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A translation quiver containing a closed oriented path, with underlying
topological space being homeomorphic to S' x R +» will be called a fube.
Tubes arise rather frequently as components of the Auslander—Reiten quiver
of (tame) artin algebras |5, 11] and partially ordered sets [3]. Here, we try
to give a rather systematic investigation into their properties. In this way, we
present rigorous proofs of some results announced in [5, 11]. However, the
main objective of the present paper is our interest in separating tubular series
as considered in Section 4.

In the first section, we consider some fundamental properties of tubes. In
particular, we show that there are two kinds of arrows in a tube, those
pointing to the mouth and those pointing to infinity (Proposition 1 in
Section 1.2). Also, we investigate in greater detail some special classes of
tubes, the reduced ones and the smooth ones. Note that the regular
components of the Auslander-Reiten quiver of a tame hereditary artin
algebra, or more general, of a tame concealed artin algebra, are smooth
tubes.

We work with a process of enlarging a given tube T, namely, of inserting
several rays in order to obtain a new tube T[v, n]. It will be seen in Section 3
that, starting from a smooth tube, and using several times this and the dual
construction, we obtain precisely the coherent tubes which admit length
functions, or, equivalently, the coherent tubes of rank >1 (Theorem 3.3).
Any coherent tube of rank =1 actually appears as a component of the
Auslander—Reiten quiver of a suitable artin algebra (Theorem 4.2).

Given a ring 4, an A-module ¥V, and n N,, we consider the ring AV, 1]
(see Section 2.3; note that 4|V, I] ¥ just the one-point extension of 4 by V)
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In case A is an artin algebra with a component T of its Auslander—Reiten
quiver being a tube, and V is a rather special indecomposable 4-module in 7,
a socalled “ray module” (see Section 2.2), we calculate completely the
component of A[V, n] containing the module V: it is of the form T|v, n]
(Theorem 2.3). In this case, we will call A[V, n] a simple tubular extension;
the dual construction will be called a cosimple tubular extension.

We introduce the general notion of a tubular extension of a tame
concealed algebra A4, for an algebra being obtained from 4 by a sequence of
successive simple or cosimple tubular extensions. Let B be a tubular
extension of a tame concealed algebra A. Then there is a class £ (B, A) of
indecomposable B-modules formed by the modules belonging to a family of
tubes. The remaining indecomposable B-modules fall into two separate
classes .#*(B,A) and Z(B, A), such that Hom(X, Y) =0 for X € 2(B, A),
Ye #(B,A), also for X&€ Z(B,A), YEZ (B,A), and for X € £ (B, 4),
Ye #(B,A) and that any homomorphism X— Y with X € 7(B, A4),
Y€ Z(B,A) factors through a direct sum of modules in £ (B,A4). We
therefore say that £ (B, A) is a separating tubular series. There are factor
algebras B* and B~ of B with A being the push-out of B* and B~ such that
the modules in .#(B, ) are B*-modules, and those in .2(B,A) are B -
modules (Theorem 4.3). Note that both B* and B~ may be of wild represen-
tation type, whereas the only indecomposable sincere representations will
belong to £ (B, A).

In the final section, we consider a component of the Auslander-Reiten
quiver of an artin algebra which is a coherent tube T and determine the
modules in 7 which are preprojective or preinjective in the sense of
Auslander-Smalg (Theorem 5.3).

Throughout the paper, we will denote by N,= {0, 1, 2,..} the set of
natural numbers, and N, = N\{0}.

1. TuBES

1.0. A quiver Q =(Q,, Q,) (without multiple arrows) is given by a
set (J, of “vertices” and a subset Q, < Q, X @, of “arrows.” If a = (x, y)
belongs to Q,, we will write more suggestively a: x—y, and cali x the
starting point and y the endpoint of a. The set of all starting points of arrows
with endpoint y is denoted by y~, the set of all endpoints of arrows with
starting point x is denoted by x*. An arrow a:x— x is called a loop. A
(finite) path of length n is given by an n-tuple n= (a,,..., a,) of arrows
a;:X;_;—X;, both the arrows a; (1<ig n) as well as the vertices x;
(0 < i< n) will be said to belong to n, and x, is called the starting point; x,
is the endpoint of 7. A circuit in Q is given by a set w = {a,,..., a,} of arrows
a;:x;_, — x; with pairwise different vertices x,, x,,.., x,_,, and x, = x,.
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A translation quiver Q = (Q,. Q,.1) is given by a quiver (Q,. Q,) without
multiple arrows (but note that we allow loops. in contrast to |2]), together
with an injective map r: Q5 - Q,. where Q) is a subset of Q,. such that
z” =(rz)" for all z€ Q. The pairs (rz,z) with z€ @, will be called
extensions, and more suggestively denoted by rz 1 z, and @, will denote the
set of all extensions. The vertices in Q,\Q, are said to be projective, those in
Qo\1(Qy) are said to be injective. The set of arrows a: y — z with z € Q;, will
be denoted by Q;. For any a € Q. there is a unique arrow rz — y, and it
will be denoted by oa. If both y, z € Q). and «: y — z, then there is an arrow
ty — 1z, and it will be denoted by ra (=0’«). A generalized path from x, to
x, is given by a sequence (,...., £,) such that for any 1 <i< n, g, is either
an arrow x;_, — x; or an extension x; , Lx. A generalized circuit is given
by a set {g,...., £,} such that ¢, is either an arrow x, , —x, or an extension
X;_; Lx; with pairwise different vertices x,. x,... x, ,.and x, = x,. Usually
we will denote a generalized path or a generalized circuit just by the
sequence (x4, X,,...,x,) of vertices. Given a translation quiver
Q =(Qo, Q,, 1), there exists the dual translation quiver @* = (QX. Q*.1*)
with Qf = Q,, with (x, )€ QF iff (3. x)EQ,, and t* =1 ':1(Q}) — Qo.
Using this duality, any assertion concerning translation quivers leads to a
dual assertion. Following Gabriel and Riedtmann, we may consider any
translation quiver (Q,, Q,.t) as a 2-dimensional simplicial complex as
follows: The O-simplices are the elements of Q,; there are two kinds of 1-
simplices, namely, the elements a: x — y of Q,. with boundary being given by
x,y, and the elements xLz of Q, with boundary x,z. Finally, for every
a:y—z in Qf, there is a 2-simplex (or “triangle”) with boundary the 1-
simplices a, oa and tzlz; we denote it by (rz. y, z). The geometric
realization of this complex will be called the underlying topological space | Q|
of Q.

Given a translation quiver Q = (Q,, Q,, 1), a translation subquiver is a
translation quiver of the form P= (P, P,, ') with P,< Q,. P, < @, and
Py < @, with 7' being the restriction of 7 to P,. P is said to be a full
translation quiver provided we have, in addition, P,=Q,N (P, X P,), and
such that for x, z € P, there exists the extension x Lz in P if and only if two
conditions are satisfied: this extension exists in Q, and any arrow y — z in O,
actually belongs to P,. Note that a full transiation subquiver P of Q is
uniquely determined by P, and Q. If x is a vertex of the translation quiver
0 =(Q,, @,, 1), we say that P is obtained from Q by deleting x, provided P
is the full translation subquiver of Q defined by Q,\x}.

1.1. DEFINITION. A translation quiver 7 is called a tube provided it
contains a circuit and the underlying topological space is homeomorphic to
S'XR, (where S'={z€C||z|=1} is the unit circle, and
R, ={r€R|r>0} is the space of non-negative real numbers). If 7 is 2
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tube, the 1-simplices belonging to the boundary of | T| are said to form the
mouth of T.

If O is any translation quiver, an arrow a: x — y of Q lies on at most two
triangles, namely, on (1, x, ¥) in case y is not projective, and on (x, y, 7~ 'x),
in case x is not injective. The number of triangles an extension x L z lies on
is given by the cardinality of x*. Thus let T be a tube. Then, given an arrow
a: x —y of T, it is impossible that both x is injective and y is projective; and
a: x — y belongs to the mouth of T if either x is injective or y is projective.
For an extension x Lz of T, the set x* can never be empty, and x 1z
belongs to the mouth if and only if x* contains a single vertex. In general,
Sfor every vertex x of the tube T, both sets x* and x~ can contain at most
two vertices. Namely, for x injective, one shows that x* has at most two
elements by considering the mouth of T which has to be a 1-sphere, whereas
for x not injective, the same follows from the fact that | T| is a manifold with
boundary. The assertion that x~ contains at most two elements follows by
duality.

1.2. We are going to state the main results of Section 1. Let T be a
tube. A function d: T, — {+1} is called a direction function for T if and only
if the following properties are satisfied

(1) If a,f are two arrows with the same starting point or the same
endpoint, then d(a) # d(B).

(2) If a€ T, then d(oa) # d(a).

(3) For any infinite path

& as (23]
xo“-*-“"'—le 'xz 'xl LA

with pairwise different arrows, there exists some i with d(a;} = 1.
(3*) For any infinite path

8, 8, B
* )3 * Vs * Yy * Voo

with pairwise different arrows, there exists some i with d(f;) = —1.

PROPOSITION 1. Any tube has a unique direction function.

If d is the direction function of the tube T, an arrow a of T with d(a) =1
will be said fo point to infinity; an arrow f with d(f) = —1 will be said to
point to the mouth.

An infinite path

x=x(0)— x(1) - x(2) —»--.
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of arrows all pointing to infinity and being pairwise different will be called a
ray and denoted by [x, o0 ); note that any ray is uniquely determined by its
starting point. In dealing with rays, we always will stick to the notation x(i)
for the endpoint of the ith arrow. Two rays |x, oo) and | y, o0 ) will be said to
belong to the same ray class provided they have a common arrow, or
equivalently, if y=x(i) or x=y(i) for some i Dually, an infinite
path --- - x(—2) - x(—1) - x(0) = x ending in x and consisting of pairwise
different arrows all pointing to the mouth will be called a coray and denoted
by (o0, x]. Two corays with a common arrow will be said to belong to the
same coray class. A ray which is not a proper subset of another ray is called
a maximal ray; any ray class contains a unique maximal ray. Similarly, any
coray class contains a unique maximal coray (which is not properly
contained in another coray).

Given a circuit w={a,..., a,} of length n, the number of arrows q;
pointing to the mouth will be denoted by g(w), the number of arrows «;
pointing to infinity will be denoted by p(w), and (p(w), g(w)) is called the
type of w.

PROPOSITION 2. Let T be a tube. All circuits of T have the same type
(p,q), and q is the number of ray classes and p is the number of coray
classes of T.

The common type (p,q) of all circuits of T will also be called the type of
T.

The proof of these two propositions will be given in Section 1.6. Now let T
be a tube.

1.3, We may identify the underlying topological space
IT|=S8"XR, of T with the subset {(r,s) € R?|r’ +s>> 1} of the real
plane, thus the underlying space |w| of a circuit w is a Jordan curve, and
therefore divides |T'| into an interior and an exterior part. The translation
subquiver of T with underlying space being the closure of the interior part
will be denoted by &, the translation subquiver of T with underlying space
being the closure of the exterior part will be denoted by 7(w). Note that @ is
a finite quiver, but not necessarily connected, whereas 7T(w) is infinite and
connected.

PROPOSITION 3. Let T be a tube. If w is a circuit, then T(w) is again a
tube. Also, there exists a unique circuit w, such that any other circuit is
contained in T(w,).

The unique circuit w, given by the proposition will be called the circuit
next to the mouth.

Proof of Proposition 3. A circuit w of the tube T cannot be contractible
since otherwise @ would be a simply connected translation quiver with a
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circuit, contrary to Proposition 1.6 of [2]. Thus, using the identification of
| T| with {(r,s)€ R*|r’ +s*>> 1}, we see that |w| runs around the hole
{(r,s)ER?|r* + s> < 1}, and therefore |T(w)| again is homeomorphic to
S'xXR,.

Now, for a circuit w, let {(w) denote the number of triangles inside @, and
choose a circuit w, with #(w,) being minimal. We show that any other circuit
w is contained in T(w,). Let w # w, be a circuit. Since {(w,) is minimal, w
cannot be inside @,. Now assume w is not contained in 7(w,). Then w runs
both through vertices not in @, and through vertices not in T(w,), and
therefore, w and w, intersect. Choose x, lying both on w and w, and being
the starting point of an arrow a,: x,— X, in w with x, not in T(w,). The
circuit w now has the form w = {a,,..., a,} with a;: x;_, - x;, and we choose
J 2 2 minimal with x; again belonging both to w and w,. Now, there is a
path from x; to x, in w,, say

ﬂl 3 3 Y Br
XJ:yO ’_yl LA 'yr—l—’yr:xo

with pairwise different y;. Since also no x; with 0 < i <j belongs to w,, we
see that w’ = {a,,..., a;, B;,..., B,} is a circuit, and w’ is properly contained in
(,, contrary to the choice of w,. This shows that w is contained in T(w,).
On the other hand, using the fact that w is not contractible, we see that w, is
contained in @, thus not in 7(w). This shows the unicity of w,.

1.4. Let us construct a special class of tubes which are both of
interest in representation theory and also will be used in order to deal with
general tubes. To begin with, recall from [8] the definition of the translation
quiver ZQ for a given quiver Q. The set (Z7Q), of vertices is given by
Z X Q,; for any arrow a:x— y, i € Z, there are two arrows

(i,a) {i,a")

(i, x) —— (i, y) and (i, y)—— (i + 1, x);

and there are the extensions (i,x)L(i+ 1,x) for all ieZ,x€ Q,. In
particular, we will consider ZAZ, where A is the quiver

with Z being the set of vertices, and with arrows i—i+ 1 for all i € Z. Then
the set of vertices ZA is given by 72, and the underlying topological space
of ZA® is of the form R’ Note that any pair (a, b) of integers induces a
translation of ZA, defined on the vertices by (i, x)+ (i + a, x + b).

481/87/1-11
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Let 7= be a (finite) generalized path in ZA Y, starting from (i, x) and ending
in (jy)=(@(+a,y+b), and we assume that 7 is not constant, thus
(a, b) # (0, 0). Let g be the translation of ZAZ given by (a, b). We denote by
7 the infinite generalized path given by the arrows and extensions which are
images under the translations g° (z € Z) of the arrows and extensions in 7.
Now # divides R?*=|ZA%| into two connected components, both being
homeomorphic to open half-planes, and we denote by T(n) the translation
subquiver of ZAY with underlying topological space being the closure of the
open half-plane containing the vertex (i—1,x+2). In particular, the
boundary of |T(r)| is given by |#|. Note that g defines an automorphism of
T(n), and the quotient of T(m) with respect to the action of g will be denoted
by T(n)= T(n)/g. Obviously, T(n) is a tube and the mouth of T(r) is given
by #/g. A closed fundamental domain in |T(x)| is given by the elements
(r,s) € R? which belong to |T| and satisfy 2i + x < 2r + s < 2/ + .

As an example, consider the generalized path n=((—2,1), (—1,0)
(-1, 1), (0,1), (0,2), (1,1), (2,0), (3,-1), (3,0), (4,0)). Here,
(a, b) = (6, —1), the fundamental domain considered above looks as follows:

(33_1)

We will characterize the tubes of the form T(r) in several ways. We will
say that the mouth of a tube is oriented, in case it is given by a generalized
circuit.

PROPOSITION 4. The following conditions are equivalent for a tube T.

(i) T is of the form T(m), for some generalized path n in ZA7.
(ii) The mouth of T is oriented.

