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I. INTRODUCTION

Let R be a complete valuation ring with field of quotients K and residue
field f. Let A be a finite-dimensional separable K-algebra. In these notes we
consider the problem of constructing all indecomposable A-lattices of those
R-orders A which satisfy the following conditions:

(1.1) (i) 'There exists a maximal R-order I" in 4 such that rad 'C ACT.
(rad I' is the Jacobson radical of I'))

(i) If G;, 1 <i<s, are the nonisomorphic indecomposable left
I-lattices, then Homg(G, , R) are projective right /1-lattices.

(iii) A = Ajrad I' is a hereditary I-algebra.

It was shown in [3] that /A satisfying (1.1) has global dimension of at most
two. However, not all orders of global dimension two satisfy (1.1) [4].

It also should be noted that given any hereditary f-algebra U, it is possible
to construct /A satisfying (1.1) by embedding 2 suitably into a product of
full matrix algebras.

The main result in a subsequent paper [5] will be that in case A has
finite lattice type, all indecomposable /-lattices are obtained from the
projective ones via almost split sequences. The main device to prove this 1s a
reduction to the Artinian case.
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250 RINGEL AND ROGGENKAMP

Let N be a hereditary finite-dimensional f-algebra, and let S, ..., S, be the
nonisomorphic simple projective left Y-modules. Then we denote by o DY(S)

the full subcategory of all finitely generated left A-modules, R, defined
as follows

aD(S) = jL’ € w: Soc(L) ~ (P s,f"'"

¥
i=<1 \

where Soc(U) denotes the socle of U, and X™ denotes the direct sum of 7
copies of X. That means that aI(S) is the category of finitely generated left

W-modules with projective socle. Let A satisfy (1.1); the following result
will be shown in [5].

(1.2) THEOREM. Lez 91 — Afrad I'. The functor
F: 0 — o IY(S) with M —~ M/(rad I'\M

15 exact, and it is q rvepresentation equivalence. Here AW denotes the category
of left A-lattices; i.e., left A-modules which are R-free of finite rank.

Thus, in order to study the representation theory of A it is enough to study
the representation theory of aIR(S). This will be done here.

We shall give a characterization of those hereditary f-tensor algebras A
such that & IM(.S) has only finitely many indecomposable objects. In order
to state the result we have to introduce some notation:

Let y be an oriented graph with valuation and without oriented loops; let

(Fi, :M;) be a f-species for ¥ [2, 11 If 9 is the tensor algebra of (F,, ,M)),
then A is a hereditary f-algebra,

and « is a sink in ¥ and b is a sink in 4

neo.

We then denote by y,., the graph obtained from
and omitting the edge between them, and say
by reduction. For example,

¥ by identifying @ and &
that y,_, is obtained from y
Y- T —

can be reduced to

e
Vo p

y is said to be irreducible if it cannot be reduced.

;«\a -
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If (F,, ;M) is a t-species for y, and y, = y,., then the corresponding reduced
f-species— observe M, ~F, ~F,—is (F;, ;M]), where ,M, is omitted and
F, identified with F, .

(1.4) THeorEm 1. (i) Let N be the tensor algebra of a Y-species for y. Then
wI(S) has finitely many indecomposable objects if and only if ¢ I(S) has finitely
many indecomposable objects, where U, is the tensor algebra of the reduced ¥-species
Jfor vy, v, is trreducible, and obtained from vy by a finite number of reductions.

(ii) If y is irreducible, then yIR(S) has finitely many indecomposable objects
if and only if vy is the disjoint union of Dynkin diagrams.

(1) If A is of finite representation type and M e yIN(S) is indecomposable
then, M is uniquely determined by its composition factors, moreover, Endy(M)
15 a skewfield.

A complete list of the connected oriented valued graphs which reduce to
Dynkin diagrams can be obtained from the authors upon request.

(1.5) Tureorem II. Let U be the tensor algebra of a I-species for an irreducible
Dynkin diagram y. Then all indecomposable objects of «IR(S), with the possible
exception of some in which each composition factor occurs at most once, are obtained
from the indecomposable projective omes by applying iteratively the ordinary
Coxeter transformation and remaining inside R(.S).

