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Introduction

Recently, Gelfand and Ponomarev have investigated the structure of the free
modular lattices D" with r generators e,,e,, ...,e,. Recall that for r <3, the lattice
D" 1s finite (R. Dedekind has shown that D has 28 elements [3]) and that for r >4,
the lattice D" is infinite.

The central concept introduced by Gelfand and Ponomarev in [7] and [8] is
that of a perfect element of D"; it is defined in terms of representations of D" as
follows. A representation of D' (over a division ring F) is a lattice homomorphism g
of D" into the lattice of subspaces of a (finite dimensional) vector space over F.
Thus, a representation ¢ may be interpreted as being given as X=(X,;X)), <;<,
where the X, are subspaces of the vector space X, namely o

ole)=X, Q(1)=Xo,
and for every element p=p(e,,...,e,) of D,

olp)=pX,,....X,)=p(X).

An element pe D" is said to be perfect if p(X)=0 or X, for every indecomposable
representation X. Obviously, the perfect elements form a sublattice of . For r2> 4,
Gelfand and Ponomarev construct explicitely a countable number of upper and
lower cubicles (Boolean lattices of 2" elements)

L EBTOSBHI-1)<...<BY(1) and .. =B (=B (-1)=...28 (1),

show that all their elements are perfect and conjecture that these are the only
perfect elements in ®" (p.5 of {7]; p. 100 of [8]).

In fact, the papers [7] and [8] consist largely in a study of a quotient of the
lattice ®". Call two elements a,be®" g-linearly equivalent if a(X)=HX) for all
representations X of D" over any division ring of characteristic ¢, and write D for
the corresponding quotient lattice, the free g-linear lattice. Let us call an element p

0025-5831/80/0247,/0095/$01.20

ki



96 V. Dlab and C. M. Ringel

of D perfect if for any indecomposable representation X =(X ,:X,) over a division
ring of characteristic ¢, we have p(X)=0 or X,,. Clearly, the g-linear equivalence
class of a perfect element of D" is perfect in ;. Thus, the problem on the existence
of perfect elements in D" comprizes two questions:

(1) determination of the sublattice of all perfect elements of the free g-linear
lattice ®] and

(1) determination of the g-linear equivalence classes in T

In this paper, we shall address ourselves to the first question. Let us recall that
Gelfand and Ponomarev have proved that in T, any element of the lower cubicles
B () [ie. of the cubicle of the g-linear equivalence classes of the elements of
B7(1)] is smaller than any element of the upper cubicles SB;(I). In addition, they

have shown that every perfect element p of D, which does not belong to any such
cubicle must satisfy

B, (h=p=B, () forall .

Here, we shall establish the following theorem.

Theorem I. For r=4, there are at most 16 perfect elements, and for r =5, there are
at most 2 perfect elements in D} which do not belong to the cubicles.

For the proof of the theorem, it is sufficient to work with representations over a
fixed division ring F of characteristic q. For, assume GCF is a division ring
inclusion, and (Y, ; Y,) is a representation of D over G, then (Y,®.F,; Y ®sFf) s
a representation of D over F and it is easy to see that Y- Y,®;Fr induces a
lattice isomorphism of the corresponding sublattices generated by the Y, or
Y@ F . respectively. Now we use the fact that any two division rings of the same
characteristic can be embedded into a common division ring [2].

The proof of the theorem will depend on investigating the existence of non-zero
homomorphism between the “regular” representations. (Note that all indecompos-
able representations are divided into the preprojective, preinjective, and regular
ones; the definitions will be recalled at the beginning of the next section.) For, the
fact that every perfect element p of D] which does not belong to any cubsicle B * (/)
or 23‘(!) satisfies B, (D=p=<B,(]) for all I, means that p(X)=0 for the prepro-
jective representations X, and p(X)=X, for the preinjective representations X.
Thus, we only have to be concerned with the values p(X) for indecomposable
regular representations X. We will use the following simple criterion:

If X, Y are indecomposable representations of D and if there is a non-zero
h:);somgrphisms @ :X-Y, then, for any perfect element p in T, p(Y)=0 implies
p(X)=0.

