

Perfect Elements in the Free Modular Lattices

Vlastimil Dlab1 and Claus Michael Ringel2

¹ Department of Mathematics, Carleton University, Ottawa, Canada, K1S 5B6

² Fakultät für Mathematik, Universität Bielefeld, D-4800 Bielefeld, Federal Republic of Germany

Introduction

Recently, Gelfand and Ponomarev have investigated the structure of the free modular lattices \mathfrak{D}^r with r generators e_1, e_2, \dots, e_r . Recall that for $r \leq 3$, the lattice \mathfrak{D}^r is finite (R. Dedekind has shown that \mathfrak{D}^3 has 28 elements [3]) and that for $r \geq 4$, the lattice \mathfrak{D}^r is infinite.

The central concept introduced by Gelfand and Ponomarev in [7] and [8] is that of a perfect element of \mathfrak{D}^r ; it is defined in terms of representations of \mathfrak{D}^r as follows. A representation of \mathfrak{D}^r (over a division ring F) is a lattice homomorphism ϱ of \mathfrak{D}^r into the lattice of subspaces of a (finite dimensional) vector space over F. Thus, a representation ϱ may be interpreted as being given as $\mathbf{X} = (X_0; X_i)_{1 \le i \le r}$ where the X_i are subspaces of the vector space X_0 , namely

$$\varrho(e_i) = X_i, \varrho(1) = X_0$$

and for every element $p = p(e_1, ..., e_r)$ of \mathfrak{D}^r ,

$$\varrho(p) = p(X_1, \ldots, X_r) = p(\mathbf{X}).$$

An element $p \in \mathfrak{D}^r$ is said to be *perfect* if p(X) = 0 or X_0 for every indecomposable representation X. Obviously, the perfect elements form a sublattice of \mathfrak{D}^r . For $r \ge 4$, Gelfand and Ponomarev construct explicitly a countable number of upper and lower cubicles (Boolean lattices of 2^r elements)

$$\dots \leq \mathfrak{B}^+(l) \leq \mathfrak{B}^+(l-1) \leq \dots \leq \mathfrak{B}^+(1)$$
 and $\dots \geq \mathfrak{B}^-(l) \geq \mathfrak{B}^-(l-1) \geq \dots \geq \mathfrak{B}^-(1)$,

show that all their elements are perfect and conjecture that these are the only perfect elements in \mathfrak{D}^r (p. 5 of [7]; p. 100 of [8]).

In fact, the papers [7] and [8] consist largely in a study of a quotient of the lattice \mathfrak{D}^r . Call two elements $a, b \in \mathfrak{D}^r$ q-linearly equivalent if $a(\mathbf{X}) = b(\mathbf{X})$ for all representations \mathbf{X} of \mathfrak{D}^r over any division ring of characteristic q, and write \mathfrak{D}^r_q for the corresponding quotient lattice, the free q-linear lattice. Let us call an element p

of \mathfrak{D}_q^r perfect if for any indecomposable representation $\mathbf{X} = (X_0; X_i)$ over a division ring of characteristic q, we have $p(\mathbf{X}) = 0$ or X_0 . Clearly, the q-linear equivalence class of a perfect element of \mathfrak{D}' is perfect in \mathfrak{D}_q^r . Thus, the problem on the existence of perfect elements in \mathfrak{D}' comprizes two questions:

- (i) determination of the sublattice of all perfect elements of the free q-linear lattice \mathfrak{D}_q^r and
 - (ii) determination of the q-linear equivalence classes in \mathfrak{D}^r .

In this paper, we shall address ourselves to the first question. Let us recall that Gelfand and Ponomarev have proved that in \mathfrak{D}_q^r , any element of the lower cubicles $\mathfrak{B}_q^-(l)$ [i.e. of the cubicle of the q-linear equivalence classes of the elements of $\mathfrak{B}^-(l)$] is smaller than any element of the upper cubicles $\mathfrak{B}_q^+(l)$. In addition, they have shown that every perfect element p of \mathfrak{D}_q^r which does not belong to any such cubicle must satisfy

$$\mathfrak{B}_q^-(l) \leq p \leq \mathfrak{B}_q^+(l)$$
 for all l .