(ii1) If x is injective, then |x* | = 1; if y is projective, then |y~ | = 1.



COHERENT TUBES 157

(iv) Any vertex belongs to a circuit.

(v) There is no sink and no source.

Proof of Proposition 4. (i) = (ii): This follows from the construction of
T(n).

(ii)= (i): Let x4, x,,..., x,_,; be pairwise different vertices, and x, = x,,
such that for any 0 < i < n, there is either an arrow x; — x;,, in the mouth or
an extension x; Lx;,, in the mouth. Choose X, = (0,0)€ ZAZ, and define
X; inductively. Namely, let X, = (s, ¢) being defined. If x; Lx;,, belongs to
the mouth, let x, a=6+1, t) If there is an arrow x; - X;,,, and x,,, is not
projective, let X, , = (s, t + 1). Otherwise, if there is an arrow x; - x;, | with
x,,, being projective, let X, 1= =(s+ 1,t—1). In this way, we obtain a
generalized path 7 = (X,, Xy X,) in ZAZT . We want to construct a covering
map from T(z) to T. By constructlon the number of triangles a vertex x; of
the mouth of T belongs to coincides with the number of triangles in T(n) to
which the vertex X, belongs. (Suppose first » > 2; then this number is 1 for x;
projective-injective. It is 2, in case x;_, Lx, is an extension in the mouth and
x; is injective, and also in the dual case. It is 3, in case x;, , Lx; and
x; Lx;,, both belong to the mouth, in case x,_, and x;, both are injective,
and in case x;, x;,,, both are projective. It is 4, in case x;_, Lx; belongs to
the mouth, x,,, is projective and in the dual case. Finally, it is 5, in case
x;_, is injective and x;,, projective. If n< 2, then a similar result follows
more easily.) Of course, a vertex in the interior both of T as well as of T(m)
belongs to precisely 6 triangles if n > 2, and to 6 or 4 triangles otherwise.
This shows that the map X, +— x; extends in a unique way to a simplicial
map from T(n) to T, and obviously this gives a covering map of translation
quivers. In this way, we define an isomorphism from T(n)= T(m)/g onto T.

(ii) = (iii): If x is injective, and y, # p, belong to x*, then both arrows
x —y,, x— y, belong to the mouth, thus the mouth is not oriented.

(iti) = (ii): If the mouth contains an arrow, say a:x-}y, let x,=x,

= y. Otherwise, there exists an extension on the mouth, and we label it
xo Lx,. Now assume, we have constructed a sequence x,, X, ,..., X; of vertices
on the mouth such that for any 0 i <, there is either an arrow x; —» x;,; or
an extension x; Lx;,, in the mouth. If x; is injective, let x;— x;,, be the
unique arrow starting at x,. If x, is not injective, and [x;|=1, let
X =T X Finally, assume x; is not injective, and there are arrows x; -,
x; -y’ with y#y’. If neither y nor y’ would be projective, then x; contains
the two different vertices 1y and 7y’ thus x; cannot be projective; however,
this contradicts the fact that x, lies on the mouth. Thus one of y, y’, say y, is
projective. In this case, let x;,,, =y. In this way, we obtain an infinite
generalized path (xg, x,, x,,...) consisting of arrows and extensions on the
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mouth, and since the mouth is homeomorphic to S*, there is some n with
X, =X,

(i) = (iv): We use the notation used in the construction of T(n). Any
path in T(z) starting from a vertex of the form (s, 2) with s<i,
t=x+2i—2s, and ending in (s + a, t + b) gives rise to a circuit in T(n),
using the projection T(n)— T(n). Let 7= (uy, u,,m.., u,). In general, this is a
generalized path, and not a path. In order to replace it by a path n’, we
insert, for every extension u; Lu,,, a new vertex u;=u, + (0, 1) between u,
and u;,,. Let ' = (v,, v,,..., ,). Then any vertex of T(n) is the image of a
vertex of the form v; + (—n, 2n), for some n > 0, and therefore belongs to the
circuit obtained in the following way: we consider the path obtained from n’
by using the translation by (—n,2n), and then use the projection
T(n) - T(x). This finishes the proof of the implication (i) = (iv).

Since (iv) = (v) is trivial, it remains to show the implication (v) = (ii). Let
w, be the circuit next to the mouth, say w, = {a,,..., @,} with a;: x;,_; = Xx;.
Assume there exists some arrow f: y - x; inside @, with y # x, ,. We claim
that y does not belong to w, and that there is no path from any x; to y. For
otherwise take a path y from x; to y of smallest possible length (with y being
of length zero in case y € w,). Since y is in @,, the whole path is inside @,.
Let a be the path from x; to x; inside w,. Thus, we obtain a circuit w by
using first y, then B, then «, and w is contained inside @,, and w # w,. This
contradicts Proposition 3. As a consequence, any path ending in y runs only
through the finitely many vertices which belong to @, and not to w,. Also,
the vertices of such a path must be pairwise different since otherwise we
would obtain a circuit which does not belong to T(w,). Thus there are only
finitely many paths ending in y, and therefore, there exists a source, contrary
to assumption (v). Similarly, the existence of an arrow f’: x; >y’ inside @,
with p’ # x;,, implies the existence of a sink, again in contrast to (v). As a
consequence, the only triangles contained in @, are of the form
(%i_1»X;» X;1,), and in case such a triangle exist, the extension x;, , LX;,
belongs to the mouth. Thus, deleting from w, those vertices x;, for which the
triangle (x;_,,x;, x;,,) exists and belongs to @,, we obtain a generalized
circuit, and this generalized circuit is the mouth of 7. Thus the mouth of T is
oriented. This finishes the proof of Proposition 4.

1.5. Tubes which satisfy the equivalent conditions of Proposition 4
are said to be reduced. Note that there is a reduction procedure for obtaining
from a tube a reduced tube in a finite number of steps, namely, in each step
one deletes a sink or a source. In fact, there is the following corollary (o
Proposition 4.

CoOROLLARY. Let T be a tube with w, being the circuit next to the mouth.
Deleting from T successively sinks and sources, one obtains after a finite
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number of steps the full translation subquiver T” of T defined by the vertices
of T(w,).

Note that T(w,) may be a proper translation subquiver of 7", namely,
T(w,) is obtained from 7" by deleting all extensions belonging to its mouth.

Proof. Deleting a sink or a source of the tube T, the full translation
subquiver 77 of T remains untouched, thus the procedure of deleting sinks
and sources has to stop after a finite number of steps since at most those
vertices which belong to @, and not to w, itself may be deleted. Thus, after a
finite number of steps we reach a full translation subquiver 7”7 of T which
contains 77 and which does not have a sink or a source. But then 7" is a
tube and the mouth of 7” is a generalized circuit, according to Proposition
4, thus there exists a circuit w in 7" which contains all vertices of its mouth.
It follows that @ = w, and therefore 7" =T".

1.6. Proof of Propositions 1 and 2. First, consider a reduced tube
T=T(n) with m being a generalized path in ZAJ, and denote by
e: T(n) » T(n) the canonical projection and by d a direction function for
T(n). Then d o e: T(n), —» {+ 1} is a function satisfying conditions (1) and (2)
of 1.2, thus doe takes a fixed value on the arrows of the form
({,a): (i, x)— (i,x+ 1), and the other value on the arrows of the form
(G, a*): (i,x)— (i+ 1,x—1). Let (i, x) be the starting point of n. Consider
first the case where the endpoint of x is of the form (i, x + b) for some b > 1.
In this case the vertices y,=e(i —j, x +j) for j >0 are pairwise different,
there are arrows

Yy V)V ),

and all have the same direction. It follows from Condition (3*) that d takes
the value —1 on these arrows, thus de(i, @) = 1, de(i,a*) = —1 for all i, a. In
case the endpoint of 7 is not of the form (i, x + b) for any b, the vertices
x; = e(i, x + j) for j > 0 are pairwise different and there are arrows

xo_—’xl——‘)xz—’"‘

all of which have the same direction. Condition (3) implies that d takes the
value 1 on these arrows, thus again de(i, a) =1, de(i,a*) = —1 for all i, a.
This shows that there is at most one direction function on T. Conversely, it
is obvious that the function d’: T(n),— {+1) given by d'(i.a)=1,
d'(i,a*) = —1 induces a direction function on T(n).

If T is a general tube, consider the circuit w, next to the mouth and use
induction on the number n of vertices belonging to &, and not to w,. If
n =0, then T is reduced. Otherwise, there exists a vertex x which is a sink or
a source. First, assume there exists a source x with x* containing a single
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element y, say with arrow a: x —» y. Then a and x L t~x belong to the mouth
of T, thus 6™ a cannot belong to the mouth, and therefore the full translation
quiver Q of T obtained by deleting the vertex x is a tube, with n decreased by
1. By induction, there is a unique direction function d on Q, and d has a
unique extension to 7, namely, d(a) = —d(0 ~a). Next, assume there exists a
source x with 77 x not belonging to the mouth. In this case, there exist two
different arrows a: x — y, a’: x — y’ starting at x. Again, the full translation
quiver @ of T obtained by deleting x is a tube, with n decreased by 1, and we
extend the direction function d of Q by setting d(a)=—d(o a),
d(a’)=—d(¢~a'). In case there exists a sink z with either z~ containing a
single element or with 7z not belonging to the mouth, we proceed dually.
Thus assume, for every source x, the set x* contains two elements and 7 x
belongs to the mouth, and for every sink z, the set z~ contains two elements
and 7z belongs to the mouth. Given any extension x L z not belonging to the
mouth, with x, z both belonging to the mouth, x Lz divides |7 into two
parts, and we denote by x Lz the closure of the bounded part. Now choose
an extension x Lz with x a source or z a sink such that x Lz contains a
minimal number of triangles. We consider the case of x a source (the other
case being dual). By assumption, x* contains two different elements l,_y_’ ’
say with arrows a: x—y and a’: x—y’. Now one of y, y’ belongs to x Lz,
say y, and assume y is not injective. Considering a maximal path starting
with z7a: 7" x—> 17y, we obtain a sink z’ inside x L z. By assumption, 7z’
belongs to the mouth and (z')~ contains two elements, thus we miy_r_consider
again x'Lz’. However, x’ Lz’ is a proper subset of x Lz, thus
contradicting the minimality of x L z. This shows that y is injective. Now
consider the full translation subquiver Q of T obtained by deleting x and y.
Since a, a’, 0~ a belong to the mouth, 6~ a’ does not belong to the mouth,
thus Q is a tube, and # is now reduced by 2. The unique direction function d
of Q is extended to T by setting d(a) = —d(a’') = —d(c " a) = d(c ~a’). This
finishes the proof of Proposition 1.

For the proof of Proposition 2, we may assume 7 to be reduced, thus
T = T(n) for some generalized path 7 in ZA% . We may assume that (0, 0) is
the starting point, and (a, b) the endpoint of 7. Now, a is the number of ray
classes, whereas a + b is the number of coray classes. Also, any circuit of
T(n) lifts to a path in T{(x) starting from a vertex of the form (s, ¢) with s < 0
and t=—2s and ending in (s + a, f + b). Thus, it involves a arrows of the
form (j,a*), and a + b arrows of the form (j, @). This finishes the proof of
Proposition 2.

1.7. We want to characterize a rather small class of tubes which
occur frequently in the representation theory of tame algebras. Recall that
A, denotes the quiver

Quir——3O0——0 +44¢ O——PO oo
0 1 2 i i+1
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For r > 1, the shift map (i, x) +- (i + r, x) of ZA , will be denoted by r. Also
recall that a vertex x of a translation quiver is called periodic provided
7'x = x for some > 1.

LEMMA. The following conditions are equivalent for a tube T:

(i) T is of the form ZA /r for some r > 1.

(ii) The mouth of T contains only extensions.
(iii) There are no projective or injective vertices.
(iv) All vertices are periodic.

A tube T satisfying these properties will be called smooth, and r(T) will
denote the (uniquely determined) number r in condition (i).

Proof. Clearly (i) implies both (ii) and (iv). Also, there are the obvious
implications (ii) = (iii) and (iv) = (iii). If T satisfies (iii), then Proposition 4
shows that T = T(n) for some generalized path 7 in ZAZ. Without loss of
generality, we may assume that 7 has the starting point (0, 0). Let (r, s) be
its endpoint. Since T(n) has no projective or injective vertex, it follows that
s =0 and that all the extensions (i, 0) L (i + 1,0) with 0 i< r— 1 belong
to 7. Thus T is of the form ZA_/r. This finishes the proof.

Note that in fact it has been shown in [5] that any translation quiver with
a length function (in the sense of 3.1) and with all vertices being periodic is a
smooth tube.

1.8. Let 7T be an arbitrary tube. A ray [z, oo} will be called reguiar
provided z is not projective, 7z L z belongs to the mouth, and both z and tz
belong to the reduced tube 7”. Dually, the coray (oo, x| is said to be regular
provided x is not injective, x L7~ x belongs to the mouth, and both x, 77 x
belong to T". (Note that we may weaken the conditions: if 7z 1 z belongs to
the mouth, 7z is in 7", and |z, 00) exists, then also z belongs to T”. Namely,
no z(i), i€ N,, can be projective since otherwise we would obtain a hole
between the rays [z, ©), [rz(l), o0), and the arrow 7z(1)-» z, which is
impossible, since, by assumption, 7z Lz belongs to the mouth. This shows
that 7(z(i)) = (rz)(i), for all i € N,. Now, given a circuit going through zz, it
will go along [rz, o) up to some 7z(i), then to z(i — 1) and further. We
obtain a different circuit by going tz — tz(1) - z and then along [z, c0) to
z{i — 1) and further.)

Thus, regular rays and regular corays always come in pairs: Given an
extension x Lz in the mouth, with both x,z belonging to T, there are
attached the regular ray [z, co) and the regular coray (oo, x|. Therefore, the
number of regular rays coincides with the number of regular corays (and
also with the number of extensions x Lz belonging to the mouth, with x, z
both in 77), and this number will be called the rank r(T) of T. Let w be the
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circuit next to the mouth. Then r(T) is the number of paths of the form
x =% y—*# z contained in w, with x Lz belonging to the mouth. Obviously,
for such a path x - y -2 z, the arrow a points to infinity, whereas the arrow
f points to the mouth. This shows that always r(T) < p(T), r(T) < g(T), and
that (T) = p(T) = q(T) if and only if T is a smooth tube.

The vertices which belong both to a regular ray as well as to a regular
coray are called regular vertices. Clearly, a tube is smooth if and only if all
its vertices are regular. Given a regular vertex x, belonging to the regular ray
[v, 00) and to the regular coray (oo, w|, say x = v(n) = w(—m), for some n,
m &€ Ny, then the following two properties are equivalent:

(i) no v(i), 0 <i < n, belongs to a regular coray.
(ii) no w(—j), 0<j < m, belongs to a regular ray.

If these equivalent conditions are satisfied, then x is called a simple regular
vertex.

1.9. We are interested in tubes since some components of the
Auslander—Reiten species of artin algebras are tubes. Recall that for an artin
algebra 4, its Auslander-Reiten species I'(4) is given as follows: the vertices
of I'(4) are given by the set I, of isomorphism classes [X| of indecom-
posable modules X, and we denote by F(X) the factor ring of End(X)
modulo its radical. For X, Y indecomposable modules, let Irr(X, Y) be the
bimodule of irreducible maps (see |10]), it is an F(X) — F(Y)-bimodule (note
that we always consider left modules and homomorphisms are assumed to
operate on the opposite side as the scalars, thus the composition of maps
f:X—Y, g: Y- Zis given by fg). The underlying quiver of I'(4) is given by
(I'y, I'y) with arrows |X| - | Y] provided Irr(X, Y) = 0. It becomes a trans-
lation quiver by defining 7(|X|) = [D Tr X|, for X indecomposable and not
projective, with D Tr denoting the Auslander—Reiten translation *“dual of
transpose.” A connected component of the Auslander—Reiten species of A4
will be called a component of A.

