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Bricks in hereditary length categories

Craus MICHAEL RINGEL

A length category ¥4 is an abelian category in which all objects have finite
length. It is called hereditary, provided Ext® vanishes everywhere. Since a length
category with only a set of isomorphism classes of objects can be considered as a
category of modules of finite length over some suitable ring, we just will call the
objects of € modules. And modules with endomorphism ring a division ring will
be called bricks. We are going to study in which way a module in a hereditary

length category can be built up from bricks, and derive a corresponding result for
tilted algebras.

THEOREM. Let € be a hereditary length category. Let M be an indecomposa-
ble module, not a brick. Then there exists a chain of submodules

0=MycM,c:---<cM=M

such that for all 1<i<r, the module Z, = M,/M,_, is a brick, embeddable into M,
and with Ext' (Z,, Z,) #0.

Proof. In case we have constructed a chain of submodules 0=M,=M,; <
- M, =M, we will say that M is an iterated extension of the modules
Mi/M;_,.

Now, first, we show that there exists a brick Z,< M, with Ext' (Z,, Z,)#0
such that M/Z, is an iterated extension of submodules of M. In order to prove
this, choose some 0 # ¢ € End M with image S of minimal length. We therefore
have an epimorphism £:M — S and a monomorphism g:S— M with ¢ = pe.
Clearly, ¢* =0, by the minimality of the length of S. Let @;_, X, be the kernel of
¢, with all X; indecomposable and with inclusion maps p,:X,— M. Now S is
contained in this kernel, let »;: S — X, be the corresponding projections, thus
# =Y wy,. Note that pue is an endomorphism of M, and its image is a factor
module of S. Thus either wn,e =0 or else p,»; is a monomorphism, again due to
the minimality of the length of S. Choose some j with ww,e#0. Since ;v is @
monomorphism, and € is hereditary, the induced map

Ext’ (v, X;):Ext' (X, X;) - Ext! (S, X))
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has to be surjective. Note that Ext' (S, X;) # 0, since the indecomposable module
M is an extension of ® X; by S. Thus we have found a proper submodule
M'(=X;) of M, which is indecomposable, satisfies Ext! (M’, M’} # 0, and such that
M/M' is an extension of €B,,; X; by S, both being submodules of M. Now either
M’ is a brick, then let Z, = M'. Otherwise, by induction, we can assume that there
exists a brick Z, <M, with Ext' (Z;, Z,)#0, such that M'/Z, is an iterated
extension of submodules of M'. Submodules of M’ are also submodules of M, thus
MJ/Z, being an extension of M'/Z, by M/M’ is an iterated extension of sub-
modules of M.
Now assume we have constructed a chain

0=MycM,c - cM,cM

of submodules such that for all 1=i=<s, the module Z,=M,/M,_, is a brick,
embeddable into M, with Ext' (Z,, Z,) # 0, and M/M, being an iterated extension
of submodules of M. Say, let

M=UycU,c---cU=M

with U;/U,_, being a submodule of M, for all 1=i=<t We clearly may suppose
that U,/Uj is indecomposable. Now either U,/U, is a brick, then let M, ,=U,.
Otherwise, we apply our first result to the module U,/U,. We obtain a brick
Z,.1= M, ,/Uy= U,/U, such that (U,/Uy)/Z,.,~U,/M.,, is an iterated exten-
sion of submodules of U,/U,, thus of submodules of M. Thus, we have in both
cases obtained a chain

O0=MycM,c -+ cM.cM,,,cM

such that for all 1 =i =<s+1, the module Z, = M,/M,_, is a brick, embeddable into
M, with Ext' (Z,, Z,)#0, and M/M,,, an iterated extension of submodules of M.
After a finite number of steps, we must reach M. This finishes the proof.

By duality, we also have:

THEOREMY*. Let € be a hereditary length category. Let M be an indecompos-
able module, not a brick. Then there exists a chain of submodules

O=MycM,c---cM=M
such that for all 1=<i <1, the module Z, = M/M,_, is a brick, and a factor module
of M, such that, in addition Ext' (Z,, Z,) #0.

COROLLARY. Let % be a hereditary length category. Let M be an indecom-
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posable module, not a brick. Then there exisis a chain of submodules
0=MycsM,c - <MecM

such that for all 1=i=<t, the module Z, = M,/M, ., is a brick with Ext'(Z, Z)# 0,
and M/M, is a direct sum of bricks.

Proof. By the theorem, there exists Z, =M, <M, a brick with Ext' (Z,,
Z)#0. Let M/M, =@;_, Y; with Y, be indecomposable, and let Yy, ..., Y, be
bricks and Y., . . ., Y, not bricks. For any i, r+ 1 =i=<s, there exists Y= Y, such
that Y! is an iterated extension of bricks which have self-extensions and Y/Yiisa
direct sum of bricks. Let €%_,., Y!=M/M,, for some submodule M’ with
M, < M’ =M. Then M’ is an iterated extension of bricks with self-extensions, and
MM =(@;_, Y.)B(D:_,,, Yi/Y) is a direct sum of bricks.