Here, we shall establish the following theorem.

Theorem 1. For r=4, there are at most 16 perfect elements, and for $r \ge 5$, there are at most 2 perfect elements in \mathfrak{D}_q^r which do not belong to the cubicles.

For the proof of the theorem, it is sufficient to work with representations over a fixed division ring F of characteristic q. For, assume $G \subseteq F$ is a division ring inclusion, and $(Y_0; Y_i)$ is a representation of \mathfrak{D}^r over G, then $(Y_0 \otimes_G F_F; Y_i \otimes_G F_F)$ is a representation of \mathfrak{D}^r over F and it is easy to see that $Y_i \to Y_i \otimes_G F_F$ induces a lattice isomorphism of the corresponding sublattices generated by the Y_i , or $Y_i \otimes_G F_F$, respectively. Now we use the fact that any two division rings of the same characteristic can be embedded into a common division ring [2].

The proof of the theorem will depend on investigating the existence of non-zero homomorphism between the "regular" representations. (Note that all indecomposable representations are divided into the preprojective, preinjective, and regular ones; the definitions will be recalled at the beginning of the next section.) For, the fact that every perfect element p of \mathfrak{D}_q^r which does not belong to any cubicle $\mathfrak{B}^+(l)$ or $\mathfrak{B}^-(l)$ satisfies $\mathfrak{B}_q^-(l) \leq p \leq \mathfrak{B}_q^+(l)$ for all l, means that $p(\mathbf{X}) = 0$ for the preprojective representations \mathbf{X} , and $p(\mathbf{X}) = X_0$ for the preinjective representations \mathbf{X} . Thus, we only have to be concerned with the values $p(\mathbf{X})$ for indecomposable regular representations \mathbf{X} . We will use the following simple criterion:

If X, Y are indecomposable representations of \mathfrak{D}_q^r and if there is a non-zero homomorphisms $\varphi: X \to Y$, then, for any perfect element p in \mathfrak{D}_q^r , p(Y) = 0 implies p(X) = 0.

In case when r=4, the result now follows from the well-known structure of the subcategory of the regular representations (see [4]). Indeed, this subcategory is abelian, and is a direct sum of three categories \mathcal{R}_j and the subcategory \mathcal{H} of the homogeneous representations. For any two representations X, Y of the same \mathcal{R}_j , there is a representations Z and non-zero maps $X \to Z$ and $Z \to Y$, so that for any perfect element p, p(X) has the same value (0 or X_0) for all $X \in \mathcal{R}_j$.

Moreover, the images of \mathfrak{D}_q^r in the subspace lattice of X_0 of an indecomposable representation $\mathbf{X} = (X_0; X_i)$ in \mathcal{H} are all of the form

and thus, for a perfect element p, p(X) has the same value $(0 \text{ or } X_0)$ for all $X \in \mathcal{H}$. In summary, there are at most 16 distinct perfect elements in \mathfrak{D}_q^r in addition to those belonging to the cubicles.

In the case $r \ge 5$, the statement of Theorem 1 is an immediate consequence (using the above criterion) of Theorem 2 on the existence of chains of non-zero homomorphisms between regular representations of \mathfrak{D}_q^r which seems to be of some interest in itself.

Homomorphisms Between Regular Representations of \mathfrak{D}_{a}^{r}

Recall that a representation of \mathfrak{D}^r is called *regular* in case it does not have an indecomposable preprojective or preinjective direct summand. Here, the indecomposable preprojective or preinjective representations are those obtained from the projective or injective ones by a successive application of one of the two Coxeter functors (see below). Alternatively, an intrinsic definition may be given as follows: Call **P** preprojective provided there is only a finite number of indecomposable representations **X** with $\operatorname{Hom}(\mathbf{X}, \mathbf{P}) \neq 0$, and call **I** preinjective provided there is only a finite number of indecomposable representations **Y** with $\operatorname{Hom}(\mathbf{I}, \mathbf{Y}) \neq 0$. (It is clear that this definition coincides with the usual one for all finite dimensional hereditary algebras.)