Note that by means of this result, it is usually possible to compute the com-
position factors of the indecomposable representations in oJR(S) explicitly,
since one knows that the action of the ordinary Coxeter functor can be com-
puted via the Coxeter transformation on the dimension type [1]. It will be shown
in [5] that there exists a relative Coxeter transformation for aM(S); however,
we do not know a closed formula for the change of the dimension type for this
relative Coxeter transformation.

The paper is organized as follows:
In Section 2 we give an interpretation of gIR(S) in terms of the representations

of the underlying species. Section 3 is devoted to the proof of Theorem I,
Section 4 to the proof of Theorem II. Finally in Section 5 we give some examples.

7. SOCLE REPRESENTATIONS OF SPECIES

For the terminology we refer to [1]. Let y be an oriented connected graph
with valuation and without oriented loops and 3 = <{F;, ;M;> a species, where
for each vertex 7 of y, F, is a skewfield, finite dimensional over the same field {,
and for each edge i — j, ;M; is an (¥, , F;)-bimodule with dimFi(iMJ‘) = dij )

B it s i s <2
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and dim, (;M,) = d,-; , where {d,-‘ , d{;} is the valuation of y. If 9 is the tensor
algebra of 3, then 9 is a graded algebra, defined as follows:

n
O - @ F;, where 7 is the number of vertices of Y,

=1

Q[l == @ i‘J‘lj ]

W= W 0, 1 22 2.
Since y has no oriented loops A? = 0 for § sufficiently large. Moreover,
rad A/radi*+1 Y ~ Y¢,
In particular, we have a splitting
A = rad A/rad? 9 < 9.

Thus a right Y-module U is nothing but a representation of 3, namely

U g @;_, U,, where U; are right F-vector spaces together with F;-homo-
morphism

ipi Uy ®1-"i {M; — Uy,

coming from the right multiplication with 91,

We shall now describe the category oI(S) consisting of those finitely
generated right A-modules U such that the socle of U is projective. If L' e Miy
is a right A-module, then

Soc(U) ={ue U: u -9 — 0}.

If we look at the corresponding representation

”n
U%mo@Uﬁ

i=1

then Soc(U) ~ @:;1 Soc(U); . Now if i is a sink, ie., F, is a simple projective
A-module, then there are no edges i — j and thus U, A = 0. Hence if ¢
is a sink, then U, C Soc(U). If i is not a sink, then there exists an edge { — j
SOC(U),- = {u; € U;: P, @ M;) =0

for all ;m; € ;M and for a1 edges i — 7). (1

Hence in terms of representations of J we are interested in the category

S(S) = {U = (U, ®5): Soc(U); = 0if 7 is not a sink}. (2)
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Under the natural isomorphism
Homy (U @, M;, U}) —> Homg Uy, Homp(:M; , Uy)
a - (X 4, > (im; — ou; K my))),

the Fj-homomorphism ¢, corresponds to F,-homomorphisms ;&;: U, —
Hompj(,ﬁf ;» U;), and from (1) it is clear that

SM(S) = U (W9 (Ker g = 0. G)

[ =Y
Hence we have

(2.1) ProPosiTION. There is a natural equivalence
aI(S) ——> SM(S).

‘Therefore in the sequel we shall only work with the category 5R(S), and
we denote by M the category of all finite-dimensional representations of 3.
To simplify the notation we shall write 59 and M(S), resp. for a complete
set of nonisomorphic indecomposable objects in %t and S¥R(.S), resp.

3. CLASSIFICATIONS OF THE GRAPHS y WITH | yJ(S)| < o0

In this section we shall prove Theorem I from the Introduction. The definition
of reducible is given in (1.3). We assume that y is not the disjoint union of

proper subgraphs.

(3.1) RepuctioN LeMMA. Let y be reducible with species 3 and let v, = Ya=b
with species T, be obtained from y by one reduction. Then | sN(S)| < © 4f

| 3,9US)| < a0. Moreover, if | s(S)| < oo, then
| 5 RS) + 1 < NS < T RS+ m,

where y\{a -1V b> =y U 4,, .