Again, there is the dual result:

COROLLARY?™. Let € be a hereditary length category. Let M be an indecom-
posable module, not a brick. Then there exists a chain of submodules

0cMc: - cMcM =M

such that for all 2<i<t+1 the module Z;= M,/M,_, is a brick with Ext' (Z,
Z)#0, and M, is a direct sum of bricks.

Remark. Note that the Jordan-Holder-series usually will not satisfy any of
these conditions. In fact, in case € is the category of modules of finite length over
a hereditary artinian ring, then no simple module has self-extensions, and also any

indecomposable module of length =2 has composition factors which are not
embeddable into the module.

Application 1. Hereditary artinian rings of finite representation type

As first application, let us give rather short proofs of two well-known results in
the representation theory of hereditary artinian rings:

(a) Let R be a hereditary artinian ring of finite representation type. Then any
indecomposable module of finite length is a brick.

Proof. Assume M}, is indecomposable and not a brick. By the theorem, there
exists a brick Zr with Ext'(Z, Z)#0. However, given a brick with self-
extensions, one may easily construct arbitrarily long iterated extensions of copies
of Zg which are indecomposable (use the process of simplification, see [5]).
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In particular. let A be a hereditary finite-dimensional algebra over an algeb-
raically closed field k., and of finite representation type. Then the endomorphism
ring of any indecomposable A-module is k. Recall that Gabriel asked in [2] for a
direct proof of this result, since this immediately establishes the well-known
bijection between the indecomposable representations of A and the positive roots
of the corresponding quadratic form. Of course, in the meantime, there has been
developed a completely different approach starting with the Coxeter functors of
Bernstein-Gelfand-Ponomarev [1] and using the Auslander-Reiten-quiver of A
(for a survey, see [3]).

Given any ring R, let K,(R) be its Grothendieck group of modules of finite
length with respect to exact sequences, the element of K (R) corresponding to the
module M is denoted by dim M, and elements of the form dim M, with M # 0, are
called positive. (Note that K,(R) is a free abelian group with basis the set of
elements of the form dim S, where § is simple, and the positive elements are
defined with respect to this basis). In case A is a finite-dimensional algebra over
some field k, and of finite global dimension, there is a (usually non-symmetric)
bilinear form ( , ) on K,(A) defined by

(dim M, dim N) = ). dim, Ext' (M, N),
i==0

and the corresponding quadratic form will be denoted by g,. Note that for A
hereditary, we have

qa (dim M) = dim, End (M) -dim, Ext' (M, M).

(b) Let A be a hereditary finite-dimensional algebra, and assume its quadratic
form q, is positive on positive elements of K4(A). Then any indecomposable
module of finite length is a brick.

Proof. Assume again, there exists an indecomposable module of finite length
which is not a brick. The theorem then gives a brick Z, of finite length with
Ext' (Z,, Z,)# 0. Since Ext' (Z,, Z4) is an End (Z,)-vectorspace (both on the
left and on the right), we have

dim, Ext' (Z,, Z,)=dim, End (Z,),

thus g, (dim Z,) =0, contrary to the assumption.

Application 2. Tilted algebras

Tilted algebras are the endomorphism rings of tilted modules over finite-
dimensional hereditary algebras [4]. They seem to play a rather dominent role in
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representation theory: On the one hand, some basic questions concerning rep-
resentations of finite-dimensional algebras can be reduced to questions about
modules over tilted algebras. On the other hand, many properties of finite-
dimensional hereditary algebras carry over to tilted algebras. For example, the
existence of self-extending bricks can be transferred to tilted algebras as follows:

COROLLARY. Let B be tilted algebra, and M an indecomposable B-module

of finite length, not a brick. Then there exists a brick Zg with Ext' (Zg, Zg) # 0,
which is a submodule or a factor module of M.

Proof. Let T, be a tilting module with A finite-dimensional, hereditary, and
B =End (T,). We have to distinguish two cases: First, assume Tor5 (Mg, gT)=0.
Then there exists an A-module M, generated by T, such that Mz = F(M,),

where F=Hom, (5T,, —). With Mg also M is indecomposable and not a brick.
Theorem™ gives a chain of submodules

0=MycMc---cM,=M

such that the modules Z;= M}/M;_, are bricks and factor modules of M’, and
Ext' (Z,, Z;) #0. Since all Z] are factor modules of M’, they are also generated by

Ta. Note that F is exact on exact sequences of modules generated by T,. Thus,
applying F, we obtain a chain of submodules

0=F(Mg)cF(Mj)< - cF(M)=F(M')=M,

with factors F(Zi)=F(M})/F(M;_,). We have End (F(Z}))~End(Z}), thus all
F(Z;) are bricks. Also

Extg (F(Z), F(Z)~End} (Z;, Z) #0.