DEFINITION. A component of an artin algebra is called a tube provided
its underlying translation quiver is a tube and for any arrow [X] - [Y] in the
component, the F(X) — F(Y)-bimodule Irr(X, ¥) is of length one both as an
End(X)-module as well as an End(Y)-module.

In case the underlying translation quiver of a component is a tube 7, it
will be convenient to denote this component just by T, and to denote a fixed
representative of a vertex x of T by M, and a fixed representative of an
arrow a of T by f,. (In this way, we obtain a representation
A =M. [.)ceryaer, Of the quiver (T, T,). Note that (M,,f,) may not
satisfy any commutativity relation!)
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A representation .# = (M, f ) of a translation quiver will be called exact,
provided the following sequence

Uy, p

0—— M, %2 @ M,

yeXx+

F4

is exact for every extension x Lz. (For a: x— y, we also denote f, by f,,.)
Note that in case .# is an exact representation of a tube T, for x* consisting
of a single vertex y and z = ™ x, there is the exact sequence

x ?My )Mz >O',v (*)

whereas, for x* consisting of the two vertices y, ¥y’ and z = t™ x, there is the
commuting diagram

and this diagram is cartesian (it is both a pushout and a pullback diagram).
Sometimes, it will be more convenient to consider commutative represen-
tations instead of exact representations: here we require that, for x*
consisting of a single vertex y and z =1~ x, the sequence (x) is exact, and
that, for x* consisting of the two vertices y, »’ and z = 1" x, the diagram

ey
M, M,

fxy’ l j' fyz

y F4

is cartesian.

For any tame hereditary algebra 4, the regular 4-modules form an abelian
category .# which is the product of serial hereditary categories #,, all with
only finitely many simple objects [4,9]. The indecomposable A-modules
belonging to a fixed #, form a single component which is a smooth tube T,
and r(T,) is the number of simple regular objects in .#,. More generally, let
B be a tame concealed algebra. By definition, B = End(,M) for a prepro-
jective tilting module ,M with 4 being a tame hereditary algebra |6, 7]. Then
the category of B-modules contains a full subcategory which is equivalent to
the category .# of regular 4-modules and which is closed under irreducible
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maps; the B-modules contained in this subcategory again will be called
regular, and it follows that the indecomposable regular B-modules form
components which are smooth tubes.

Also, it has been observed by Biinermann [3] that for any one-parameter
partially ordered set S, all components of the Auslander—Reiten species of S
but two are tubes.

1.10. Finally, let us mention some examples of components which
have some features in common with tubes, but without being tubes.

(@) Let A, be the path algebra of a quiver of type 4,, with n > 1, and
with at least one sink. The underlying topological space of the preprojective
component of 4, is homeomorphic to S' x R +» but it does not contain an
oriented cycle. Thus it is not a tube.

(b) Let 4, be the path algebra of the quiver

5
og———3 0
Q30
&

with fa =0, ye=0. The component containing the representation with
dimension vector

is depicted in [11, p. 271]. Again, the underlying topological space is
homeomorphic to S' X R, , and it does not contain an oriented cycle.

(c) Of course, many examples of components containing oriented
cycles, but without being of the form S! X R . » are known; for example, the
Auslander—Reiten quiver of k[X]/(X") with n > 2.

2. SIMPLE TUBULAR EXTENSIONS

2.1. Let T be a tube. A vertex v in 7 will be called a ray vertex
provided it satisfies the following two properties:

(1) There exists the ray |v, o).

(2) If v(i)— w is an arrow in T pointing to the mouth, then i > 1, and
the extension v(i — 1) 1 w exists.
Let v be a ray vertex in the tube T and n € N,. We are going to define a
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tube T|[v, n] obtained from T by inserting rays. The set T{v, n], of vertices is
obtained from T, by adding additional vertices of the form (¢, i), with
1<t<n and i>1—t The set T[v,n], of arrows is obtained from T, by
replacing any arrow of the form v(i) » w pointing to the mouth by an arrow
(1, {)— w, and adding additional arrows

v(i)— (n, 1) for i>
ti)-(—110) for 2t

<

L<n and i>1-—1,
G- (i+ 1) for 1<tgKn and 21—t

Finally, the set T[v, n], of extensions is obtained from T, by replacing any
extension of the form v(i) L z by an extension (1, 7) 1z and adding additional
extensions:

v(i) Ln,i+ 1) for i >0,
GHL(@—-1i+1) for 2<tgnand i>21—1

We sketch an example with n = 3:

The dual process will be called insertion of corays. Given a tube T, a
coray vertex in T is by definition a vertex v of T such that v* is a ray vertex
in T*, and the n-fold coray insertion determined by the coray vertex v is
given by (T*[v*, n})*.
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2.2. Let A be a finite dimensional algebra. If X, Y are indecom-
posable A-modules with |X], [Y] belonging to a component of 4 which is a
tube, and /: X - Y is an irreducible map, then we will say that f points to the
mouth or to infinity, provided the arrow [X]— Y] in T has the
corresponding property. Let V' be a (finite-dimensional) 4-module with
endomorphism ring D being a division ring. Assume the component of 4
containing v = V]| is a tube T, and that the ray [v, o0) exists. Choose
indecomposable modules V(i) with [V(i)| = v(i). Then V is called a ray
module provided the following conditions are satisfied:

(1) If V=X,-X,>--> X, is a chain of irreducible maps and
indecomposable modules and one of the maps points to the mouth, then the
composition is zero.

(2) The vectorspaces ,Hom(V, V'(i)) are one-dimensional for i € Ng.

We also will introduce the dual notion of a coray module. Again assume
that W is an 4-module with End(W) = D, a division ring, such that w — [W]
belongs to a tube 7, and such that the coray (oo, w| exists. We choose
indecomposable modules W(—i) with |W(—i)] = w(—i), i € N,. Then W is a
coray module, provided:

"y ¥ X ,»X_,,,»-->X_,»X,=W is a chain of irreducible
maps and indecomposable modules and one of the maps points to infinity,
then the composition is zero.

(2*) The vectorspaces Hom(W(—i), W), are one-dimensional for
FEN,.
Note that for all the results concerning ray modules we will prove, there

also is a dual version concerning coray modules, but we will not state the
dual results explicitly.

ExaMpLES. If 4 is a tame concealed algebra, and V is an A-module, then
V'is a ray module if and only if ¥ is simple regular, if and only if V is a
coray module.

We obtain a component which is a smooth tube T with two vertices
v=[V], and w=[W] on the mouth such that ¥ is both a ray module and a
coray module, and W is neither a ray module nor a coray module by
considering the following algebra A: Let 4 be given by the quiver

O O

N/
g C) o
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with the relation aff = 0, and let T be the tube containing the indecomposable
modules V, W of dimension type

00 I 1
1 and
0

D

(Namely, af = 0 is a splitting zero relation |11], thus we consider besides 4
also the path algebra B of the quiver

%
o’ N

of type D,. The Auslander—Reiten quiver of 4 is obtained from that of B by
identifying the vertices corresponding to the two simple modules S{a) and
Sa’).)

Given a ray module V, we always will choose irreducible maps
a;: V(i—1)- V(i) for i€ N,, and define y; =@, -+ a;: V- V(i),u,= 1.

PRrOPOSITION. Let ,V be a ray module belonging to the tube T. Then
u;: V- V(i) is a nonzero map, thus a generator of the one-dimensional
vector space gnqa,Hom(V, V(i)), for all i€ N,. If W is an indecomposable
A-module also belonging to T, but not isomorphic to any V(i), with i € N,
then Hom(V, W)= 0.

The proof of this proposition will be given in Section 2.5.

COROLLARY. If V is a ray module belonging to the tube T, then [V is a
ray vertex in T.

Proof. Let W be indecomposable, and f: V(i) - W an irreducible map
pointing to the mouth. Then /> 1, according to property (1) of a ray
module. Again using this property, we see that 4, =0. Now W cannot be
projective since otherwise £ is a monomorphism; thus u; = 0 contrary to the
proposition. Denote by [8] the arrow |V(i)] - [W] in T. Since W is not
projective, there exists the vertex 7| W], with an arrow ¢|B}: t[W]~— [V(i)]
pointing to infinity. Thus [W] = [V(i — 1)]. This finishes the proof.

2.3. Given a riﬁg A and ¥V an A-module with endomorphism ring
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D and n€ N, let 4|V, n| be the ring of (n + 1) X (n + 1) matrices of the
following form:

AV 0
0 | D 0
AV, n|= D | D 0
0 : N n—1
DID ... D

with the usual addition and multiplication (using the bimodule structure

V,). Note that any A-module also can be considered as an A4 |V, n|-module.
We will use a rather convenient way for describing the 4|V, n|-modules.
Namely, any 4|V, n]-module is given by the following data (M, U,, ¢,), < ;<n>
with M being a left A-module, U, a left D-module for 1<t<n,
¢,: Vp,®,U,—» M an A-linear map, and the remaining ¢,: U,_,— U,
being D-linear; conversely, these data always determine an A4 [V, n|-module
which may be written in a suggestive way as a set of column vectors,
namely,

M
U,

U,
Of course, the A |V, n|-modules which are in fact A-modules are those of the
form (,M, 0, 0), and we will just write ,M instead of (M, 0, 0). Given two
AV, n|-modules (M,U,,¢,) and (M',U;,¢]), an A|V,n]linear map
(M, U,,9,)— (M, U/, 9)) is of the form (f, u,), .,,, With f: ;M — M’ being
A-linear, and all 4,: U, - U, being D-linear, such that ¢, f= (1, ® u,) ¢ and
e u,=u,_,o, for all 2L n.

THEOREM. Let A be a finite-dimensional algebra with a component T
which is a tube, and let ,V be a ray module with v = V| belonging to T.
Then the component of A|V, n| containing V| is of the form T|v, n].

In fact, let us exhibit representatives for the vertices of T|v, n]. For any
vertex x which actually belongs to 7, we have to take the corresponding A-
module M _. For i > 0, let M(,, n= V() = (V(i), D,..., D; u;, 1,..., 1), where as
before a;: V(i—1)—- V(i) is a fixed irreducible map and y,—a, see @
V- V(i) o= 1. Let J=(0,D,.., D, 9,), with ¢, =0 and ¢, =1 for {>2:
and let M, be the unique submodule of J of length i+ n, with
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l1-n<i<— 1. Then M, , =M, /M, _,for 1<t n—1andix>1—t
Note that for i > 0, M, , = (V(i), D, 0,..., 05 #;, 0, --- , 0),

The proof of the theorem will be given in Section 2.8.

If ,V is a ray module, then A[V,n] will be called a simple tubular
extension of A. The dual construction will be called a cosimple tubular
extension: here, we start with a coray module ,W, with End(,W)= D, and
form the ring

A 0 0
w* | D| D - D
A|W,n|* = D .- D
0 0 ’ : n—1,
0 D

with W* being the D — A-bimodule dual to W.

2.4. Let us start with the proof of Proposition 2.2 by showing the
following lemma.

LEMMA. Let V be a ray module with D =End V. Then u, # 0, thus yu; is
a generator for the one-dimensional D-space ,Hom(V, V(i}), for all i€ N,.
Also, if y: W— V(i) is an irreducible map pointing to the mouth and
&: V= W an arbitrary map, then dy =0.

Proof. By induction on i. Let i = 0. By definition 4, # 0, and if y: WV
is irreducible and &: V — W arbitrary, then Jdy=0 since otherwise
dy € End(V)=D would be invertible and therefore y would be a split
epimorphism.

Now assume i> 0. First, assume that g, =0. Then V(i) cannot be
projective since otherwise a, is a monomorphism and thus 4, _, = 0, contrary
to the induction hypotheses. Let

a

0 Y29, pli— 1)@ Z —— V(i) —— 0

be the Auslander—Reiten sequence ending in V(i) with Z indecomposable or
zero. Note that ¢ is an irreducible map pointing to the mouth. Factorizing
the map (u;_,,0): V= V(i— 1)@ Z through the kernel of (77), we obtain
8: V- Y such that dp=p,_, (and Sy =0). However, by induction
hypothesis, we have on the one hand dp =0 since ¢: Y- V(i—1) is
irreducible and points to the mouth, and u, , # 0 on the other hand.
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Next, assume y: W — V(i) is an irreducible map pointing to the mouth,
and &: V' — W is arbitrary. By induction, u, generates the one-dimensional D-
vectorspace ,Hom(V, V(i)); thus there is ¢ € D = End(V) with eu, = y. If
V(i) is projective, both y and «; are inclusions of direct summands with zero
intersection; thus (ey;_,)a; = dy implies & = 0. We can then assume that V(i)
is not projective. Thus there is an Auslander-Reiten sequence of the form

L]
"
I

0 Y20 L pi— Do W

» V(i) » 0.

Factorizing (eu; ,, —d) through the kernel of (57), we obtain n: ¥ — Y such
that no = eu;_, (and ny = —3§). Now ¢ is an irreducible map pointing to the
mouth; then by induction, #¢ = 0. Since by induction 4, , is a generator of
the one-dimensional D-space ,Hom(V, V(i — 1)), we conclude that ¢ = 0;
thus dy = 0.

This finishes the proof.

2.5. Before we continue to consider the second assertion of
Proposition 2.2, let us introduce a simply connected translation quiver T
(depending on T and v), and a certain exact representation .# of 7. Both T
and .# will also be used in the proof of Theorem 2.3. Recall that a represen-
tation (M,,f,) of a translation quiver 4 is called exact provided for every

extension x L z; the sequence

» 0 (*)

(Fyy) .2,
0 M, ~— & M, 2 M

z
Yex+

is exact (for a: x— y, we also denote the map f, by Jyy)- It is clear that an
exact sequence () with all maps f,,.f,, (¥ € x*) being irreducible is an
Auslander—Reiten sequence. Also, given a translation quiver 4, let .7}(d4)
denote the set of all vertices z of 4, with i being a bound for the length of all
paths ending in x. Thus, .#,(4) is the set of sources of 4, and z belongs to
#(4) iff z~ is contained in .¥,_,(4).

Given a vertex v of a tube 7, which belongs to the mouth and such that
the ray [v, c0) exists, let us define T (it is something like a fundamental
domain in the universal covering [2] of T). Namely, T is obtained from T by
first deleting from 7 all vertices of the form v(i) with i € N, and all arrows
and extensions involving such vertices; we then insert new vertices v (i) and
(i), and arrows v(i}—>v(i+ 1), 5())—> (i + 1), for i€ N,. For every old
arrow v(i)— x pointing to the mouth, we insert a new arrow v (i)— x; for
every old arrow z — v(/) pointing to the mouth, we insert an arrow z — 9(i)-
If there is an old arrow w — v(0) pointing to infinity, we insert a new arrow
w— 0(0). Also, an old extension v(i) Ly gives rise to an extension v (i) LV,
and old extension y L (/) to an extension y L #(i). Thus, T is obtained from
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T by cutting T along the ray [v, oo). Obviously, for any vertex x € T, the
length of all paths ending in x is bounded; thus T, = {J,, No F(T). Also note
that v (i) € F(D\S;_(T).