Proof. The definition of reducible implies that & is a sink in y, and this
sink has the form a — b < ¢ {we omit the valuation if it is trivial).

Given now an indecomposable representation (U;, ;p,) in gM(S). Since a
is a sink in y’ we must have (cf. Section 2, (3)). Ker ,¢, = 0. But M, =
F, = F, and so Ker ,p, = 0. We have to distinguish two cases:

Case 1. ,p, is not an epimorphism.
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Then we decompose U, = Im ,p, @ X, . Since all indecomposable repre-
sentations of A4, are one dimensional and since (U, , ;p;) was indecomposable,
we must have ,¢, = 0, X, # 0, and so (U, , ;) is an indecomposable repre-
sentation of 4,, . There is at least one indecomposable representation of A4,
lying in sR(S), namely, 0 — F, < 0, and there are at most m which are faithful
at b. Hence we have obtained

LU e sM(S): 4, is an isomorphism | +- 1
< | gR(SY < {U € aN(S): g, is an isomorphism | -+ m

Case 2. ,p, 1s an isomorphism.
Since all indecomposable representations of A,, are one dimensional, we
can find an isomorphism from (U, jp;) to a representation (U,, ;g;) such

that ., is the identity. But these representations are exactly those of 3°m(S)-
This proves the lemma. |}

The next result will be useful to decide when | sR(S)] =

(3.2) Test LeMMA. Assume y contains a subgraph vy, with the same valuation

on the edges, such that the species 3 of y, ts a subspecies of Jof y. If | 5 J(S)| =
then | s(S) =

Proof. We use induction with respect to the number of vertices outside
of y, - Hence it suffices to prove the lemma in case there is exactly one vertex @,
outside y, .

Let s;,..., 5, be the sinks in y, such that there exists an edge s, —{ 7 ay;
i.e., s;is notasinkin y.

Case 1. agy is a sink in .

Let X = (U;, ;9:) € 3, N(S). We define a representation 8 = (V;, ;) of 3
as follows:

Vi= U, if ey, and i = b, if i,jey,,
and

t
Vao = @ Ulk ®Fk skMao b

k=1

ﬂo‘/’ﬂ = Usl ®F: 8y ﬂo—* @ Usk @F, sk ag *

k=1
the canonical injection into the direct sum. Then B is a representation of y,
and since U € 5 IR(S) the representation B lies in M(S). Moreover, since U

is indecomposable the same holds for B. Also it is clear that this construction

preserves and reflects isomorphism. Hence if g, is a sink in y, then | %, N(SY = o0
implies | sN(S)| = oo.

o0 A .
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Case 2. If ay is not a sink in y, then there exists a directed path

(.) (.,) (.)_
a, >b1 > e ,bm

with b, € v, and b, is a sink in y,. (Observe that there are no oriented loops,
and hence from every point there exists a directed path to a sink.) In addition
—for the same reason—b; ¢ s;, 1 <i<m, 1 <j <t

Let U = (U;, 9,) € 5. (S).

We define the representation B = (V;, ;) of T as follows:

V.= U, if cey, and ¢ # b;, 1l =j=nm,
rl'ﬁc;:clq’c, if ¢,cey,, G, b, 1<j<m,
t

e V:'o = @ Dvsk ®Fuk EkMﬁo ’

k=1

r
ﬂo!ﬁsl: Usl ®F.1 SlMao - Vﬂo Y

Va

the canonical injection into the direct sum.
Then we define recursively

V?:l = Va-o ®Fﬂ aoMbl ’
Vbl = V;l @ Ubl ¥

’ ’ y
Vb‘ - Vb‘_l ®Fb|-__1 bi~1Mb" 2 \<~ t \<\ m!