Thus, let Zg = F(Z)). This is a self-extending brick and a factor module of M.

.Sin.lilarly, in the second case My ® 3T =0, there exists an A-module MY
satlsfyl'ng Hom, (T, M3) =0 and F'(MJ)=Mj, where F' =Ext}, (zT4, ). Here,
M" is indecomposable and not a brick. The theorem itself gives a chain

O=MogcMijc - cM'=M"

such that ?ll Z'=M’[M}_, are bricks and embeddable into M, with Ext' (Z,,
Z}’)#O. Since tl'\e Z; are embeddable into M", they also satisfy Hom, (Ta,
Z7)=0. Now F is exact on exact sequences of modules X, satisfying Hom 4 (T4,
X4)=0, and therefore we obtain a chain of submodules

0=F{My)cF(Mjc -« c F(M) = F'(M") = Mg,

wi’th "factors F'.(Zt’{):F’(M'{)/F (M7-,)) all being bricks. In this case, let Zg =
F'(ZY). then this is a brick, and a submodule of Mg, and also Ext} (Z, Z)#0.



Bricks in hereditary length categories 69

Remark. Note that we cannot improve this result as in the case of hereditary
algebras. Consider, for example, the algebra B given by the quiver with relation

8 202
0307 20, aBy=0

(it is easy to see that B is a tilted algebra), and the indecomposable representation
M of dimenion type (1121), note that M is not a brick. Self-extending bricks are
all of dimension type (0111), and H has such a brick Z as submodule, but no such
brick as factor module. Also, if we factor out Z, we obtain a semi-simple module
of length 2, and one of its summand cannot be embedded into M, namely that of
dimension type (1000).

This result is sufficient in order to obtain the same consequences for tilted
algebras as we have for hereditary algebras. In this way, we get several characteri-
zations of tilted algebras of finite representation type:

THEOREM 2. Let B be a tilted algebra. Then the following are equivalent
(i) B is of finite representation type.

(i) Any indecomposable B-module of finite length is a brick.

(iii) For all bricks Zg of finite length, Extg (Z, Z)=0.

(iv) gg{(x)>0 for any positive x in Ky(B).

Proof. (i)=>(iii): Assume there exists a brick Zg of finite length, with Extg (Z,
Z)#0. Note that Ext2 (Z, Z) =0, since B is a tilted algebra and Z is indecompos-
able. Thus, we can construct arbitrarily long iterated extensions of copies of Z
which are indecomposable (again, using the process of simplification [5]).

(ili)=>(ii): This is a direct consequence of the existence theorem for self-
extending bricks.

(iii)=> (iv): Let x be a positive element in Ky(B). Then x =dim M for some
non-zero module M of finite length, and we may choose an M with endomorph-
ism ring of smallest possible dimension. Let M = @ M, with M; indecomposable.
Then Ext' (M,, M,)# 0 for i# j, see [6]. We have seen that (iii) implies (ii), thus all
the M; are bricks, and using again (iii), we have Ext' (M, M,)=0 for all i
Altogether we have Ext'(M, M)=0." Since the global dimension of a tilted
algebra is <2, we see

ds(x) = qg(dim M) =dim End (M) +dim Ext* (M, M)>0.

(iv)=>>(ii): Assume there exists an indecomposable module of finite length
which is not a brick. The existence theorem for self-extending bricks gives a brick
Z of finite length satisfying Ext' (Z, Z) # 0. Note that Ext*(Z, Z)=0, since Z is
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indecomposable. Note that Ext' (Z, Z) is an End (Z)-vectorspace (both on the left
and on the right), thus

qg(dim Z) = dim End (Z) - dim Ext'(Z, Z)=0,

using the fact that the global dimension of B is =<2. This contradicts (iv).

(ii)=>(): This is true in general for finite-dimensional algebras. It follows
directly from the representation theory of Schurian vectorspace categories (for a
survey, see [7]). In our case, where B is a factor algebra of a finite-dimensional
hereditary algebra, one considers the category of B-modules as the category of all
representations of a bimodule of the form M., with F a division ring and Ca
proper factor algebra of B (see [8]), and uses induction.

Let us note that some of the implications have been known. As we have
mentioned, the implication (ii)=>>(i} is true in general for finite-dimensional
algebras which are not necessarily tilted algebras. If now B is a tilted algebra, and
of finite representation type, then it was known that B has property (ii). In fact,
one knows that the Auslander—Reiten quiver of B has no oriented cycles (see [4]),
a much stronger assertion. Also, in case the base field & is algebraically closed, the
implication (i)=>(iv) has been shown in [4].

The main interest seems to lie in the implication (iii)=>(i). Namely, we can
reformulate this assertion as follows: If B is a tilted algebra and not of finite
representation type, then there exists a self-extending brick. In fact, using
elementary methods from algebraic geometry, we easily see that this implies the
existence of even a family of self-extending bricks.
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