We are going to define an exact representation .# = (M., f,) of T in the
category of 4A-modules which furnishes a complete picture of the component
of A given by T. This will be done by induction on i.

For x € %(T), with x # v, ¥ choose any M, with [M,] = x, and note that
there are no arrows ending in x; for x =v, we choose M, = V. Also, if
x=107€ .%(T), choose M,=V. Now let i> 1, and assume that for any
x€.%,_(T) and any arrow a:y— x, an indecomposable module M, with
[M,|]=x and an irreducible map f,=f,, are defined and let
z€ AT\ _(T). If z=0(), let My, =V(), and f; 1o =@ Next
assume z is a projective vertex different from v(i), thus z is not of the form
v(/) for any j. If z # §(j) for any j, then z also is a projective vertex when
considered as vertex of T; thus an indecomposable module M, with [M_| =z
is projective. If z=0(j), then we choose M, = V(j), and so again M is
indecomposable projective. Always, for y € z7, there is given an indecom-
posable module with [M,| =y andrad M,x®,., -M,, thus letf,,: M, - M,
be the corresponding map. Finally, in case z is not projective, let x = 7z.
There are given indecomposable modules M, with [M,]|=x and M, with
[M,] =y and irreducible maps f,,: M, —» M, where y€z~ =x". (In case
x = v(j), then the condition should mean that {M | =v(/), and similarly for
y.) Thus, let M, and all f,, be defined by the exact sequence (x). Note that
x # () for all j. Since x is not an injective vertex of T, it cannot be injective
when considered as vertex of T (or, if x=v(/), then v(j) will not be an
injective vertex); thus M, will not be injective. Also the number of arrows
starting in x is the same both in T or in T (or, if x=v(j), the number of
arrows starting in v(/) is the same as the number of arrows starting in v(;).)
Thus, the map (f,,),: M= @, .+ M, is minimal left almost split, and thus
the left-hand side of an Auslander—Reiten sequence. Therefore, M. is
indecomposable, the maps f,, are irreducible, and [M,]| =z (or = v(i) in case
z = §(i)). This finishes the induction step. Altogether, we have constructed an
exact representation .# = (M, f,) of T with [M ;] = [M, ] = v()), for all
J» IM ] = x for the remaining x, and all f, being irreducible.

End of the proof of Proposition 2.2. Let W be an indecomposable A4-
module belonging to T, and not of the form V() for any j € N,. We have to
show that Hom(V, W)=0. Let w= [W|; thus, by construction of .#,
W=x~M,, where we now consider w as an element of T,. Thus, we may
assume W =M. The assertion will be shown by induction on i, where
w € ST\ _(T). If i = 0, then either w = v(0), but then M, = V, contrary
to the assumption, or else M, is a simple projective module, and not
isomorphic to ¥V, thus Hom(V,M )=0. Now assume i>1 and

4818771 12
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Hom(¥V, M,) =0 for any x € .%,_,(T) with M_ not isomorphic to any V{)).
Let we #(T), with w+#v(j), 0(j) for all j and consider any map
g&: V- M,. By construction of #, the map (f,,),: ®,.,.. M,— M, is right
almost split, thus g=3" ., g.f,, for some maps g,: VoM, If M, is not
of the form V() for any j, then g, =0 since y € .7, ,(T). Thus assume that
M, is of the form V() for some j. Then y = v(}) (since y = 0() is impossible
because otherwise w=3(j+ 1), contrary to our assumption). Also, the
arrow y-—w points to the mouth since otherwise we would have
w=1uv(j+ 1). However, any ¥V - V() is a composition of irreducible maps,
by the first part of the proposition; thus g, f,,. is a composition of irreducible
maps with one of them pointing to the mouth, and g, f,,. = 0 by definition of
a ray module. This finishes the proof.

2.6. For the proof of Theorem 2.3 we will need some preliminary
results which we are going to derive now. Up to the end of the section, we
will assume that ,} is a ray module belonging to a tube 7. First, let us
determine some indecomposable injective 4|V, n] — modules. (In fact, in this
way, we obtain all indecomposable injective 4|V, n]-modules belonging to
TV, n}).

LEMMA. Let I be an indecomposable injective A-module belonging to T.
If I = V(i) for some i, then (V(i), D, 0...., 0; u,, 0,..., 0) is an injective A|V, n|-
module. If 1 is not of the form V(i) for any i, then I itself is also injective as
an AV, n|-module.

Proof. First, assume [I=V(i), and consider any inclusion (f,u,):
(v@,b, 0,.,0; g;, 0,.,0)->(M,U,¢p) Now f has to be a split
monomorphism, since V(i) is injective, thus ,M = V(i) ® C with f being
given by (1,0) and ¢,: VU, -VH®C by (o,p) Now
o: ,V® U, - V(i) factors through g,, say ¢ = (1 ® ) g, for some é: U, - D,
and thus (0,p)¢)=0=(1®d)u, shows that ((}), &, 0,.,0) is a
homomorphism from (M, U,,¢,) to (V(i),D,0,..0; u;,0,..,0). Also,
(1®ud) ;=1 ®u)o,p)e)= #;(1,0)(3) = u,, together with the fact that
Hom(V, V(i)) is a one-dimensional End(})-vectorspace generated by u;,
shows that u,d = 1. Thus we have obtained a retraction for (f, u,).

Now consider the case of 7 not being of the form V(i) and let
(fu):,0,..,0; 0,.,0)-> (M, U,,¢,) be an inclusion. Similar to the
previous case ,M is now of the form I ® C with f being given by (1,0) and
@, by (g, p). However, Proposition 2.2 states that Hom(V, I) =0, thus g =0,
and therefore ((;), 0,..., 0) is a retraction for (f, u,).

2.7. Our next aim is to show that certain A[V, n]-module
homomorphisms are irreducible. We need the following preliminary result on
A-modules:
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LEMMA 1. Let C be an A-module, and assume that no direct summand
of C is of the form V(j) with j < i. Then any homomorphism ¢: V — C factors
through u;.

Proof. By induction on j, with 0 <j< i, we show that ¢: V' — C factors
through g;. This is clear for j=0. Assume we know ¢ =u;p; with
@;: V(j)— C and 0<j < i Let (a;,,,y): V(j)=V(j+ 1)@ Y be a minimal
left almost split map starting with V(/), and with Y either zero or indecom-
posable. Since ¢; is not split mono, there exist @;,,: V(j+ 1)— C and
0: Y - C such that 9;=a;, ,¢;,, + . Now g;y =0 since V' is a ray module
and either y =0 or y is an irreducible map pointing to the mouth. Thus

@ =M;Q;=H;0; Qi T Y0 =l Py
This finishes the proof.

By V(i) we denote the 4[V,n]-module V(i) = (V(i), D,..., D; u;, 1..., 1),
and by a;: V(i — 1) - V(i) the A[V, n]-module homomorphism (a;, 1,..., 1).

LeMMA 2. For all i€ N,, the A|V, n]-homomorphisms a;: V{i—1)—
V(i) and a;: V(i — 1) - V(i) are irreducible.

Proof. First consider the case of a; considered as an A[V,n]-
homomorphism. Let (M, U, ¢,) be an A[V,n]|-module, with homo-
morphisms (f,u,): V(i—1)- (M, U,,¢,) and (f,u): (M, U,0)- V(i)
such that (f, #,)(f, u4}) = (a;, 0). Note that all the maps u, and u; are zero
maps. Now ff' = a;; thus f is split mono or f' is split epi since a; is an
irreducible 4A-homomorphism. If f’ is split epi, say gf' =1, for some g,
then also (f”, u)) is split epi with coretraction (g, 0). Thus, consider the case
where f’ is not epi, therefore f is split mono. We can replace M by
Vi—1)®C, and f by (1,0); thus f’ is of the form (%) for some
B:C - V(i). Also ¢, is of the form (g, p) for some o: V@ U, — V(i — 1),
p:V®U,-»C. Since (f’,0) is a homomorphism of A[V,n]-modules,
@,f' =0; thus oa; + pf = 0. Consider the minimal right almost split A-map
(%): V(i — 1)@ Y - V(i) ending in V(i) with either ¥ =0 or else y: ¥ - V(i)
being an irreducible map pointing to the mouth. Now § cannot be split epi
since otherwise /' would be split epi. Thus # can be lifted to V(i— 1)@ Y;
there are maps g:C—-V(i—1), f”: C—Y such that B=(8',0")(%)=
B'a;+ B"y. Note that pB”y=0. Namely, either y=0 or else we use
Proposition 2.2: we deal with ¥, an irreducible map pointing to the mouth
and pB” being defined on ,V ® U, which is a direct sum of copies of V.
Then

1
0=o0a, + pf =oa, + pB'a, + pB"y = oa; + pf'a; = (0, p) (ﬁ) a;,

thus also 0= (o, p)( ). It follows that ((5.).0): (Vi—1)®C, U, 0.~
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V(i — 1) is a homomorphism of 4 [V, n|-modules, and clearly a retraction for
(/. u) = ((1,0),0). B

Next consider the case of a;. Assume, there are given an A[V, n]-module
M, U,, ¢,) and maps (f, u,): Vi—1)-> (M, U, 0, (f'5u): (M, U, 0,)~
V(i) such that (f; u)(f',u;) = a;. Since ff'' = q; and q, is irreducible, either f
is split mono of /' is split epi. Consider first the case / being split mono, say
M=Vi-1)®C, [f=(,0), ¢,=(,p) with o:VRU -»V(i-1),
prVeoU —-C, and f'= (%) with B:C— V(). If B is not split epi, we
consider a minimal right almost split 4-map (%): V(i—1)® ¥ - V(i)
ending in V(i), with either Y =0 or else y: Y- V(i) an irreducible map
pointing to the mouth, and lift § to V(i— 1)@ Y. We obtain maps
B':C—-V(i—1),8" C— Y such that 8 =f'a, + "y, and note that p8”y = 0.
Then

1
(I ®u)y;_ja;=(1® u)u;=oa;+pp=oa;+pf'a,=(o,p) (ﬂ') Qs

thus (1®u)y;_,=(0,p)(5 ), and consequently ((,.), ) is a
homomorphism of 4|V, n|-modules, and obviously it is a retraction for
(/. u,). However, if f is split epi, then we can write C= V(i) ® C’, with
B=(o); thus f:V(i— 1) V(i— 1)® V(i)® C' is given by (1 0 0), and
S Vi—=1)® V()@ C' - V(i) is given by

a;
( 1 ) '
0
Also, u,u; = 1, thus we decompose V® U, = V@ W with 1,.® u, given by
(1,0) and 1, ® u} by (}). Write

O P12 @y . ,
€0=( ):V@W—»Vt—l V(i C'.
l @2y @y @ ( OV ©

Then clearly ¢,, =u; ,,0,,=0, 0,;=0, and also @), =1;_, 02, = ~H;
for some 7: W— V. [Namely, Hom(V, V(i — 1)) is generated by u; ,, as an
End(¥V)-vectorspace, and W is a direct sum of copies of V; thus ¢,, = ;.|
for some 7, and similarly ¢,, = r’u; for some t’: W — V. It follows from

(o)1)= ()
Ty Tl @y 0 i

0

that 7" = —t.] Decompose C' =X @ ¥, with X = @™, V(j,) being a direct



COHERENT TUBES 175

sum of modules of the form V(j,), where j_ < i, and Y having no direct
summand of this form. Let X'= ®",V, and u= @™, My XK=

=1 Vo @7 V(j,) =X, and denote by n: X @ Y - X the projection onto
X. Then ¢,;n: W— X factors through ¢ since W is a direct sum of copies of
V and using Proposition 2.2, Say ¢,;7 = @,;u. Let W’ be the kernel of @,,,
and W"” the image of @,;; thus @,,=¢’p"” with ¢': W W”" and
p": W" - X'. Since W and X’ are direct sums of copies of V, the same is
true for W’ and W". We have to distinguish two cases.

First assume t(W')=0. Thus t factors through ¢': W - W”" and
since @":W” > X' is injective, there exists T with @,;7=1. Let
U= ;nzlaj,H“'ai—l:Xz @i VU) » @ V(i—1), then up'=

MM @MV o @, V(i—1).  Since End(V) - g, = ;_, -
End(V(i — 1)), there exists {': v Vi—-D-V(i—1) with yu'{’ =
(@ u;_ )¢ =1tu;_,. Thus, {=mu'l’: C' > V(i — 1) satisfies ¢,,{ =1, _,.
[Namely, 0,,{=0,3mu'(’ = @puu’l’ = @3fu;_y=1u;_,.| It follows that
(/. u,) is a coretraction with retraction

(e

[Namely, we only have to check the following relation

1
Hi_y 0 0 Hi_, (M) (] )
0 ]= = = Hi_ys
Wi Wy 9P e Wi~ Pnt Y 0

everything else is obvious.|

Next assume t(W') # 0, and denote by v: W’ — W the inclusion. Since W'
is a direct sum of copies of ¥V, there exists A: V- W’ such that Avt=1,.
Also, W’ is mapped under ¢,, into Y since v¢,;m =vgp'9"u = 0. Denote the
restriction of ¢,, to W’ by ¢: W’ — Y. Using the definition of Y and Lemma
1, we see that we can factor Ag through g;, thus there exists A': V(i)—» Y
such that dp =u,A’. Let n=Av and #’ =A'v', with v': Y -» X @ Y denoting
the inclusion. Then we have shown that ngr=Avt=1,, and ng,,=
Avg,, = zlg)v’ =u,A'v' =u;n'. As a consequence,

(L= (B 000

)= O u; —no,y)=u,0 1 —n’).
TU;  —TH; @i

Thus, let f"=(0 1 —p'): V(i)»V(i-1)OVHOC =M, 1,.Tul=
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(L-n): V=V®DoSVRU=V®W, and u’” =u, @, for 2Ltn
Then (f”, u/’) is a coretraction for (f, u)).

It remains to consider the case of f not being split mono. Thus f’ is split
epi, say M=V ®C, f'=(y), 0,=(0,p) with o: VR U,- V(i) and
p:V® U, - C. Then f= (a;,d) for some §: V(i — 1)—» C. Now & cannot be
split mono since otherwise f is split mono. Let (a;,&): V(i — 1)- V({i)® W
be a minimal left almost split homomorphism of 4-modules starting with
V(i — 1), where W ceither is zero or indecomposable. Since & is not split
mono, there exist 6": V(i)— C, 6”: W— C such that § = a0’ + £6". We
claim that ((1,4'),%,) is a coretraction for (f’,u;). We only have to show
that it is a map of 4|V, n]-modules. We have

(1 ®u,)o,p) =u;_(a; 0)
=W 10y 10)=W_ya;, 4y ;0" +p;_,€0")
= (W10 4;_,0;0") =ull,38’),

where we have used the fact that u,_,& =0 according to the definition of a
ray module. Namely, € is either zero or an irreducible map pointing to the
mouth.

This finishes the proof.