Ve

=V, ®U,,
and put

.1V (14,0 ’
bllpﬂo' Vﬂo ®F¢0 aoMb1 _— Vbl @ Ubl ’

d. )
By ¥

(i )
—_ I/v"i+1e'> Ubi-{-l ’
1 <i<m—1,

b¢+1¢bi: (Vl:i ®Fbi b‘Mb‘+1) @ (Ubt ®Fb‘ b{Mbi+1)

(0.;¢b‘)

“/’ch (V!:f ®1=‘,,'r b,Mz) @® (Ub; ®F,,‘ b,Mz) U, 1#6b,1<i<m,

0
(b‘wl)

b;‘)bl: U, ®F, le¢ Vl;¢ @ Ub,- ) I#£b;, 1 <i<m

Then B is an indecomposable representation in 3(S); moreover, this con-
struction reflects and preserves isomorphisms. This proves the lemma. [
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We shall show next that every irreducible Euclidian graph y with species 3
has | gM(S)] = cc. To do so we shall use the list in f1, p. 39 f£.].

‘The homogeneous representations of the Euclidian diagrams are induced
from the homogeneous representations of A4,, or A;, with bimodule M,
and the indecomposable representations are of the form (Ug, U; , p). We
shall use this notation to construct indecomposable homogeneous representations
in the socle category of the Euclidian diagrams.

(1) mF>9G i j241fe: U, ® rM; — U is an indecomposable
representation. Then it is easily seen that

is a direct summand of this representation. Hence if (Ug, U , @) is indecom-

posable not injective, it lies in aN(S). So | AM(S) = oo.

(2) 4, is irreducible for every orientation; there are infinitely many

indecomposable homogeneous representations in §IR(.S). However, not all
simple homogeneous representations lie in M(S).

(3) For Bﬂ’ C'ny Eﬁn’ m)\n ’ —6-5”, and ﬁn it suffices to ConSider
irreducible graphs of type

(*) 323 é2a§&\2:ﬁs,ﬁﬁs, ﬁ‘l.

In each of these graphs there exists a unique center z. We first consider
the case where z is a sink. B,:G, +F G, . In [1, p. 41] the homogeneous

representations are listed for the orientation
G,—»F—gG,

as
id
UGl - UGI ®GIF < VGZ ’

where (UG1 , VGE,'P) 1s an indecom
Except if dimcl(UGI) =1,
ones we obtain indecompo
follows:

. F
posable representation of G, —% °: G, .
¢ cannot be injective. Hence for the remainding
sable representations in the above orientation as

Ug, N Ug, Rg, F <L~ Ker P,

where
P: Kerg X, F — Ug, ®g, F

x@yr—»xy.

meTy Y M
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We consider the corresponding homomorphism (cf. Section 2(2))
J: Homg (Ker ¢, Homg(gF, Ug, ®q, F))
at> (f— af),

which is surely injective. So the socle category is of infinite type.
For C, and BC, the same argument as above shows that the socle category

is of infinite type.

The bimodule for Ay, is M = pF¢ ®g oFr - The indecomposable noninjective
representation

(Urs Vi, 9) of F-*>F
corresponds to the indecomposable representation of BD,

Ve

Vi@ Up< T,

Ur
e F°®GFF—’VF®UF

It follows from (1) that ¢ is injective. The same argument works for CDj .

\/
/\

where I', is injective and

}; 1) N% R |
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The bimodule for A4,, is M = ((F @®F)r, and the indecomposable non-
injective representation (Ux, V5, @) of F —+M F corresponds to

Ur
Ur DV
Ve

where ¢ = (g, , g,) and I'; = graph of ¢, . As above this shows that we have

infinite type.

If z is not a sink, we can use the representations in [1]-—with a slight modifica-
tion for BC,~—to conclude that the socle category is of infinite type.

Iy
T,

(4) We next consider the graphs E; , E,, and £,, which all have a unique
center 2. Let y be one of these. Let 2 — 4 be an edgeiny.Ifa # z,anda— b
is directed towards the center, then »Pe = pP, must be injective, since y\{z}
is a disjoint union of graphs of type 4,, , and all indecomposable representations
of 4, have local dimension at most one. If 4 # z and @ — b directed away
from the center, then because of the irreducibility of y, a is a source c < a — b
and by the first part, .o, is injective and so Ker Pa N Ker ¢, = 0. This
argument shows that for indecomposable representation, we only have to

verify the kernel condition for the central point z. For an irreducible y we have
three possible orientations at the center,

{

() —> 2«

|

B) «z2—,

t

(y) «—2z-—.

