do =4a", B =4p mod(nR)

#WR nR nR nR B R R
R nR nR nR =~R B =R
7R #R #nR wnR #«R #«R R

L A

is a Bickstrom-order with graph Eg:
]l >5«2>7«3->84.

‘The highest dimensional indecomposable representation is given as follows:

ﬁﬁﬂft\\
[ Mo W -
feka i o) o - -
- - . -
0 ™o o~
L 0 s ™
(o e A =) o ™~
R A w .
iy >
Nt N
g
[+]
[+
[
[
[*]
+ +
o rw
S~~~
O
O M
w e o
O
1 CQ
fad e e
-~ 1O
O~
Qo=
et St st

L, )
(a,b,c,d)i .b.c.
(b,c,d)
(r,1)

———=(t ! W)
(a'pb)‘__"(a:bgo)

The corresponding indecomposable A-lattice has R-rank 105, and is given as
follows

("R7R R R nR#«R«R R R R R R R R R
\ « o o « TR#aRaR R R R R R R R R ?
mTRn#RaR7R B B F R R R R R R R R
M= |7R nR aR nR nR =R nR y Yy ¥ ¥ y" nR #R R |
€

m"TR7TR R 7R nR nR nR nR nR nR nR «R & €&
L'ITR?TR‘)TRTTR?TR‘TTR?TR#R‘ITRWR’H'R??RR R R )

/MMMMMﬂﬂRS memw\
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subject to the following conditions, which are to be interpreted as congruences
modulo 7R;

BEa—f-am—}—ym;
BIEaI+aﬂl+yllll;
"Ea"+a'”+y"’;
o = v;
o,
[ 4 :‘y,
wo___ o n,
x :y,
d = §;
o
€ = €,

’

[

I

|
|

L

3. THeE BRAUER-THRALL CONJECTURES

One of the reasons for considering the representation equivalence stated in
Theorem A, was the question, whether the well-known distinction between
the various representation types of Artin algebras carries over to the categories
of lattices over orders.

(3.1) First, let us note that the category & considered in Theorem A is,
in fact, a full subcategory of the category of representations over a convenient
Artin algebra. As in Section 1, choose a hereditary R-order I' containing /1
and a two-sided I'-ideal I with I C rad(A) and define 2, B and € as in Section 1.
Denote by § the category with objects a: U — V, where U is a finitely generated
W-module, ¥ is a finitely generated B-module, and o is an A-homomorphism.
Morphisms are the obvious commutative diagrams. Then it is clear that € is
equivalent to the category of finitely generated left modules over the triangular
matrix ring
B &353&1),

D={y

which is an Artin algebra. By definition, € is a full subcategory of €. In this
way, Theorem A relates A-lattices to (suitable) D-modules. Note however,
that it may happen that € (and therefore ,I°) has only a finite number of
isomorphism classes of indecomposable objects, whereas in §, there is an
infinite number of such isomorphism classes (see Example 3). Since €isa
module category, there are some rather general results available, as the solution
of the second Brauer—-Thrall conjecture [18]. It seems plausible that similar
results will hold for certain full subcategories of module categories, as for
example the category €, considering both the known examples and the methods
of proof. In this last section, we will show that the expected properties of €
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carry over to cotresponding properties of ,9R°. In this way, we would like
to initiate a study of subcategories of module categories similar to €.
In the proof of the second Brauer-Thrall conjecture for an Artin algebra,

a one-parameter family of indecomposable modules X* is constructed, and to
every ¢ a chain of indecomposable modules

XFCX!C CXPC XL, Coee
such that X#/X} | ~ X, (here, Xt = 0).
(3.2) Lemma. Let X, be an object in €, and let
XCXC-CX,CX,,,C.-
be a chain of indecomposable modules in € such that Jor all i,
XX~ X, forall i>2.
Then there exists a chain of indecomposable A-lattices
M,CM,C---CM,CM,,C-

such that M[M, | ~ M, for all i > 2, and X; = (M,{IM, > I'M,/IM).

Proof. Note that the category Q is closed under extensions in &, thus with

A also all X, belong to §. According to Theorem A, there exist indecomposable
A-lattices M, such that

(M; —> I'M/IM,) = X, .
We have the following commutative diagram:

0 0

J |
MJIM; s MM,
5 l*
My /IM, =25 TM,, IM,,,
) I’
MyIM, > TI'M,/IM,

! |

0 0
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with exact columns. Since the B-modules in the right column are projective,
this column is split exact; moreover, 8 and B’ are induced from homomorphisms
of I'-lattices, say B, and 8 , such that the sequence

8 81
0—I'M,—~>TM;,,—>TM,—>0
is split exact. Hence, we have the following situation:

0 0

! !

0—+Mi —i—* FMl

“‘i J{BI

Tis1
0'_)'Mi+1"—"_>I'M1+1.

o s

0—>M, —» I'M,

Here we have put oy = 8, s, and oy = By Im,,, -
It should be noted that we view M; as submodule of I'M; etc. Then a; and a,
are /1-homomorphisms,

» ’.
al.Mi'—"Mi_'_l’ al.Mi+l—>M1,

which reduce to « and o' resp., and which make the above diagram commute.
Moreover, «, is injective and o, is surjective, since I C rad(4). Because of
B:B8; = 0 we have aqa; = 0. Let now xx; = 0, then xr;,, = y8; with ye I'M, .
On the other hand there exists y’ € M, such that y'ay — x = z € IM,,; . Hence,
y — 9y €IM,;, and so y € M, ; i.e., the left hand column is exact.

(3.3) Note that in case there exists a chain of indecomposable /-lattices
MICMzc nre CMich_‘_lc Tty

with M, ,/M; ~ M, for all ¢ > 2, then the union M = lim M, is R-free but
does not split off any A-lattice.

Proof. Since M, /M, is a A-lattice, the embedding M,C M, is pure,
thus M is R-free.

Assume that there exists N e ,IR° such that N is a direct summand of L,
say m: L —» N is a splitting with injection «: N — L. Then there exists an index 7,
such that for all { > ¢,, Im(:) C M, . Thus N is a direct summand of M, for

all 7 > 7, a contradiction.
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11

12.

13.

14,

15,

16.
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18.

19.

20.
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