Now, the main theorem asserts that for $r \ge 5$, any two non-zero regular representations can be connected by a sequence of non-zero maps (the composition of these maps may, of course, be zero!).

Theorem 2. Let X, Y be indecomposable regular representations of \mathfrak{D}_q^r , $r \ge 5$. Then there exist indecomposable regular representations $X = X_0, X_1, ..., X_t, ..., X_l = Y$ with $\text{Hom}(X_{t-1}, X_t) \ne 0$ for all $1 \le t \le l$.

Before proving Theorem 2, let us return to the proof of Theorem 1. As mentioned earlier, Gelfand and Ponomarev have shown that any perfect element $p \in \mathfrak{D}_q^r$ which does not belong to a cubicle, must satisfy $p(\mathbf{X}) = 0$ for all preprojective \mathbf{X} , and $p(\mathbf{X}) = X_0$ for all preinjective \mathbf{X} . Since the value of $p(\mathbf{X})$ for regular \mathbf{X} is, for a fixed p, either always = 0, or always the total space X_0 , it is clear that there are at most two such elements in \mathfrak{D}_q^r . This completes the proof of Theorem 1.

In what follows, we shall always consider representations of \mathfrak{D}^r over a fixed division ring F of characteristic q, or equivalently, representations of \mathfrak{D}^r_q over F.

Recall the concept of the Coxeter functors C^+ and C^- . Given a representation $\mathbf{X} = (X_0; X_i)$ of \mathfrak{D}_q^r , denote by Y_0 the kernel of the summation map $\bigoplus_i X_i \to X_0$ and by Y_i ($1 \le i \le r$) the kernels of the respective component maps $Y_0 \to X_i$. The resulting representation $\mathbf{Y} = (Y_0; Y_i)$ is, by definition, $C^+ \mathbf{X}$. The functor C^- is defined

dually; for the basic properties of these functors we refer to [6, 4]. In particular, denoting by $\dim X$ the (integral) rational vector $(x_i)_{0 \le i \le r} \in \mathbb{Q}^{r+1}$, where $x_i = \dim X_i$, we have, for every indecomposable X either $C^+X = 0$ or $\dim C^+X = c(\dim X)$; here, the Coxeter transformation c on \mathbb{Q}^{r+1} is defined by

$$c(x_0, \ldots, x_i, \ldots) = \left(\sum_{t=1}^r x_t - x_0, \ldots, \sum_{\substack{t=1\\t \neq i}}^r x_i - x_0, \ldots \right).$$

An indecomposable representation X is preprojective (or preinjective) if there exists an exponent m such that $C^{+m}X = 0$ (or $C^{-m}X = 0$).

In what follows, always $r \ge 5$. Note that, with respect to the transformation c, the rational space \mathbb{Q}^{r+1} decomposes as follows:

$$\mathbb{Q}^{r+1} = U \oplus \langle \mathbf{a}^+ \rangle \oplus \langle \mathbf{a}^- \rangle$$

with the (r-1)-dimensional eigenspace U corresponding to -1, and with the (one-dimensional) eigenspaces $\langle \mathbf{a}^+ \rangle$ and $\langle \mathbf{a}^- \rangle$ corresponding to $\lambda = \frac{1}{2}(r-2+\sqrt{r(r-4)}) > 1$ and λ^{-1} . Here, $U = \{(0, x_1, ..., x_r) | \sum_{i=1}^{r} x_i = 0\}$, $\mathbf{a}^+ = (r-\sqrt{r(r-4)}, 2, ..., 2)$ and $\mathbf{a}^- = (r+\sqrt{r(r-4)}, 2, ..., 2)$.

Lemma 1. Let X be a non-zero regular representation of \mathfrak{D}_q^r , $r \geq 5$, and

$$\dim X = u + \xi^+ a^+ + \xi^- a^-$$
.

Then $\xi^+ > 0$ and $\xi^- > 0$.