2.8.  Proof of Theorem 2.3. Recall that in 2.5 we have defined a
simply connected translation quiver T (depending on T and v) and an exact
representation .# of 7. Similar to the definition of T, we also define T[v nl
by cutting T[v, n] along to the ray [v, 00). B

Now we want to construct an exact representation of T|v, n]. Note that T,
is a subset of T(v,n],, and all arrows of T but those involving v(/) and
pointing to the mouth are also arrows of T[v,n], and we will endow the
vertices of T with the same modules as before, and the arrows of T[v, nj
which also belong to T with the same maps as before. For i > 0, let M, ;, =
(V(@i), U;,9;), with U,=D for 1<j<t, U;=0 otherwise, and
¢, =ug,¢;=1d for 2<j< ¢, and ¢; = 0, otherwise. Thus M, ;, = V(i). For
i<O0, let M,;,=0,U;,p;), with U=D for —i+1<j<t, U;=0,
otherwise, and ¢;=1d for —i +2 <j< ¢, and ¢; =0, otherwise. The arrows
of the form (¢, i — 1)— (¢, 7) will be endowed with the maps («;, 1,..., 1) for
i > 1, and with the obvious canonical inclusions for i < 0. Any arrow of the
form v(i) = (n, i) will be endowed with the map (—1)(1, 0,..., 0), an arrow of
the form (t,i)— (¢t — 1,7), with 2t nand i + ¢ > 1, will be endowed with
the map (—1)'(1,u;) with u;=1 for 1<j<t—1, and u; =0, otherwise.
Finally, consider the arrows of' the form (1, /) y pointing to the mouth. If
such an arrow exists in T[v,n], there is an arrow a: v(i)—-y in T, and
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therefore there is given an irreducible map f£, : V(i)»M,. We endow the
arrow (1,i)— y with the map

(fas 00y 0): M,y = (V(i), D, 0,..., 05 1, 0,..., 0) > (M, , 0,..., 0; 0,..., O).

In this way, we obtain a representation of T|v,n], which again will be
denoted by (M,.f,), or also by .#[v, n]. Instead of £, we usually will just
write f.

Let us list the main properties of the representation .#(v, n| = (M, f.) of
TV, n].

(i) .A#[v,n] is exact, and all modules M, are indecomposable.

(ii) If z is a projective vertex of T|v,n| and not of the form v(j) for
any j, then M, is a projective A[V, n|-module, (f),:®,.,-M,—> M, is
minimal right almost split, and the corresponding bimodules Irr(M,, M,) of
irreducible maps are of the form ,D,,.

(ii1)) If M, is isomorphic to a direct summand of the radical of an
indecomposable projective module P, then P~ M, for some z € T|v, n},.

(iv) If x is an injective vertex of T[v, n] and not of the form &(i), then
M, is an injective 4 [V, n]-module.

(v) The maps f:1M,; ,,»M,;, and f: M, ,,»M,,; with i>1
are irreducible; the bimodule of irreducible maps Irr(M,,_,,, M, ;) is of the

form ,D,.

(vi) The modules M, and M, are isomorphic, for all i € N,, and
there are no other isomorphisms between modules of the form M_,
x € T|v, n),.

Proof. (i) The modules M,, with x€& T,, are indecomposable by
construction of .#. The remaining ones are obviously also indecomposable.
Also, it is easy to check that .#[v, n] is an exact representation.

(i) Let z be a projective vertex of T[x, n], and not of the form v()) If
z€1T,, then also z~ < T,. (Namely, the only arrows y — z with z € T, and
y & TO are arrows pointing to the mouth with y = (1, i), i > 1. However, then
there exists the extension (1,7 — 1)Lz, thus z is not projective.) Thus the
assertion follows from the corresponding assertion for T. If z & T, then
z = (n, i) with i <0, and the assertion is obviously true by the construction
of #|v, n].

(iii) Let P be indecomposable projective, and assume M, is a direct
summand of rad P. If P is an A-module, then also M, is an A-module, thus
with [M,| also z = [P] belongs to 7. Thus Px M, (or P~ My, in case
z =p(j)). If P is not an A-module, then P is isomorphic to one of M, ,,
i < 0. Assertion (iv) has been shown in 2.6 and assertion (v) has been shown
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in 2.7; the assertion concerning the bimodule of irreducible maps carries over
from 7. Finally, property (vi) is satisfied by the construction of . #|uv, n|.

We are going to derive some consequences. First, we consider the case
n > 2 and we want to show by induction on i:

(a) Let n>2 The map (f),:®,., M,— M_ is minimal right almost
split for z=(n,i) and i>1—n. For i>2—n, one has DTt M, _, , =
M ,.i_1,and for i >0, one has D Tr M, ey =M.

Proof. For i=1—n, the module M, ,_,, is simple projective, thus
0->M,,_, is minimal right almost split. For 2 —n<i<0, the map
SiM,.i_y— M., is the inclusion of the radical of the projective module
M, ., thus minimal right almost split, and the corresponding bimodule of
irreducible maps is of the form ,D,. Since M, ,_,, is simple projective, the
middle term of the Auslander—Reiten sequence starting with M, ,_,, is a
direct sum of copies of all indecomposable projective modules P with
M, _, being a direct summand of rad P, thus according to (iii) and (ii),
the module Tr DM, , _,, is given as the cokernel of f: M, , ., =M 1 n;
thus according to (i) by M, _, ,_,,. Assume we know by induction that
Tr DM, y=M,_,,,,, for some | —n<i<—1. Then M, _,,;,,, is the
only nonprojective indecomposable module X with an irreducible map
M. ..,— X, and according to (iii) and (ii), the minimal left almost split
map starting with M, ., is of the form (f,f): M .,
Mg _1i:y®M, ., and its cokernel M, ,,, , is TrD M, . ,. Now
consider /=0. The map (f,.f): M _,,@ M, — M, ,, is the inclusion of
the radical of the indecomposable projective module M, ,,, thus minimal
right almost split, and both bimodules of irreducible maps are of the form
pDp- Since M, , is not a direct summand of the radical of a projective
module, the middle term of the almost split sequence starting with M, ,, has
two summands. Since there are given the two irreducible maps
M 00> Mu_1,0 and M, , > M, ,,, we see that Tr DM, ,, is the cokernel
of (fLf) M= My 1.0,®M,,,,, thus M, _, ,,. Also there must be an
irreducible map from M, o, to Tr D M,,,, thus Tr D M, ¥ M, ,, |since
DTr M, =M, ]| Now assume the assertions are shown for some

> 0. For the exact sequence
()

—_— — 0,

0———+Mt(r)qm_—>M(n 1)®M

i+ 1) (n.gi+1)

the map (/f,f) is irreducible and DTr M, ;,,, = M, so this must be an
Auslander—Reiten sequence, and (f) is minimal right almost split. Since (} AE
M, y®My,— M, is minimal right almost split, and M,, , is not a
summand of the radical of an indecomposable projective module, the
Auslander—Reiten sequence starting with M, , has two middle terms. Since
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both /M, M., _,; and /M ., —+M_,,, , are irreducible, it follows
that TrD M, is the cokernel of (f,f):M,,,»M,_,, @M, ;.-
Finally, there must be an irreducible map from M, ;. ,, to TrD M.,
thus TrDM, ., =M, , |since DTt M, ,,,,,=M,,l

Similarly one proves by induction on i:

(a") Let n=1. Fori>0, the map (f),: ®,..- M,—~ M, is minimal
right almost split where z = (n,{), and D Tr M, ;, ,, =~ M,;,. Also if there is
an arrow (n, i) — y pointing to the mouth, then DTr M =M, ; .

In general, we therefore have:

(b) Let y be in T(v, n). If y is not of the form v(j) for any j, then the
map (f),: ®,c,- M, — M, is minimal right almost split. If y is not of the
form o(j) for any j, then the map (f),:M,-»> @ .., M, is minimal left
almost split, and all bimodules of irreducible maps Irr(M,, M ), x €y~ and
Irr(M,,M,), z€ y*, are of the form ,D,,.

Proof. By induction on i, where y€ %(T|v,n|)\%_,(T|v,n]). For
i =0, and y # v(0) the vertex y is a source, thus projective, and 0 - M is
minimal right almost split by (ii). Suppose now y # 7(0). If y = v(0), then
(f),: M, > ® ,.,. M, clearly is minimal amost left split. If y # v(0), then M,
is simple projective, and if M, — Z is irreducible with Z indecomposable,
then Z is projective, and by (iii) of the form M, for some z. According to
(ii), there is an arrow y— z. Always, if y—z is an arrow, then z is a
projective vertex (since y is a source), M, is projective, f: M, ~ M, is
irreducible, and Irr(M,,M,)~ ,Dj,, again by (ii)) Thus (f),:
M =@ ,¢,+ M, is minimal left almost split. Now assume y€

% 1(Tv, n[)\ V(T[v, 1) Suppose first that y is not of the form v(j). If y is
pro_lectlve, (f)x: @yey- M, — M, is minimal right almost split by (ii). If y is
not projective, consider v. If 7y = v(j) for some j, then y = (n,j + 1), thus
(f)x: @® rey- M,— M, is minimal right almost split by (a) and (a’). Assume
w =ty is not of the form v(/). Then by induction, we have the minimal left
almost split map (f).:M,—> @,c,.. M,. Its cokernel is the map
(y: ®ye, M,— M, since #[v, n] is exact. Since M, # 0, we see that M,
cannot be injective, and thus the map (f),: ®,c,- M, — M, is minimal right
almost split. In all cases, it follows that Irr(M , M )~ ,D, for all x€y"~.
Assume now that y is not of the form #(j). Let Z be indecomposable, with
an irreducible map M,—» Z. If Z is projective, then Z=x M, for some z,
according to (111) and there is an arrow y — z according to (ii) and
Irr(M,, M,)~ ,D,. If Z is not projective, then there is an irreducible map
DTrZ-M,, thus DTrZ~M,_ for some x € y~. Now M, is not injective,
thus x cannot be an injective vertex by (iv), thus there is z w1th x 1L z. Note
that x € .%(T|v, n]), and again by induction there is the minimal left almost
split map () M= @y M, Its cokernel is on the one hand
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Tr DM, = Z; on the other hand M, since .#|v, n| is exact. Also, since there
is an irreducible map M, —+ M, we have y =y, for some j. Thus we have
ZxM, an arrow y—z, and f: M — M_ being irreducible. Also, since
Irr (M, M )= ,D,, Irr(M,,M,)x ,D,. Conversely, if there is an arrow
¥ — z, then either z is a projective vertex and f: M, — M_ is irreducible by (ii)
or there is the extension x1z, and as above we see that /M — M, is
irreducible. This shows that the maps f: M - M_ with z€ " furnish a
complete set of irreducible maps with starting point y; thus we conclude that
(f).: M,— ®..,. M, is minimal left almost split.
This finishes the proof of Theorem 2.3.

2.9. We assume that A is a finite-dimensional algebra with a
component T which is a tube, and such that ,¥ is a ray module with v = [V]
belonging to 7. We want to determine the ray modules in T[v, n}.

PROPOSITION. (a) Let W be a ray A-module in T, with w= |W|. If the
rays |v, oo) and [w, oo ) do not belong to the same ray class, then W is also a
ray A|V, n|-module.

(b) If V(i) is a ray A-module, for some i € N, then M | ;, is a ray
AV, n]-module.
(c) The modules M, ,_,, with 1 <t < n, are ray A|V, n|-modules.

Proof. (a) By construction of Tlv,n|, we know that w stays a ray
vertex in T|v, n]. If

W= W(0)— W(1)— - — W(i) = W(i + 1) > -

is a chain of indecomposable A|[V, n}-modules and irreducible maps, ail
pointing to infinity, then all these modules are in fact 4-modules, and the
maps are irreducible 4-maps pointing to infinity. Also, since the rays [v, )
and [w, 00) do not belong to the same ray class, any indecomposab!e
A[V, n]-module X with an irreducible map W(i) - X pointing to the mouth is
in fact an A-module and the map is an irreducible 4-map pointing to the
mouth. This shows that properties (1) and (2) of the definition of a ray
module are satisfied for the A [V, n|-module W.

(b) Assume V(i) is a ray A-module, for some i€ N,. Now
M, ;= V() D,0.., 0; u4;,0,.,0), with ;= a, ---a, for j > 1, and g, = 1.
Any map [f:V(@i)—V(j) can be uniquely lifted to a map
(fro,),: M, 1~ M, since we must have u, f=¢,u;, and ,Hom(V, V(i)
is one-dimensional. Since Irr(¥V(j), ¥(j+ 1)) is of length one both as an
End(V(j))-module as well as an End(¥V(j+ 1))-module, we can identify Fhe
residue division rings of the endomorphism rings End(V(j)) with D choosing
fixed irreducible maps ¥ (j — 1) — V(). Since we assume that V(i) is a ray 4-
module, End(¥()) is itself a division ring, thus End(V(i)) = D. It follows
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that for j>i, the End(V(i))-vectorspace ,Hom(V (i), V(j)) is one-
dimensional. For the proof of property (1) of a ray module, let X be an
indecomposable A |V, n]-module with an irreducible map (g, w,): M, ;,» X
pointing to the mouth. By construction, X is an 4-module. Now consider a
chain of irreducible maps of 4[V, n}-modules

floh

(&)
M .5 *Miv

(fi+l0l*h fi-1,0,71

» M X.

(1))

It is easy to see that all the maps f*, i <s</j— 1, and g are irreducible 4-
homomorphisms, with g being an A-homomorphism pointing to the mouth;
thus the composition f‘---f/~'.g is 0, and therefore also
00 (ol ) g w)-

(c) The module M, ,, is a ray A[V, n]-module according to (b) since
V(0) is a ray 4-module. Thus consider M, ,_,, with 2 < < n, and denote it
by S,. It is a simple A[V,n]-module with endomorphism ring D, and the
only indecomposable A[V,n]-modules X belonging to T[v,n] with
Hom(S,, X)# 0 are the modules of the form M, ,; the dimension of
p,Hom(S,, M, ;) is equal to 1. This immediately gives the proof of all the
properties (1) and (2) required for a ray module. For example, if

SzzMu,l—n_’M(z,z—r)" e Mg My

is a chain of arbitrary maps, then the composition is zero since
Hom(S,,M,_, ;)=0.
This finishes the proof of the proposition.
2.10. Again, we assume that V is a ray A-module with v = (V]
belonging to a tube T. We are going to determine the coray modules in
T|V,n|.

PROPOSITION. Any coray A-module W in T is also a coray A[V,n]-
module. If V itself is a coray module, then also M, ,, is a coray A[V, nl-
module.

Proof. Let W be a coray module in 7, thus w= W] is a coray vertex
both in 7 and T{v, n]. Recall that the coray ending in w = [W] is denoted by
(o0, w] and is given by the following vertices:

e w(f = D)= () e (1) > W(O) = w.

We will use this notation for the coray in T[v, n]. (The corresponding coray
in 7 ending in w is obtained from (oo, w| by deleting several vertices and
arrows!) Also, we denote the module M, _; by W(—j), where j € N,.

First assume that W(—j) is an A-module, thus Hom(W(=/), W)enao) is
one-dimensional, say with generator v;. Also if B:M,— W(—j) is an
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irreducible 4|V, n|-homomorphism pointing to infinity, then M _is in fact an
A-module, and £, as an A-module homomorphism, is also irreducible and
points to infinity. Thus, given in addition a chain of irreducible 4|V, n]-maps
from W(—j) to W, say with composition v;e, where ¢ €& End(W), then
Bv;e =0, since v; also is the composition of irreducible A-homomorphisms.
Second, let W(—j) be of the form M, ;, for some 1 <z ni> 1 (the cases
i< 0 being impossible). Thus either t=n or W(—j)=M,, /M, _,, with
M., ;= V{i). Consider a homomorphism v: M., ., — W, and note that v has
the form v=(f, 0) with f: V(i) > W being an arbitrary map. Namely, for
any map [ V(i)— W, u,f= 0, since g, is a proper composition of irreducible
A-maps all pointing to infinity (according to i > 1), f is a composition of
irreducible 4-maps pointing to the mouth, and V is a ray module. Since
Hom(V (i), W)gpaw, 1 one-dimensional, the same is true for
Hom(M,, ,, W)gnaw, and then also for Hom(M,, ;,, W)g.qu where t <n If
M, M, is an irreducible map, then y=(g,u,) with
g V(i—1)- V(i) being an irreducible 4-map pointing to infinity; thus
gf = 0 and therefore yv = 0.