Orientation («) is treated in [1] and one sees that the socle category is of
infinite type. Observe that a change of orientations not neighboring 2 does
not influence the module structure at the neighbors of the center.

Using the lists and orientation in [1] we use the following notation for the
indecomposable homogeneous representations of £, , £, E,:

C

|

B o oMy .. 4
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Then inspection of the list in [1] shows .4 N B = 0, where 4 and B are viewed
as submodules of M, .

For (B) we obtain thus indecomposable representations which have the
following form at the center

C

!

o MyB 2t My —2> My'A .

Since 4N B - 0, Ker @, N Ker g, = 0 and so the socle condition is satisfied
and we have infinite type.
For (y) we get
M, C

!

M,

.+ M/B My/A -

and with () we conclude that also here we have infinite type.

(5) F,; and F,; . As in the arguments for the E; we only need to consider
the edge 0 —@2 (O in the various irreducible situations. For Fy, we have the

graph
G- G—-—G—F-—F

Given an indecomposable representation
ree [’IG e VF fes

then Ker ¢ induces a direct summand which is a representation of an 4,, .
Hence for almost all indecomposable representations, @ is Injective, The same
argument works for the other orientations of F,; and for F,;.

(6) G, and G,, are treated exactly as F, and F,, resp.
Combining the results we have shown
(3.3) ProposrrioN. Let y be an irreducible graph corresponding to an Euclidian
diagram with species 3. Then | sR(S)' = -
We are now in the position to prove
(3.4) Turorem 1. Let y be a connected oriented graph without loops and 3

a species for y. Let y, be an srreducible graph with induced species I, , where v,
is obtained from vy by a finite number of reductions.
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() | aS) < oo if and only if | 5 R(S) < .
(i) ! som(s)f < oo if and only if 3, is the irreducible graph of a Dvnkin
diagram.

(iii) In case (S) is finite, each representation in N(S) Is uniquely
determined by its dimension type.

Proof. Part (i) follows by successive applications of the reduction lemma (3. 1).

(ii) In view of (3.3) it only remains to show the following. Assume
that y, is not the graph of an irreducible Dynkin diagram. Then 1t contains
as a subgraph an irreducible Euclidian diagram. To show this we assume
that y, is not a Dynkin diagram but contains only reducible Euclidian diagrams.
We observe that in an irreducible graph y, at each sink s of y, there exists a
subgraph of one of the following tvpes

() «-—s () %y {52,
!

(y) —s<~.

If now v, is a reducible Euclidian diagram contained in y,, say, y; can be
reduced at @ — b. Then b is a sink in y, . Since 3, cannot contain any Ay,
there exists a unique path in y, from b to a sink 5. Repeating this arguments
for all edges of y, which can be reduced, and observing that the sinks in ¥q

have the form (a) (8) (y) one finds that y must also contain an irreducible
Euclidian diagram.

(i) Assume now that y is a graph with species J such that ' x9(5) < <°.
Every indecomposable representation omitted by means of the reduction
lemma (3.1) is uniquely determined by its dimension type. Hence we may
assume that y is a Dynkin diagram, but here it is known that every indecom-
posable representation i1s uniquely determined by its dimension type [1]-

(3.5) CorOLLARY. Let y be an oriented graph and I a species for y. If

L aM(S)| < o, then for every indecomposable representation W in §I(S), Ends(2)
is a skewfield.

Proof. We may restrict ourselves to a connected graph, and we shall use
induction on the number of vertices of y. If y is irreducible, then y is a Dynkin
diagram and here the result is known for all indecomposable representations.
Hence we may assume that y is reducible. According to the proof of (3.1)
—using the notation of (3.1)—there are two types of indecomposable repre-
sentation of y:

In the first case, 2 € 59(S) 1s an indecomposable representation of an A,, ,
and hence Endy() = End“,m(ll) is a skewfield. The other case is that for
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U = (U, ;¢,) vps = id, and U can be viewed a representation of y,, which
has fewer vertices than y; with species J, , where | SDW(S)I < oo and Endy(YM) =
Endgo(u) is a skewfield by induction. |

4. DETERMINATION OF THE DIMENSION TYPE OF THE INDECOMPOSABLE OBJECTS
IN IR(S)

In this section we assume that J is a species of an irreducible graph for a
Dynkin diagram and prove

(4.1) Tueorem 11.  All indecomposable objects of sR(S)—except possibly
representations U = (U, jp;) with dimp (U;) < 1—are of the form C¥(R),
where R is an indecomposable projective object in xI(S), and C ~(B) is the Coxeter
transformation of B.