In case when r =4, the result now follows from the well-known structure of the
subgategory of the regular representations (see [4]). Indeed, this subcategory 1s
abelian, and is a direct sum of three-categories #; and the subcategory # of the
homogeneous representations. For any two representations X, Y of the same #
there is a representations Z and non-zero maps X—Z and Z-Y, so that for anly
perfect element p, p(X) has the same value (0 or X)) for all Xe % ;
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Moreover, the images of T in the subspace lattice of X ; of an indecomposable
representation X =(X,;X,) in J# are all of the form

e, (X} o o e, (X),

and thus, for a perfect element p, p(X) has the same value (0 or X ) for all Xe #. In
summary, there are at most 16 distinct perfect elements in T} in addition to those
belonging to the cubicles.

In the case r=35, the statement of Theorem I 1s an immediate consequence
(using the above criterion) of Theorem 2 on the existence of chains of non-zero
homomorphisms between regular representations of D} which seems to be of some
interest in itself.

Homomorphisms Between Regular Representations of D

Recall that a representation of D" is called regular in case it does not have an
indecomposable preprojective or preinjective direct summand. Here, the inde-
composable preprojective or preinjective representations are those obtained from
the projective or injective ones by a successive application of one of the two
Coxeter functors (see below). Alternatively, an intrinsic definition may be given as
follows: Call P preprojective provided there is only a finite number of inde-
composable representations X with Hom(X, P)=0, and call I preinjective provided
there is only a finite number of indecomposable representations Y with
Hom(I, Y)#0. (It is clear that this definition coincides with the usual one for all
finite dimensional hereditary algebras.)

Now, the main theorem asserts that for r=35, any two non-zero regular
representations can be connected by a sequence of non-zero maps (the com-
position of these maps may, of course, be zero!).

Theorem 2. Let X, Y be indecomposable regular representations of T, r=35. Then
there exist indecomposable regular representations X=X,, X,,....X,,....X,=Y
with Hom(X, _,,X)*0 for all 1<t =1

Before proving Theorem 2, let us return to the proof of Theorem 1. As mentioned
earlier, Gelfand and Ponomarev have shown that any perfect element pe ] which
does not belong to a cubicle, must satisfy p(X)=0 for all preprojective X, and
p(X)=X, for all preinjective X. Since the value of p(X) for regular X is, for a fixed p,
either always =0, or always the total space X, it is clear that there are at most two
such elements in D). This completes the proof of Theorem L.

In what follows, we shall always consider representations of D" over a fixed
division ring F of characteristic g, or equivalently, representations of T} over F.

Recall the concept of the Coxeter functors C* and C~. Given a representation
X=(X,:X)) of D, denote by Y, the kernel of the summation map @X —X,and

(Rl

by ¥ (1 £i<r) the kernels of the respective component maps Y, —X . The resulting
representation Y =(Y,;Y,) is, by definition, C*X. The functor C™ is defined
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dually; for the basic properties of these functors we refer to [6, 4]. In particular,
denoting by dimX the (integral) rational vector (x,), <, ,€ @', where x,=dimX,,
we have, for every indecomposable X either C* X=0 or dimC"* X = c(dimX):
here, the Coxeter transformation ¢ on Q" *! is defined by

r r

Xgs ey Xy )= D X = Xgouiny ¥ X~ Xgn o |-
t=1 =1
t¥+1

An indecomposable representation X is preprojective (or preinjective) if there
exists an exponent m such that C*"X=0 (or C" "X =0).