Now assume that V itself is a coray 4-module and consider M =M, ,,.
By the previous considerations, we know that V is a coray 4|V, n|-module.
Note that given an indecomposable 4|V, n]-module X which is not of the
form M, for some i<O0, then any homomorphism J: X — M factors
through V (namely, lift  along the minimal right almost split maps ending
in the modules M ;, with j<0). Also, note that Hom(V, M) is one-
dimensional as well as an End(M)-vectorspace and an End(V)-vectorspace,
generated by the obvious inclusion V- M. Thus, for j>n, we have
dim Hom(M(—), M)gnaw = dim Hom(M(—), ¥)gngey =1, and given an
irreducible map X - M(—j) pointing to infinity, its composition with an
arbitrary map M(—j) - M is zero. Also, it is easy to see that Hom(M, ,,, M)
is one-dimensional as an End(M)-space for i =0, and zero for i/ < 0.

3. CoOHERENT TUBES WITH LENGTH FUNCTIONS

3.1. Our aim in this section is a combinatorial description of those
tubes which are obtained from smooth tubes by suitable ray insertions and
coray insertions. First, we recall the notion of a length function on a trans-
tation quiver Q. Note that for Q an Auslander-Reiten component, the
function f: Q, = N, given by f(|X]), the length of the module X, will satisfy
the axioms for a length function; it will be called the canonical length

function.

DEerFINITION. Let Q be a translation quiver. A function f: @, — N, is said
to be a length function for Q, provided f satisfies the following properties:
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(1) (Additivity): For any extension x1Lz, one has f(x)+f(z)=
2yex-S(¥)

(2) If z is a projective vertex, f(z) =1+ 3" .- f(»)

(2*) If x is an injective vertex, f(x) =1+ > .. S (¥)

The set of length functions may be considered as a subset of the rational
vector space of all functions @, — Q.. The dimension of the affine subspace
generated by all length functions will be called the rank of the set of length
functions.

For example, for the smooth tube T'=7A_/r, any length function f is
uniquely determined by its values on the vertices belonging to the mouth,
and these values may be arbitrary numbers in N,. Thus, the rank of the set
of length functions on ZA _ /r is just r.

3.2. LEMMA. Let T be a tube, and v a ray vertex in T. Any length
function f for T has a unique extension to a length function [’ for Tlv, n],
and any length function for T|v, n] occurs in this way. The extension f' of a
length function f for T does not take the value zero outside T,. If f, g are
length functions with f< g, then ' < g'.

Proof. Let f be a length function for 7. Define f’: T|v,n|,— N, as
follows: f'(w)=f(w) for weT,, f'(t,iy=t+f(v(i)), for i>0, and
fit,iy=t+i, for i <O.

First, we show the additivity of /. Assume there is an extension v(i) Lz
in T thus there is the extension (1,{)Lz in Tlv,n|. If v(i + 1) is the only
element of z~ in T, then

S1@+f (LD =f@)+ 1 +/(@)=1+f@0+ 1) =f"(1,i+]1)
If z~ in T contains two elements, say v{(i + 1) and w, then
@O+ D)=+ 1+ @) =1+/(0+ 1)) +/(W)
=", i+ 1)+ f"(w) ‘
For the extensions v(i) L (n, i+ 1), we have
S1w@)+f i+ D=f@)+n+f0+1)
=f'(n D) +f" (0 + 1)).

Finally, consider the extensions (f,i)1L(¢—1,i+ 1) in T|v,n] with
2<tn If i >0, then

)+, -1 i+ 1) =2—14+f@0)+, i+ 1))
=f'(t— L0 +f'(ti+1)
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Ifi=—1,and t +i> 1, then
S =1D+/(t—-1,0)=2t—-2+f(wO0)=,"(t—1,=1)+f'(1,0).

Ifi<—-2,and t+i> 1, then

S+ —=Li+ D)=2t+2i=f'(t—1,0)+f'(2,i + 1).
For (t,i)= (2, —1), we have

S12, -1 +f(1,0)=2+f(v(0))=/"(2,0),

and for i{—2, and ¢t + i =1, we have

D+ t—1Li+1)=2t42i=2=t+i+1=f'(t,i+ 1)

The wvertices (m,i) with 1 —-n<gi<0, are projective, and one has
ffin,1—-nm)y=1, f'(n,)=14+f'(n,i—1) for 1—n<i<0  and
f'(n,0)=n+f(@©0))=1+f"(n,—1) +f’(v(0)). Finally, assume that v(f) is
injective in T for some i, thus (1, {) is injective in T[v, n]. If v(i + 1) is the
only element in v({)*, then (1,i{)* consists of (1,i+ 1), and

S(LD=1+fw@))=2+fw(i+1))=1+f"(1,i+1).
If v(i)* contains two elements, say v(i + 1) and w, then

S(LD=1+f@)=2+fi+1))+/(w)
=1 4+/(Li+ 1)+ (W)

Conversely, assume /' is a length function for T|v, n]. By induction first
on n — ¢, then on 7, one shows that

. t+ i for i<O
fl(t’ l)= 7 ; H B
t+f'(v()) for i>0;

thus /' is uniquely determined by its restriction to 7,. Also, given an
extension v(i) Lz in 7, then (1,7) Lz is an extension in T[v, n|, and

S @)+, @) ==1+/"(LD+/"@)=-1+f"(1,i+])
=f’(U(l+ 1))3
in case v(i + 1) is the only vertex belonging to z ™~ in T, whereas
S+ @) ==1+f(LD+f'@)==1+/"(Li+ 1) +[' (W)
=/'(v(i+ 1)) +/"(w)
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in case z~ in T consists of the two vertices v(i + 1) and w. Altogether we see
that the restriction of f' to T, is a length function for T, and that this
restriction uniquely determines /.

The last two assertions are obvious. This finishes the proof of the lemma.

ProPOSITION. Let T be obtained from the smooth tube LA /r by a
sequence of ray insertions and coray insertions. Then T has a unique
minimal length function f, and f5'(0) = (ZAy/r)e. Also, the set {f—fi|f a
length function on T is closed under addition and scalar multiplication by
elements of N,, and it generates an r-dimensional subspace of the space of
functions T,— Q. In particular the rank of the set of length functions on T is
r, and coincides with the rank r(T) of T.

Proof. By induction, starting with a smooth tube. For a smooth tube, the
constant zero function obviously is a length function, and therefore the
unique minimal length function. The case of a ray insertion has been treated
in 3.2, the case of a coray insertion is dual. Recall that the rank r(7) of T is
given by the number of paths x — y — z contained in the circuit next to the
mouth such that x Lz exists and belongs to the mouth. Obviously, r(T) is
not changed by a ray insertion or a coray insertion, and r(ZA /r) = r. This
finishes the proof.

3.3. Let us introduce the notion of a coherent tube. It is easy to see
that a tube obtained from a coherent tube by inserting rays or corays is
coherent again. Since smooth tubes are always coherent, we obtain a large
class of coherent tubes by starting with smooth tubes and forming
successively ray insertions and coray insertions. The main result of this
section will show that in this way we obtain all coherent tubes which admit a
length function.

DEFINITION. A tube is said to be coherent, provided it satisfies the
following conditions:

(1) The r-orbit of any projective vertex contains a vertex which
belongs to a circuit.

(1*) The r-orbit of any injective vertex contains a vertex which
belongs to a circuit.

(2) For any projective vertex x, the ray [x, 00) exists.
(2*) For any injective vertex x, the coray (oo, x| exists.

THEOREM. The following properties are equivalent for a tube T:

(i) T is coherent and has a length function.
(ii) T is coherent and r(T) > 0.
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(iii) T is obtained from a smooth tube by a sequence of ray insertion:
Jollowed by a sequence of coray insertions.

(iii*) T is obtained from a smooth tube by a sequence of cora)
insertions followed by a sequence of ray insertions.

(iv) T is obtained from a smooth tube by a sequence of ray insertions
and coray insertions.

Note that for a tube T satisfying these properties, r(T) is equal to the rank
of the set of its length functions; see 3.2 (whereas for r(T) =0, there is nc
length function for T, thus the rank of the set of length functions is —1).

3.4. The proof of Theorem 3.3 will be given in 3.5. Here, we start
with some preliminary results.

We define two kinds of cancellations in a tube 7. First, let a be a
projective ray vertex of T such that none of the vertices a(i), i> 1, is
projective. Let z = ra(1). There exists the ray |z, o), and z(i) = ra(i + 1) for
all i > 0. Also, z is the only vertex in a~. Now d,T is obtained from T as
follows: we delete all vertices of the form a(i), i >0, and all arrows and
extensions involving any of the a(i), and add a new arrow z(i) - y for any
arrow a(i) — y pointing to the mouth, and a new extension z(i) Ly for any
extension a(i/) Ly in 7. In this case, we will say that a allows a cancellation
of the first kind.

Next, let a be a projective ray vertex such that also a(1) is projective, and
none of the vertices a(i), i > 0, is injective. Let b = 7 ~a. There exists the ray
[b, o), and b(i} =z~ a(i) for all i > 0. Also, there is no arrow ending in a. In
this case &, T is obtained from T in the following way: we delete all vertices
of the form a(i), i > 0, and all arrows and extensions involving any of the
a(i), and we add a new arrow x — b(i — 1) for all arrows x — a(i) pointing to
the mouth, and the extension x L b(; — 1) for all extensions x La(i) in 7. In
this case, we say that a allows a cancellation of the second kind.

(a) Assume that 7 is a coherent tube and that g is a vertex of 7" which
allows cancellation of the first or the second kind. Then &, T is again a tube,
and p(@,T)=p(T), q@,T)=q(T)—1. Also, &,T is coherent and
r(@,T)=r(T). If there exists a length function f for T, then f|(8,T), is &
length function for &,T.

Proof. Any circuit of T must contain a sequence of arrows of the
following form:

z'—sa()-a(i+1)- - > a(i+s)> b

with z’ = a(i) and a(i + s)— b’ both pointing to the mouth, and s> 0. In
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case of a cancellation of the first kind, z’ = z({), and we replace this path of
T by the path in o, T

zi)—»z(i+ 1)» o z(i+5)> b,

In case of a cancellation of the second kind, one has i>1 and
b" = b(i + s — 1), so we replace this path of T by the path in ¢, T

27 b(i— 1) > b(i) > - = b(i + 5 — 1),

This shows that 8, T again has a circuit. Also, it is rather easy to check that
with T also 8,T is a coherent tube, and that p(é,T)=p(T),
4(2,T) = q(T)— 1, and (1) = r(é,T).

The proof that f|(6,T), is a length function is similar to the proof of
Lemma 3.1. We only note that in the case of a cancellation of the second
type, and an arrow x — a(i) pointing to the mouth, one has f(x) < f(a(i)), by
induction on /; thus x cannot be an injective vertex.

(b) Let T be a coherent tube. If T is neither smooth nor the mouth of
T is a circuit, then there exists a vertex which allows cancellation or cocan-
cellation of the first or second kind.

Proof. Assume no vertex of T allows cancellation. Let @ be the circuit
next to the mouth, and

arrows belonging to w and pointing to the mouth. We claim that x, has to be
projective. Otherwise, we may assume, without loss of generality, that the
next arrow x,— x, belonging to w either points to infinity or that x, is
projective. [Namely, if all arrows in w point to the mouth, then one of the
vertices involved has to be projective since otherwise w is not next to the
mouth.] Choose m > 1 such that ™~ 'x, is not projective, whereas a = X,
is projective. {Note, that such an m must exist since otherwise we obtain a
circuit involving the arrow rx,— x, pointing to infinity, whereas by
assumption the arrow x, - X, points to the mouth and belongs to the circuit
next to the mouth.] There does not exist an arrow 7™x;—y pointing to the
mouth. [Again, some 'y, s > 0, has to be projective, and therefore the t-orbit
of y contains some vertex in a circuit. Since the vertices iy, with i< m — 1,
do not belong to circuits, we obtain an arrow x;- 7~ "y pointing to the
mouth. Since x,, and some 7'y, i > m, belong to circuits, we see that also
7~ ™y belongs to a circuit, and therefore to w. But this contradicts the choice
of x,.] Since a = t™x, is projective, there exists the ray |a, 00). No vertex of
the form a(i) can be injective. [Otherwise, we would obtain an additional

481/87/1-13
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hole inside the closed curve formed by the extensions tix, Lt " 'x,
1 <i<m, the arrows a(i — 1)— a(i), 1 < i< s where a(s) is first vertex of
the ray [a, c0) belonging to w, and the arrows from a(s) to x, belonging to
w.] As a consequence, a is a projective ray vertex with none of the vertices
a(i), i 2 0, being injective. In case a(1) is projective, a allows cancellation of
the second kind. Thus assume a(1) is not projective. Let z = ra(1). We claim
that the ray [z, co) exists, that none of the vertices z(i) is injective, and that
ta(i + 1) = z(i) for all i > 0. Namely, there exists s > 0 such that y = r°z is
projective [otherwise we would obtain a circuit involving a], and there
cannot exist a hole inside the closed curve given by the extensions
tzLc'"'z, 1Kig<s, the arrow z—a, the extensions tix, Lt 'x,
L <ig<m, the arrows y(i — 1) — p(i), 1 < i <s, where y(s) is the first vertex
of the ray [y, co) belonging to w, and the arrows from y(s) to x, belonging to
w. This shows that @ allows a cancellation of the first kind.

Since we assume from the beginning that 7 does not allow any
cancellation, it follows that any vertex of T belongs to a circuit, using the
property shown above and its dual. Now, assume the mouth contains both
extensions and arrows. Let x| z be an extension, and w — x an arrow, both
contained in the mouth. First assume that w — x points to the mouth, then it
is clear that x allows a cancellation of the first kind. In case w — x points to
infinity, let

a=w(=s)---o>wl—-1)-»w-ox

be arrows belonging to the mouth, all pointing to infinity, with s being
maximal. If the extension 17a La belongs to the mouth, then a allows cocan-
cellation of the first type. Otherwise, a is projective, and there is an arrow
b — a pointing to the mouth and belonging to the mouth. In this case again, a
allows cancellation of the first kind.

This shows that either the mouth contains only arrows, and then the
mouth is a circuit, or else the mouth contains only extensions, and then 7' is
smooth. This finishes the proof of (b).

We say that a vertex a of the tube T arrows n-fold joint cancellation
provided a has the following properties: the vertices q,=17'"'a, 1 <i<n,
exist and are ray vertices, the vertices a,(f), 0 <i < n are projective, and
none of the vertices a,(i), i > n, is projective. In this case, the sequence of
cancellations ¢, --- 8, T is defined, the first n — 1 cancellations being of the
second kind, the last cancellation being of the first kind. For n = 1, the n-fold
joint cancellation just reduces to a cancellation of the first kind. Note that
the joint cancellation is the reverse process to the ray insertion, namely, we

have
a“vo, o a(f!.l—n) T(xs n) =T

for any ray vertex x in 7, and n > 1.
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(c) Let T be a coherent tube with (T) > 0. If g(T) > r(T), then there
exists a vertex which allows joint cancellation. If p(T) > r(T), then there
exists a vertex which allows joint cocancellations.