The exceptional representations will turn out to be indecomposable repre-
sentations of an A, , which is a subgraph of y. A typical example is the graph

1

7:4— ‘- > %,

L

If X is the indecomposable representation of dimension type

0
t

then X ¢ 9YS), but C(X) has dimension type

0
t

and so it lies in 59(S). However, this will be essentially the only exception.
In practice, this is not a big handicap, since the representations U = (U;, ;p;)
with dim, U; < | can easily be constructed anyway.

It should be observed that it is not always possible to apply C-, namely,
in case X is an indecomposable injective representation of J, then C(X) 1s
not a representation, since the dimension vector of C-(X) is not positive.

In all the various cases that occur we shall use the following general argument:
In order to prove the result, we take X € sMoR(S) and we show either C~(¥) €
sTAM(S) or CHX) € 5N(S) has dimension at most one at each vertex, or X
is injective. This will give the desired result, since in case of Dynkin diagrams
all X &M are of the form C~%(R), where R is indecomposable projective and

thus lies in 3M(S).
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(4.2) We need some more notation: If k is a source in y we denote by 5,7(y)
the following graph: The vertices and valuations are the same as those of y;
the orientations of all edges at k are reversed; the others left invariant. We
denote by S,(3J) the corresponding species. For X € g, S, (¥) € -@N
and for a suitable numbering of the vertices in y, we have C~(X) == S¢ 8
Se®) 1]

(4.3) Lemma. If y is an irreducible A, , then (4.1) is true for all U € 5F(S).
Proof. An irreducible 4,, has the form

Eaniis b SRR ol

in particular m is odd. Hence if X € gM\sM(S), then X is injective, and so
C—(X) is not defined. ||

(4.4) LemMA. If y is an irreducible Fy or a G, then (4.1) is true, for all

Proof. If X € sM\qN(S), for J a species for G, , then X is injective, and 0

C—(X) is not defined.
For Fy, the only orientations for an irreducible graph are

(a) (1.2) . (2,1)

(b) (1,2) . (2,1

In case (a), if X € 4 sM(S), then X is either injective, or X has dimension
type
0—1—0<«0,

an application of the Coxeter transformation C- yields the dimension type
1-0—->0«<0andso C“(I) S 3%\3%(8)

In case (b) any X € 3M\yN(S) is injective and so C-(¥) can not be formed.
This proves (4.4). |
Next we turn to Bn’ C'n: Dn,i Ess E’Ja ES-

In all these diagrams there is a unique center ¢, which is obvious for D, ,
E,, E,, Ey; for B, and C,, we define it as

B,: {1.2) s

Cn: ., 2D c
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(4.5) LeMMA. Let y be an irreducible graph of type B, , C,, D, , E,;, E,,
Ey, and let X € yM\sN(S) be such that

0 =V, = ) Ker(X, == Hom (M, X,),
then either X is injective or C~(X) € gM\aM(S), or C~(X) is at most one dimensional
at each vertex.

Proof. 1If ¢ is a source, then X is injective. Hence we may assume that ¢
is not a source. In order that V, # 0, we have at least one oriented edge ¢ — 1.
Hence the center must have the form (observe that y is irreducible):

a a
(1,1 }

¢ or . c .
(1,2)} LN

b by b, .