Proof. First, both ξ^+ and ξ^- are non-zero. For, if both $\xi^+=0$, $\xi^-=0$, then $\dim C^+X=-\dim X$ gives a contradiction to the fact that both $\dim X$ and $\dim C^+X$ are positive. Thus, assume $\xi^+=0$ and $\xi^-\neq 0$. Then for all even natural m,

$$\dim C^{+m}X = \mathbf{u} + \lambda^{-m}\xi^{-}\mathbf{a}^{-}.$$

But this cannot be integral for all such m, since $\lambda > 1$ and therefore λ^{-m} is arbitrarily small.

Similarly, in case $\xi^+ \neq 0$ and $\xi^- = 0$, we use C^{-m} .

Second, from the fact that, for all even m, both

and

$$\dim C^{+m} \mathbf{X} = \mathbf{u} + \lambda^{m} \xi^{+} \mathbf{a}^{+} + \lambda^{-m} \xi^{-} \mathbf{a}^{-}$$

$$\dim C^{-m} \mathbf{X} = \mathbf{u} + \lambda^{-m} \xi^{+} \mathbf{a}^{+} + \lambda^{m} \xi^{-} \mathbf{a}^{-}$$

have non-negative components, we infer that both $\xi^+>0$ and $\xi^->0$. Recall the definition of the (non-symmetric) bilinear form B on \mathbb{Q}^{r+1}

$$B(\mathbf{x}, \mathbf{y}) = \sum_{i=0}^{r} x_i y_i - \sum_{i=1}^{r} x_i y_0 = x_0 y_0 + \sum_{i=1}^{r} x_i (y_i - y_0)$$

and the formula

 $B(\operatorname{dim} \mathbf{X}, \operatorname{dim} \mathbf{Y}) = \dim \operatorname{Hom}(\mathbf{X}, \mathbf{Y}) - \dim \operatorname{Ext}^{1}(\mathbf{X}, \mathbf{Y})$ of [9].

Lemma 2. For $r \ge 5$, $B(\mathbf{a}^-, \mathbf{a}^+) > 0$.

Proof. Clearly,
$$B(\mathbf{a}^-, \mathbf{a}^+) = 2r(4 - r + \sqrt{r(r-4)}) > 0$$
 for all $r \ge 5$.

Proposition. Let X, Y be non-zero regular representations of \mathfrak{D}_q^r , $r \ge 5$. Then there exists a natural m_0 such that $\operatorname{Hom}(X, C^{+m}Y) \ne 0$ for all $m \ge m_0$.

Proof. Let $\dim \mathbf{X} = \mathbf{u} + \xi^+ \mathbf{a}^+ + \xi^- \mathbf{a}^-$ and $\dim \mathbf{Y} = \mathbf{v} + \eta^+ \mathbf{a}^+ + \eta^- \mathbf{a}^-$ with $\mathbf{u}, \mathbf{v} \in U$ and real $\xi^+, \xi^-, \eta^+, \eta^-$. According to Lemma 1, $\xi^- > 0$ and $\eta^+ > 0$. For even natural n,

$$B(\dim C^{-n}X, \dim C^{+n}Y)$$
= $B(\mathbf{u} + \lambda^{-n}\xi^{+}\mathbf{a}^{+} + \lambda^{n}\xi^{-}\mathbf{a}^{-}, \mathbf{v} + \lambda^{n}\eta^{+}\mathbf{a}^{+} + \lambda^{-n}\eta^{-}\mathbf{a}^{-})$
= $\xi^{-}\eta^{+}B(\mathbf{a}^{-}, \mathbf{a}^{+})\lambda^{2n} + c_{1}\lambda^{n} + c_{2} + c_{3}\lambda^{-n} + c_{4}\lambda^{-2n}$

with real constants c_k , $1 \le k \le 4$. Consequently, in view of Lemmas 1 and 2,

$$B(\dim C^{-n}X, \dim C^{+n}Y) > 0$$

for large even n. Thus, applying the above mentioned formula of [9].

$$0 < \dim \operatorname{Hom}(C^{-n}X, C^{+n}Y) = \dim \operatorname{Hom}(X, C^{+2n}Y).$$

Substituting $C^{+t}\mathbf{Y}$, with $1 \le t \le 3$, for \mathbf{Y} , we see that for large n, also $0 < \dim \mathrm{Hom}(\mathbf{X}, C^{+(2n+t)}\mathbf{Y})$, as required.