Proof. Assume q(T) > r(T). Let w be the circuit next to the mouth, and
x,=1z-y—z a path in o with y—z pointing to the mouth. Let s be
maximal with a path in @

A=X, D X;_ )X

of arrows pointing to infinity. Thus 7x,_,—a belongs to w. Since
q(T) > r(T), without loss of generality we can assume that either a is
projective or else ta— tx,_, does not belong to w. If a is projective, then a
allows cancellation of the first kind, thus a 1-fold joint cancellation. If a is
not projective, then one of the vertices 7a, 7%a,..., say b = t'a, is projective. If
b is not a source, then b allows a cancellation of the first kind, otherwise
there exists some n with 2< n<¢t+ 1 such that all the vertices b(i),
0 <i < n, are projective, whereas b(n) (and therefore all b(i), i > n} are not
projective. In this case, the element 7'~"*'a allows n-fold joint cancellation.
Thus, in case there does not exist a vertex which allows joint cancellation,
g(T) = r(T). Dually, if no joint cocancellation is possible, p(T) = r(T).

3.5. For the proof of the theorem, we will need an additional result:

LEMMA. Let T be a tube with the mouth being a circuit. Then T does not
admit a length function.

Proof. First, consider the case where all arrows on the mouth point to
the mouth, thus all vertices on the mouth are projective, and let

Ay = Q> Ay 24, =0y

be the circuit which forms the mouth of 7. Assume there exists a length
function f, then f(a,,,)=f(a)+1, and f(a,) =f(a,)=f(a,) +¢ a
contradiction. In the same way, we obtain a contradiction in case all arrows
of the mouth point to infinity, thus, all vertices on the mouth are injective.
Therefore, assume now there are as well arrows on the mouth which point to
the mouth and arrows which point to infinity, and let f be a length function
for 7. If x— y is an arrow on the mouth which points to infinity, then x is
injective and f(y)=/(x)— 1. It follows that for any arrow x-—J which
points to infinity, /() =f(x) — 1. Since the mouth is a circuit containing
arrows pointing to the mouth, the ray [x, c0) exists for any vertex Xx. Now
F(x(n)) =f(x) — n shows that f takes negative values, a contradiction.

Proof of the theorem. (i)= (ii). Let T be a coherent tube with a length
function f. Since any cancellation reduces g(7), any cocancellation reduces
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p(T); the process of cancellations and cocancellations must stop after a finite
number of steps with a tube 7°. By (b), T° is either smooth or the mouth of
T° is a circuit. But the mouth of T° cannot be a circuit since with T also T*
has a length function. Thus 7° is smooth, and therefore r(T)=r(7") > 0.

(it) = (iii). Let T be a coherent tube with r(T) > 0. By (c), we can use
a sequence of first joint cocancellations and then joint cancellations in order
to obtain a tube T* with p(T*) = r(T*) = q(T*), thus T is smooth. Since joint
cancellation is the reverse process to ray insertion, joint cocancellation the
reverse process to coray insertion, we obtain T from T° by using first ray
insertions and then coray insertions. Also, (7T"°) = r(T), thus T* = 74 , /r(T).
By duality, one also has (ii) = (iii*). The proof of (iv) = (i) follows from
3.2,

3.6. We have seen above that a coherent tube T with length
function has rank r(T) > 0. Thus, if a component of the Auslander—Reiten
quiver of a finite-dimensional algebra is a coherent tube 7, we always must
have r(T) > 0. However, there are coherent tubes 7 with (T) = 0 which are
of interest in the representation theory of orders.

ExXAMPLE. Let R be a discrete rank one valuation ring, and consider the
R-lattices over the 2 X 2 lower triangular matrix ring S = (§ ») over R. Then
there is a component T of type (1, 1) with r(T)=0.

Namely, let I be the maximal ideal of R, say with generator 7. We
consider the following lattice of column vectors L(i)= (%) with i€ N,
(where I° = R). There are inclusion maps L(i) — L(i — 1), all of them will be
denoted by 1, and the maps L(i — 1)— L(i) given by multiplication with 7,
all of them will be denoted just by 7. Then T is given by the lattices L(i),
i€ N,, the various maps 1 and 7, and the extensions

T
i

0 y L 2S5 Li— 1)@ LG+ 1) . » L(i) » 0,

where i € N|.

4. TUBULAR EXTENSIONS OF TAME CONCEALED ALGEBRAS

4.1. Let A=A, be a tame concealed algebra, with T,(1), A € 4,
being the set of all tubes of 4. The algebra B is said to be a tubular
extension of A, provided there exists a finite sequence of algebras
A=A,,A4,,.,A,=B with A4, | being obtained from A, by a simple (or co-
simple) tubular extension using some ray (or coray) module V, € T,(4;), for
some A, € 4, and where T;, (1), 4 € A, is the corresponding set of tubes of
A,y with T;, () 2 Ti(A),. The type of this extension is, by definition, the



COHERENT TUBES 191

function (p,q): A4 — N2 where p(A)=p(T,(A)). q(A)=q(T,(2)), and the
class of modules belonging to the various T(A)=T,(A), A € A, will be
denoted by # (B, A).

Note that for a tame concealed algebra A4, all simple regular 4-modules
are ray modules, and, in general, there is the following result:

PROPOSITION. Let B be a tubular extension of a tame concealed algebra
A. Let M be an indecomposable B-module belonging to # (B, A). Then M is a
ray module if and only if |M| is a ray vertex of T(A), and M is a coray
module, if and only if M| is a coray vertex of T(A), for a suitable A € A.

Proof. Let A=A,,A,,..4,=B be a sequence of algebras as given in
the definition above. In case m = 0, the assertions are obvious. The general
case now follows by induction, using Propositions 2.9 and 2.10 in case 4, is
a simple tubular extension of 4,,_,, and the duals of 2.9 and 2.10 in case 4,
is a cosimple tubular extension.

4.2 THEOREM. Let A be a tame concealed algebra with a simple
regular module M of period r. Let T be a coherent tube of rank r. Then there
exists a tubular extension B of A such that the component of B containing
|M] is of the formT.

Proof. We use Theorem 3.3. By assumption, r > 0; thus T is obtained
from the smooth tube ZA_/r by a sequence of ray insertions and coray
insertions. Now the component of 4 containing M is of the form ZA _/r;
thus the theorem follows from Proposition 4.1.

COROLLARY. Let T be a coherent tube with a length function f such that
S(x)>2 for some simple regular vertex x. Then there exists a tubular
extension B of some tame concealed algebra A with a component of the form
T such that f coincides with the canonical length function of this component.

Proof. By Theorem 3.3, T is obtained from a smooth tube of the form
ZA_Jr, with r > 1, by a sequence of ray insertions and coray insertions. The
simple regular vertices of ZA_/r are the orbits of the pairs (i,0) € Z X {0}
under the translation i — i + r, and we denote the orbit containing (i, 0) by &.
Note that (ZA_/r), is a subset of T,, and the vertices 1...., 7 are just the
simple regular vertices of 7. Let s = Y7_, f({).

Let us construct a quiver Q of type A, ,, as follows: the vertices of Q are
given by the pairs (i, v), where 1 <u<r and 1< v <f(#%), and there are
arrows (u,v)—- (w,v—1), for 1 <v<<f() and all % and also arrows
(u, f(@)— (u+ 1, 1), for all 1 <u<r, and (rf(F)~ (1, 1). Since (i) >2
for at least one i, the path algebra A = kQ is finite-dimensional. We define
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indecomposable representations E(i), 1 <i<r, as follows: let E(i}y =k
for i = u, and 0, otherwise, with maps E(?),; ., = E(i);. ., being the identity
for 1 < v <f(f), and all other maps being zero. Note that the representations
E(i) are regular, and belong to a fixed component T” which is a tube. In
fact, they are all the simple regular representations of 7", and, by
construction, the length of E(i) is equal to f(i).

According to the theorem, there exists a tubular extension B of A4 such
that the component of B containing the representations E(i) is of the form T.

The canonical length function on T coincides with f on the simple regular
vertices of T, thus on all of T.

4.3. Given an artin algebra B, let us recall the definition of the
quiver Q(B) of B. Its vertices are the isomorphism classes of simple B-
modules, and given two simple B-modules S, 7, there is an arrow [S|— [T]
if and only if Ext'(S, T) # 0. Also recall that a Serre subcategory .7 of the
module category ,# is a full subcategory closed under submodules, factor
modules and extensions; note that . is uniquely determined by the set of
simple modules contained in .. A Serre subcategory uniquely determines a
two-sided ideal I of B such that .% is the category of all B/I-modules.
Actually, the ideal [ is generated by some idempotent e. We will say that a
subcategory .% is convex, provided it is a Serre subcategory and the set of
simple modules contained in % is path closed (given a path
Sy~ S,— -8, in the quiver of B, with S, S, both in .7, then all §;
belong to ). If .% is a convex subcategory of ,#, and M is an arbitrary
B-module, then we denote by M|, the restriction of M to .%; it is a
subquotient M’/M" of M belonging to .¥, with M” < M’ < M, such that
neither M/M’ nor M" has any composition factor in .%’. Note that M|, is
(up to isomorphism) uniquely determined by .. Finally, it is easy to see
that for . being convex, and [/ and e as before, the algebra
A=(1—e)B(1 —e) satisfies B=1@® A; thus we may consider .% as the
category of all 4A-modules.

Also, given a class . of B-modules, let 1(.5") denote the class of indecom-
posable B-modules X satisfying Hom(X, S} =0, for all § € .%, and r(~) the
class of all indecomposable B-modules Y satisfying Hom(S, ¥) =0 for all
Se.7.

Now, assume that B is a tubular extension of a tame concealed algebra 4.
By construction, A4 is a factor algebra of B, and the full subcategory ,# of
all A-modules in the category ,# is a convex subcategory. Given a B-
module M, we denote its restriction to ,# just by M|,. We also consider the
factor algebras B* and B~ of B, where . # is the Serre subcategory of , #
generated by the A4-modules and those simple B-modules for which the
injective envelope belongs to # (B, 4), and similarly, ,_.# is the Serre
subcategory of , # generated by the 4A-modules and those simple B-modules
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with projective cover belonging to £ (B, A4). Note that also ,..# and , #
are convex subcategories of , #.

THEOREM. Let B be a tubular extension of a tame concealed algebra A.
Then the indecomposable B-modules fall into three pairwise disjoint classes:
namely, #(B,A):=r(¥ (B,A)), £(B,A), and Z(B,A):=W& (B, A)). If
X€ 2(B,A), YE #(B,A), then Hom(X, Y)=0, and, for X € .#(B, A),
Ye Z(B,A), any homomorphism X — Y factors through a direct sum of
modules belonging to £ (B,A). Any M € (B, A) is a B*-module, and M|,
is a preprojective A-module. Any M € Z(B,A) is a B~ -module, and M|, is a
preinjective A-module. Finally, for M € # (B, A), the restriction M|, is either
an indecomposable regular A-module or zero.

Proof. The proof is by induction. If B = A, then # (4, A) is the class of
indecomposable regular modules, r(# (4,A4)) is the class of indecomposable
preprojective A-modules, and 1(& (4,A4)) is the class of indecomposable
preinjective A-modules.

Now assume the theorem is true for a tubular extension B of A4, and
assume C is obtained from B by a simple tubular extension using the ray
module zV of # (B, A), say C=B[V, n]. Let D =End(V), and consider the
D-vectorspace category ¥ =  Hom,(,V, ;#). We denote the functor
pHom,(,V, —): p# — ,# by F. The indecomposable object ,F(V(i)) is one-
dimensional both as a left D-vectorspace, as well as a right End(F(V(i)))-
vectorspace, with u; being a generator. Note that for any indecomposable B-
module ;W, not isomorphic to any V{(j), with j < i, the object F(W) in ,#
is generated by F(V(i)). (Namely, any homomorphism ¢ € F(W) factors
through u,, according to Lemma 1 in 2.7.). Let B’ be the path algebra over
D of the quiver

O0——30——30 +:+ O—F0 ,
2 3 4 n—1 n

and V' the indecomposable projective-injective B’-module. The D-
vectorspace category Hom,, ,(V X V',5, 5 .-#) is the direct sum category of
p” and ,F ' =Hom,(V',,.#), and ,#' is the additive category
generated over D by a linearly ordered set of n — 1 elements. Now C is the
one-point extension of B X B’ using the module ¥ X V'; see [11]; thus the
indecomposable C-modules .M not belonging to ,,,.# correspond bijec-
tively to the indecomposable objects (U, Homg, (VX V', X X X'), ) in
#(p# L ,#') with U#0, and such that no indecomposable direct
summand of X X X’ belongs to r(¥ X F’). Given such an object in
#(pF L p#'), either X = V(i) for some i, and then U= ,D, X' is indecom-
posable and .M belongs to the component of C containing ¥ or else all
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indecomposable summands of X belong to #(B, 4). Let 7 (C, A) denote the
class of indecomposable C-modules which are either in #(B.4) or
correspond to an object in #(,# L ,#') of the form (,D,
Homg  , (VX V', V(i) X X’), ). Similarly, let #(C.A) denote the class of
indecomposable C-modules which are either in #(B.A) or correspond to
some (U, Homg , (VX V', X X X'),p) with U# 0 and X a direct sum of
modules in Z#(B,A4). Finally, let .#(C,A)=.»(B.A). It follows that
Hom(.M, N)=0 for ME#(C,A), N€ .(C,A). and also for
Me Z2(C,A) and N€ .»#(C,4) U #(C, A).

On the other hand, if Hom(.M, ;N)=0 for all M€ #(C.A), then N
cannot belong to # (C, A) nor to #(B, A). Now assume IV does not belong
to .7(C,A), thus it corresponds to some indecomposable
(U,Homy ., (VX V', X X X'), ¢) with U+ 0 and X a direct sum of modules
in Z(B,A). Then X=0 since otherwise there is some
YeE#(B,A)< #(C,A) with Hom,(Y, X)# 0. But then there is a nonzero
homomorphism from (,D, Hom,,,,.(V X V', VX V'), 8) with 6: D> D X D
being the diagonal map, to (U,Homg, (VX V',0X X').¢), and
(pD.Homy .. (VX V', VX V'),8) corresponds to the C-module
(V. D...., D; 1,..., 1) in #(C, A). This shows that .#*(C, 4) = r{# (C,A)). For
the proof that . Z(C,A4) =1(# (C, A)), we only have to note that a C-module
M with Hom(:M, .N) =0 for all ;N &€ #(C, 4) cannot belong to # (C, 4).
and also not to . #(C,4)=.7(B, A), since 7 (B,A) < 7 (C, A).

Now assume, N€&.¥(C,4), M€ 2(C,A), and f: N> M is a
homomorphism. We want to show that f factors through a direct sum of
modules in #(C,A). Let M’ be the largest submodule of M which is a B-
module. Note that M just corresponds to some object (U, Hom,, ,.(V X V",
M’ X X'),9) in #(,# 1 ,#'), thus, by definition, M’ is a direct sum of
modules in Z(B, A). Since .V is in fact a B-module, f factors through M’,
and, by induction, the induced map N — M’ factors through a direct sum of
modules in #(C, A4).