In what follows, always r 2 5. Note that, with respect to the transformation c,
the rational space @ *' decomposes as follows:

QH=Ue<a™ )@ >
with the (r— 1)-dimensional eigenspace U corresponding to — {, and with the (one-
dimensional)  eigenspaces {a’™) and <a™) corresponding  to
A=3(r—=2+/rr—4)>1 and i ' Here, U= {0, x,...,x)| Y x,=0}, a* =

1= 1
(r—Yrr—4),2,..,2)anda” =(r + Vr(r—4),2,...,2).
Lemma 1. Let X be a non-zero regular representation of Dy, r=5, and
dimX=u+¢ a*+¢7a",
Then &% >0 and &~ >0.

Proof. First, both ¢* and ¢~ are non-zero. For, if both ¢* =0, £~ =0, then
dimC" X = —dimX gives a contradiction to the fact that both dimX and dimC* X
are positive. Thus, assume ¢* =0 and {7 #0. Then for all even natural m,

dimC "X =u+1""¢"a ",
But this cannot be integral for all such m, since 4>1 and therefore 1-™ is
arbitrarily small.

Similarly, in case ¢ +0 and ¢~ =0, we use C~ ™

Second, from the fact that, for all even m, both

dmC* "X =u+ imErat 4 1 g g
and

dimC "X =u+i""E%a" +m¢ "

have non-negative components, we infer that both £* >0 and ¢~ >0,
Recall the definition of the (non-symmetric) bilinear form B on Q!

r

B(x,y)= i;) XV~ Z XiYo=Xpyo + '-Z1 XY= Vo)

i=1
and the formula
B(dimX, dimY)=dim Hom(X, Y)— dim Ext! (X,Y)
of [9].
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Lemma 2. For r=5, Bla ,a*)>0.
Proof. Clearly, B(a~,a*)=2r(4—r+ |/ r(r—4))>0 for all r=5.

Proposition. Let X, Y be non-zero regular representations of D, r=5. Then there
exists a natural m, such that Hom(X, C*™Y)%0 for all mzm,.

Proof. Let dimX=u+¢"a* +¢7a” and dimY=v+n*a® +n-a~ with u,veU
and real {7,¢7,n7,n7. According to Lemma 1, ¢~ >0 and n*>0. For even
natural n,

B(dimC "X, dimC*"Y)
=Bu+Ai""¢Tat+A"¢"aT, v+ A"nTat 44" " "a")
=¢Tn" Bla”,a") A4 M, o e AT
with real constants ¢,, 1 £k <4. Consequently, in view of Lemmas 1 and 2,

B(dimC™"X,dimC""Y)>0
for large even n. Thus, applying the above mentioned formula of [9].

0 <dimHom(C~ "X, C*"Y)=dimHom(X, C*2"Y).

Substituting C*™'Y, with 1<t<3, for Y, we see that for large n, also
0 <dimHom(X, C*?"*"Y), as required.

Proof of Theorem 2. Let X, Y be indecomposable representations of D" over the
fixed division ring F. Let Z' be some regular representation of ©" over the prime
field K of F with End(Z)=K,and let Z=Z'® F .. Then End(Z)=F; in particular,
Z is indecomposable and also regular. By the Proposition, there exists m with
Hom(X, C*™Z)#+0 and Hom(Z, C*™Y)40, thus also Hom(C~™Z,Y)+0. The
indecomposable representation Z’ is a module over a finite dimensional algebra
over a communicative field, thus Ext'(Z', C*Z')#0. Namely, C*Z’ is just the
dual of the transpose of Z' (see [5]), thus there exists the almost split sequence

(see[1])
0-C*"Z'-E-Z'-0.

Tensoring with F we obtain a non-split exact sequence
0—-C*"Z-E—-Z-0,

where E=E'®F and where we use C*Z=C"(Z'®xFp)=(C*Z)®xFy. Now
with Z and C* Z, also E is regular. Applying C**and C ", for 1 £i<m, we obtain
a chain of non-zero maps

A C+mZ_—'Zl “">Z2—>...—>Z1=C"'"Z

with regular representations Z,, 1 <t </=4m. This finishes the proof of theorem 2.
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