Proof of Theorem 2. Let X, Y be indecomposable representations of \mathfrak{D}^r over the fixed division ring F. Let Z' be some regular representation of \mathfrak{D}^r over the prime field K of F with $\operatorname{End}(\mathbf{Z}') = K$, and let $\mathbf{Z} = \mathbf{Z}' \otimes_K F_F$. Then $\operatorname{End}(\mathbf{Z}) = F$; in particular, Z is indecomposable and also regular. By the Proposition, there exists m with $\operatorname{Hom}(\mathbf{X}, C^{+m}\mathbf{Z}) \neq 0$ and $\operatorname{Hom}(\mathbf{Z}, C^{+m}\mathbf{Y}) \neq 0$, thus also $\operatorname{Hom}(C^{-m}\mathbf{Z}, \mathbf{Y}) \neq 0$. The indecomposable representation \mathbf{Z}' is a module over a finite dimensional algebra over a communicative field, thus $\operatorname{Ext}^1(\mathbf{Z}', C^+\mathbf{Z}') \neq 0$. Namely, $C^+\mathbf{Z}'$ is just the dual of the transpose of \mathbf{Z}' (see [5]), thus there exists the almost split sequence (see [1])

$$0 \rightarrow C^+ \mathbf{Z}' \rightarrow \mathbf{E}' \rightarrow \mathbf{Z}' \rightarrow 0$$
.

Tensoring with F we obtain a non-split exact sequence

$$0 \rightarrow C^+ Z \rightarrow E \rightarrow Z \rightarrow 0$$
.

where $\mathbf{E} = \mathbf{E}' \otimes_K F_F$ and where we use $C^+ \mathbf{Z} = C^+ (\mathbf{Z}' \otimes_K F_F) = (C^+ \mathbf{Z}) \otimes_K F_F$. Now with \mathbf{Z} and $C^+ \mathbf{Z}$, also \mathbf{E} is regular. Applying C^{+i} and C^{-i} , for $1 \le i \le m$, we obtain a chain of non-zero maps

$$C^{+m}\mathbf{Z} = \mathbf{Z}_1 \rightarrow \mathbf{Z}_2 \rightarrow \dots \rightarrow \mathbf{Z}_l = C^{-m}\mathbf{Z}_l$$

with regular representations \mathbb{Z}_t , $1 \le t \le l = 4m$. This finishes the proof of theorem 2.

References

1. Auslander, M., Reiten, I.: Representation theory of artin algebras III, IV. Comm. Algebra 3, 239-294 (1975), and 5, 443-518 (1977)

- 2. Cohn, P.M.: Skew field constructions. London Math. Soc. Lecture Notes Series 27. Cambridge: Univ. Press 1977
- 3. Dedekind, R.: Über die von drei Moduln erzeugte Dualgruppe. Math. Ann. 53, 371-403 (1900)
- 4. Dlab. V., Ringel, C.M.: Representations of graphs and algebras. Mem. Amer. Math. Soc. 173 (1976)
- 5. Gabriel, P.: Trends in representation theory. Proceedings of Conf. Repres. Algebras, Ottawa 1979. To appear
- 6. Gelfand, I.M., Ponomarev, V.A.: Problems of linear algebra and classification of quadruples in a finite dimensional vector space. Coll. Math. Soc. Bolyai 5, Tihany (Hungary), 163-237 (1970)
- 7. Gelfand, I.M., Ponomarev, V.A.: Free modular lattices and their representations. Uspechi Math. Nauk. 29, 3-58 (1974); Engl. Transl. Russian Math. Surveys 29, 1-56 (1974)
- 8. Gelfand, I.M., Ponomarev, V.A.: Lattices, representations, and algebras connected with them I, II. Uspechi Math. Nauk 31, 71-88 (1976) and 32, 85-106 (1977); Engl. Transl. Russian Math. Surveys 31, 67-85 (1976) and 32, 91-114 (1977)
- 9. Ringel, C.M.: Representations of K-species and bimodules. J. Algebra 41, 269-302 (1976)

Received January 22, 1979