Finally, we note that C* =B* and C~ =B~ |V|B ", n|, thus all modules
in .#(C,A) are C*-modules, and all modules in .#(C, A) are C -modules.
This finishes the proof in case C is a simple tubular extension of B by a ray
module in # (B, A). The case of C being a cosimple tubular extension of B
by a coray module in # (B, A) is dual.

4.4. In view of the preceding theorem, let us introduce the following
definition: a set # of indecomposable modules is said to be separating,
provided the indecomposable modules not belonging to # fall into two
disjoint classes .7* and 2 such that Hom(X, Y)=0 for X € 2, Y€ ., also
for Xe 2, YE#Z, and for XE€ #, YE .7, and such that, moreover, any
map X — Y with X €.%°, Y € 7 factors through a direct sum of modules in
#". (Usually, these classes .7’ and .7 are uniquely determined by #.) In case
#  are the modules belonging to a family of tubes, and # is separating, then
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# will be said to be a separating tubular series. The above theorem asserts,
in particular, that given a tubular extension B of a tame concealed algebra 4,
the set # (B, A) is a separating tubular series.

Also, we have seen that for a tubular extension B of a tame concealed
algebra A, any indecomposable B-module not belonging to the separating
tubular series # (B, A4) is either a B'-module or a B~ -module. Let us
consider as an example the path algebra B of the following quiver with all

commutativity relations and the two indicated zero relations. It is a tubular
extension of the path algebra A of the full subquiver given by the vertices
0, 1...., 8. Here, B* is given by the vertices O, 1,..., 8,a, b, and B~ is given by
the vertices 0, 1,..., 8, », z. Note that both B* and B~ are wild (B " contains
the wild subquiver given by a, b, 0, 1, 6, 7, whereas B~ contains the wild
subquiver given by 1, 6, 7, 8, », z). The tubular series # (B, 4) contains
several indecomposable sincere representations, namely, the following: let V'
be the simple regular A-module with V,=k for i=0,1,6,7, and zero
otherwise; now given an indecomposable regular A-module W % V with
regular socle and regular top both of the form V, there is precisely one
indecomposable sincere B-module W with restriction to A4 being W; it
satisfies W,.zk for i=a, b, y, z, and these are all the indecomposable
sincere B-modules.

We also note the following: suppose B is a tubular extension of a tame
concealed algebra 4. If we consider a one-point extension by a module X in
Z(B, A), or a one-point coextension by a module Y in .7(B, 4), and also if
we repeat these processes, the family # (B, 4) will remain the union of
certain components which are tubes and will remain to have the separation
property of a separating tubular series.

5. COHERENT TUBES AS COMPONENTS OF ALGEBRAS
5.1. Let T=(T,,T,,t) be a coherent tube which is the component

of an algebra 4. Any vertex x of T is in fact an isomorphism class of
indecomposable A-modules, and we will denote a representative of x by M,
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and similarly, for a:x—y an arrow of T, let Jo.:M, > M, be some
irreducible map. Thus, we deal with a certain representation . # = (Mx, f,)of
the quiver (7,, T) in the category of A-modules. Note that we have shown
in Section 3 that the rank of T satisfies r(7) > O since there is given the
canonical length function. In particular, we also have p > 0, q > 0, where
(p, q) is the type of T.

PROPOSITION. Let T be a coherent tube which is the component of an
algebra A. Let (a,,...,a,) be a path with all arrows Q;:x;_, - X, 1 <ign,
pointing to the mouth.

(a) If x, belongs to a regular ray, or to no ray, then the composition
o, o Ja, is an epimorphism.
(b) If x, belongs to a ray, and x, belongs to a regular ray, whereas no
x;, 1 <ign, belongs to a regular ray, then the composition Ja, e So, 5 a
monomorphism.

The proof will be given in the next section.

5.2, Given a vertex v on the mouth of a tube T such that the ray
[v, o) exists, we have introduced in 2.5 the translation quiver T which is
obtained from T by cutting along [v, o). Given a vertex w in T, let
4 = A(v, w) be the full translation subquiver of T with A, being the set of all
vertices y € T with a path from y to w. Obviously, 4, is a finite set, and the
underlying space |4| of A is contractible. We usually will deal with the
following situation: there is a chain of arrows (pointing to the mouth)

Bn_1
> o

w(—n) —2 w(—n + 1) S w(—1)—2 s w(0) = w

such that w(—n) = v(m) for some n,m & N,,. _

We may lift the representation .# = (M, f,) of T to a representation of T
(with M, ;, =My, =M,,, and so on), and then we may consider the
restriction to 4. However, we would like to deal with a commutative
representation .#3 = (M5, ) which coincides on all g, with the given
representation (such that [M{] = [M,] and with all /¢ being irreducible).
This is easily established by keeping, in addition to the Js,» also certain f,,
where o comes from an arrow in T pointing to mf'mlty, and formmg
pullbacks, in order to obtain the remaining M¢ and /. We say that .#9
derived from .#.

Proof of Proposition 5.1(a). Let (a,,..,a,) be a proper path of arrows
a;:x;_;—x;, 1 <i<n all pointing to the mouth, and such that x, either
belongs to a regular ray or to no ray. In both cases, we note that the coray
(o0, x,| exists, and it will contain vertices lying on regular rays. Without loss
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of generality we may assume that x, lies on a regular ray (otherwise, extend
the path to the left and renumber the arrows). First, assume that x, belongs
to a regular ray [z, o), say x,=z(m— 1) for some me& N,. We may
suppose that no x; with 1< i < n is regular (otherwise, we divide the path
into two paths (e,,..., @), (@,, - @,), and use induction). Since 7z and z
both belong to the reduced tube 77, there exists the following diagram

Xoo = X1 =" ? Xon—1

L l

Xig 22Xy 22X 01 2 Xp

L l l (+)

of vertices and arrows from 77, where all horizontal arrows point to the
mouth, all vertical arrows point to infinity, and x,,_, =12, X;,=Z and
finally x,; =x; for all 0< i< n Similarly, in case x, belongs to no ray,
choose a path of maximal length of arrows pointing to infinity
Xy, = '+ = Xy = X,. Then x|, lies on the mouth, and it cannot be projective
since Xx,, does not lie on a ray, thus the extension rx,, Lx,, lies on the
mouth. Let x,,_ ,=T1x,,, and note that all the corays (00, xg.,.,| and
(00, x;,), 1 <j < m exist. Thus, in both cases we have the diagram () with
Xo.n— lx,,, lying on the mouth. By assumption, there is a regular ray [v, 00)
containing x, (and therefore all Xjos 0<j< m). We consider now the
corresponding diagram in T. (This is possible, since by assumption, those
rays [xo;, 00), 0<i<n—1 which exist are pairwise nonequivalent. Note
that in case r(T) = 1, the rays [x,, o) and [x,, o) are equivalent; in this
case, some of the vertices x;, may be of the form #(j); however, we will
denote the diagram in T using the same letters as before.) Let 4 = 4(v, Xon s
and consider a commutative representation .# derived from .#. Since .#7,
is commutative, all the small squares of (x) are cartesian squares, and we
add an additional vertex x,,, with M, =0, and with zero maps
MS oM, MG M , in order to obtain an additional cartesian
SQuare In this way, (*) becomes a large square, which is cartesian. Since the
upper morphism M{ - M5 =0 is surjective, the same is true for the lower
morphism M; - M“ iy and this map is just the composition f,, -+ f, .

n

Proof of Proposztzon 5.1(b). Now, let (a,,..,a,) be a path, with all
arrows a;: x;_,;— X;, 1 <i< n, pointing to the mouth, such that x, belongs
toa regular ray |v, ), say x, = v(m), and such that no other vertex x;, with
1 <i< n, belongs to a regular ray. We use induction on n. Choose i € N,
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minimal such that there exists a path (714 7,) of length n of arrows
¥ji X=X pointing to the mouth, with x,, = v(i), as well as a path of
length m — i with arrows pointing to infinity from X;, 10 x,. We claim that
one of the vertices x;;, | <j < n has to be projective. Namely, assume no X
I <j< n is projective. Since x;, is not projective, the arrow TX;, = X, iS an
arrow pointing to infinity and ending in Xio = v(i}. Thus i > O since v(0) =
generates a regular ray. Also, the extension 7x;, L x,, belongs to the mouth,
since otherwise there is an arrow 4: x, 1.n— X;, poInting to infinity, and thus
we obtain both a path (ry,...., ty,,6d) from v(i— 1) to X; ., with arrows
pointing to the mouth as well as a path of length m —i + | with arrows
pointing to infinity, from x, _ 1.n 10 X,,, thus contradicting the minimality of i.
Since v belongs to a circuit, the coray (oo, v| exists. By assumption, the ray
|x,. 20) exists, thus also [x,,, 00) exists. Now the coray (oo, t| and the ray
|x;,, 00) intersect, and, in this way, we obtain a closed path containing 7x;,
and x;,, as follows: we go from ¢ to v(i — 1) along the ray [t, oo). then from
v(i — 1) to tx;, using (ry,,..., ty,). then along oy, and y, to x,,, finally along
the ray |x,,, c0) up to an intersection point with the coray (oo, v| and back
to v along this coray. This shows that rx,, and x;, belong to the reduced tube
T", and since 7x,, Lx,, lies on the mouth, [x;,, 00) is a regular ray. Since
this contradicts the assumption that x, does not lie on a regular ray, it
follows that one of the vertices X, 1 <j< n, is projective.

We fix j maximal such that x;; is projective. First, we consider the case
J<n Letx;, , =1x;,, for j<r<n There also may be an arrow ending
in x;, and pointing to infinity. In case it exists, its starting point will be
denoted by x;_, ,. Thus, we obtain the following diagram of vertices and
arrows from T (the two dotted arrows and the vertex x, _ 1., May or may not
exist):

—_— e — 3 X "xi~l,n

i—1,j i—1l.,n—-1

i1 » X — - > X1

N
| | J |

@Ay j Xy
—_— . e e ey _ N
X xm.nnl m.n

Here, all horizontal arrows point to the mouth, all vertical arrows point to
infinity, and x,, = x,, a,, = a, and a; =y,. The horizontal map ending in
x;; is denoted by a;;, the vertical by d,,. Consider now the corresponding
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diagram in T (this is possible since the rays [x;, ®©) are pairwise
inequivalent), and the finite translation subquiver 4 = 4(v, x,,,). Let .# be a
commutative representation derived from .#. In case there does not exist an
arrow ending in x;, and pointing to infinity, let M5 =0 and add zero
maps M MC o and M a2 M" . In this way, the whole diagram
(%), mcludmg the dotted arrows, is composed from small squares all of
which are, up to sign, cartesian. We want to show that the composition
f S = -+ [, is a monomorphism. Using part of the diagram
(**) we see that it is enough to show that f, .-- f7, is a monomorphism.
Now M"J is a projective module, with radical f)emg glven by the direct sum
of the images of [, ,and [, - both being monomorphisms. Thus, it is enough
to show that the 1mage of ,u U- M, (the canonical inclusion of the kernel

of f¢ o f "M) is contained in the image of f“ However,

Qi+t
again using part of the diagram (%x), we have the following carteman square
Mc ff’r’—l.j+1”.fgiv—l.n ‘M(‘
Xi-vj M Xi_1,n
lfgij Jvfgin
. f:;ij R
W .1 N C
fof "Mxin.

Using the pullback property, we factor the pair (u, 0): U-> MS @Mx' .
through M” o , thus we obtain g¢’: U— MC L such that u= ,u’f“ This
shows that in case J < n, the map f - fa, 18 @ monomorphism. In case
j = n, the same result follows more easﬂy S "is a monomorphism since M,
is projective, thus also f° , is a monomorphlsm using the correspondmg
cartesian square. Thus, always f Ja, 18 @ monomorphism. By induction,
we also have thatf, ---f, |isa monomorphism. This finishes the proof.

5.3. Recall that Auslander and Smale [1]| have introduced the
notion of a preprojective module over a general artin algebra: An indecom-
posable module M is said to be preprojective if and only if there exists a
proper submodule M’ of M such that there are only finitely many pairwise
nonisomorphic indecomposable modules N, having a homomorphism N, - M
with image not contained in M'.

THEOREM. Let T be a component of A which is a coherent tube, and let
M be an indecomposable module in T. Then M is preprojective if and only if
M belongs to a ray, but not to a regular ray, and M is preinjective if and
only if M belongs to a coray, but not to a regular coray.

Proof. Let M be an indecomposable module with w=[M] belonging
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to T,. First, assume w belongs to a regular ray, or to no ray at all. In both
cases there exists the coray (co, w|

B8

—»w(——i)—ﬁ-"—» w(—i+ 1) LN 2ﬁ-w(~1)——u—'~» w(0) = w.

Choose indecomposable modules M(—i) with [M(—i)| = w(—i), and
irreducible maps f;: M(—i)— M(—i+ 1). By the proposition, all the
compositions f;--- f;, for all i€ ™,, are surjective. This shows that M
cannot be preprojective.

Now, assume that w does not belong to a regular ray, but to a ray. If w
does not belong to a coray, then there are only finitely many paths ending in
w; thus there are only finitely many indecomposable modules having a path
of irreducible maps to M, and M is preprojective. Thus, we can assume that
the coray (oo, w| exists. Let n be the smallest number in ., such that w(—n)
belongs to a regular ray, say to [v, o0), thus w(—n) = v(m) for some m € N,.
Choose indecomposable modules M(—i) with |[M(—i)] =w(—i), 1 <i<n,
and irreducible maps f;: M(—i) > M(—i + 1). Let . 7 " be the set of vertices x
in T which have a path x=x,- x, > --- > x, = w from x to w such that no
x; belongs to [v, c0). We claim that for any indecomposable module N with
[N] € .#", any homomorphism N — M factors through f, --- f,. Since . # is
finite, and f, --- f; is a monomorphism according to Proposition 5.1, this
implies that M is preprojective.

Let 4 = A(v, w), and choose a commutative representation. # = (M<, f)
derived from _#. Note that for the vertices z of 4 which are not of the form
v(i), the maps

<)

yez~

are minimal right almost split. Now assume there is given an indecom-
posable module », with [N]€.#, and a homomorphism g:N - M.
Factorising g through the various minimal right almost split maps inside 4,
we can write g as a sum of maps g'g” with g': N> M, where 0 <i<n,
and g”: MS,;, — M being a composition of irreducible maps of the form f,
with aEA—,. However, since .#% is commutative, we see that g” factors
through f, --- f,, thus g factors through f, --- f,. This finishes the proof of
the first assertion of the theorem. The second assertion follows by duality.

5.4. Given a coherent tube 7, in view of the preceding theorem, it
seems to be natural to call a maximal nonregular ray a preprojective ray, a
maximal nonregular coray a preinjective coray. The number of preprojective
rays is g(T) — r(T), the number of preinjective corays is p(T) — r(T). We
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may reformulate the preceding theorem as follows: in case T is the
component of an artin algebra A, then an indecomposable 4-module M in T
is preprojective if and only if |[M] belongs to a preprojective ray, and prein-
jective if and only if [M| belongs to a preinjective coray. We also mention
two obvious consequences:

COROLLARY 1. Let T be a component of A which is a coherent tube, and
M an indecomposable A-module in T. Then M is neither preprojective nor
preinjective if and only if |M] is a regular vertex of T.

COROLLARY 2. Let T be a component of A which is a coherent tube.
There are infinitely many isomorphism classes of indecomposable modules
belonging to T which are both preprojective and preinjective if and only if

both p(T) > r(T) and q(T) > r(T).
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