Since V, % 0, and since the branch of y containing a is an A, , X must have
the following form:

Va
!
Ve

¥ X
0 0,

or

Q*—-S(——nﬁ

where V, is one dimensional and ¥, = 0 (case (b)) or it is one dimensional
(case (a)). We now apply the partial Coxeter transformations to the branch

containing @ until we reach ¥, . Then we have one of the following dimension
types:

i

)

1 1 (a)
| X

0 0 0

0 0

t )

1 1 (b)
! PR

0 0 0

481/64/1-18
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Applying the partial Coxeter transformation S,~ to the dimension type, we
obtain

1 1
v |
0 0 (a)
1} A X
0 0 0
0 0
} )

—~1 -1 (b)
} SN
0 0 0.

Since the remainding partial Coxeter transformations do not influence the
central position, we see that either C~(¥) is not defined or C(X) € gM\N(S),
unless @ is a source and if C~(X) = (g, , #p:), then @, = 0. If a is a source,
then it may happen that C~(X) e sN(S); but then C(X) = (g, j;) has the
property that ¢, = 0, and dimg (p;) = 1. This proves the lemma. |

(4.6) LemMA. If y is an irreducible B, C.,D,, Eg, E,, E;, then (4.1)
holds.

Proof. Let X e sM\3(S), X = (X,, #p:)- In view of (4.5) we may assume
that there exists a vertex a such that 0 = V/, — (o.a+s Ker(X, —® X,) and
a #c.

If a is a source, then ¥ = (V,,0) and X is injective, so C~(X) cannot be
formed.

Hence we may assume that a is not a source, i.e., we have a unique chain

d— a—b.

In y there is a unique (unoriented) path = from a4 to the center c.

Case 1. The path = goes via b. In this case the branch of y containing
d — a and ending in g is an 4,,, and so X is one dimensional at each vertex
and the same argument as in the proof of (4.5) holds.

Case 2. The path = goes via d. In this case y would not be irreducible,
so that this situation cannot occur. This proves the lemma and also 4.1). 1
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5. ExaMPLES

Let y:
4
¥ o\
c h
e

b
J
d
y
e
y
f

with F-trivial species. Then y is neither a Dynkin diagram nor an extended
Dynkin diagram, and so 3 is of wild representation type; however, sR(S)
1s finite. We shall list all indecomposable representations explicitly: Applying
the reduction lemma (3.1) to e — f we obtain the representation

0
Y N\
Iy o 0 0

N Y

- O - O o O

and the remainding representations are all of the form

T
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We now apply the reduction lemma to 4 — ¢, and obtain the representation

2 0
N

U,
Y\
v, U, U, U
N | K
Us
I
U
I
Us

So by the reduction lemma (3.1) it suffices to consider the irreducible graph

g
¥ N
a b ¢ h
N | ¢
d

which comes from a Dynkin diagram. We have to apply the Coxeter trans-

formations to the dimension type of the indecomposable projective representa-
tions:

0 0
PR AR
@G 0 0 0 0= @ 1 1 1 0=
Ny K N
1 2
1 2
Y N RN
Gy 1 1 2 1= (6) 1 1 2 I =
N Y Ny Y
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0 0
/N ¥ N
1 0 o= (3 1 0 1 0=
N K N
1 1
1 1
VRS AR
11 1= (15 1 0 I 0=
N K V¥
X 1
0
YN
1 0 0

267
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"The last representation does not lie in 39%(.S) anymore.

(16 0 0 1 0= (17) 1

This representation does not lie in 39¥(.S).

1 1
¥ N ¥ N
200 0 O 1 [ = (21) 1 1 1 0=
~N | ~
1 2
0 I
¥\ AR,
(22) 1 1 1 0= 6 0 1 |
N ~N | Y
1 0
This representation does not lie in xN(S).
0 1
¥\ ¥ N
23 0 0 O 1= (24) 0 o0 1 0=
N Y N
0 1
0 0
¥ N ¥\
25% 1 1 0 0= 0 0 |
N N
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This representation does not lie in 59(S). But this is one of the exceptional
representations X € 39(.S) such that C~(X) € 49(S). Since this dimension type
gives under the Coxeter transformation

26) 0 0 0 1
N
0

which again lies in 9(S), and this is the only representation which one has
not obtained as Coxeter transformation of a representation in M(.S). Altogether,
J has 26 indecomposable representations in gJ(S).
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