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Let k be a commutative field, F and G division rings containing k in the
center and finite dimensional over k. Let .M be a bimodule, with k
operating centrally, and such that dim M =dim M;=2. Assume, the
element m € M generates M as a bimodule. We are going to define a k-
algebra R(m) as follows: Let F %, G be the free product of F and G over k,
let I(m) be the ideal of Fx,G generated by all elements of the form
S fixg, with 37 fimg;=0 in M. Then, by definition,
R(m) = F %, G/I(m).

THEOREM. The k-algebra R(m) is infinite dimensional, and it is a
bounded hereditary noetherian domain.

For the convenience of the reader, let us recall the definitions. A ring R
without proper zero divisors is called a domain. The ring R is said to be
noetherian provided it satisfies the ascending chain condition both for left
ideals and for right ideals. It is called hereditary, in case submodules of
projective modules are projective, and finally, a noetherian domain R is said
to be bounded provided any non-zero left or right ideal contains a non-zero
two-sided ideal.

We are indebted to the referee for his or her valuable remarks; in
particular, a result of the forthcoming book “Simple Artinian Rings” by A.
H. Schofield has been brought to our attention asserting that the algebra
R(m) is a fir (that is, that every one-sided ideal is a free module with
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invariant rank). In combination with our theorem, this implies that R(m) is,
in fact, a principle ideal domain.

In the course of the proof of the theorem, we will encounter further
properties of the algebra R(m). Actually, we will show that any non-zero
one-sided ideal of R(m) is of finite codimension over k; of course this
immediately will imply that R(m) is noetherian and bounded. Consequently,
all simple R(m)-modules are finite dimensional over k. Also, given two
simple R(m)-modules S, S’, we will see that Ext'(S,S8')# 0 iff S and S’ are
isomorphic. Thus, any proper factor ring of R(m) is uniserial (in the sense of
Nakayama: a direct product of a finite number of full matrix rings over local
serial rings—in general, it is known that proper factor rings of hereditary
noetherian prime rings are serial, but not necessarily uniserial, a theorem of
Eisenbud, Griffith and Robson [6]).

Let us mention two types of examples. First, let F, G be commutative
fields, with a common subfield k of index 2 both in F and in G. Then the free
product F x, G of F and G over k is of the form R(m) (for M = (F ® G)g-
and m=1® 1 € M). This seems to be of interest both in case F — G as well
as in case that F,G are non-isomorphic. Second, let F be an arbitrary
division ring, finite dimensional over k. Then the canonical bimodule
#F @ F), has a generator if and only if F is not commutative.

For the proof of the theorem, we will construct an embedding functor @
from the category . #;,,,, of right R(m)-modules into the category .#(,- M) of
representations of the bimodule .M,. We will use the structure theory of
- #{:Mg) as developped in |3, 7-9] in order to derive the various properties
of the ring R(m). Of particular importance in A (M) is some infinite-
dimensional representation Q of .M, with E = End(Q) a division ring and
¢ @ finitely generated. It turns out that £ is the quotient division ring of
R(m), and Q = ®(Ey,,))-

In the present paper, properties of the category .#(-M_) are exploited in
order to obtain information about the ring R(m). We should point out that
our own interest in the ring R(m) lies in the fact that conversely R(m) should
give information about the category .#(.M;). Namely, the maximal
spectrum of R(m) is a convenient index set for the set of isomorphism classes
of simple regular representations of #M which are different from the fixed
representations S, (see Section 2 below). Given an arbitrary tame finite-
dimensional hereditary algebra, all indecomposable representations but the
homogeneous ones have been determined in {3, 5] and all of them have been
shown to be characterized by combinatorial invariants. On the other hand,
the description of the homogeneous representations cannot be purely
combinatorial. The problem of describing the category of all homogeneous
representations of a tame finite-dimensional hereditary k-algebra has been
reduced in [3,5] to the special case of the tensor algebra T(.M;) of a
bimodule .M, with F, G division rings containing k in the center and finite
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dimensional over k, and k operating centrally on M, such that moreover
(dim ;M)dim M;)=4. In case the bimodule M, is not simple, the
homogeneous representations of .M, can be described using modules over a
twisted polynomial ring, see {7]. Our present paper now deals with the case
where .M, is a simple bimodule and dim M = dim Mg, = 2.

1. EMBEDDING OF .4y, INTO THE CATEGORY OF
REPRESENTATIONS OF M,

Recall the definition of a representation (X;, Y, @) of the bimodule . M, ;
it is given by an F-vectorspace X, a G-vectorspace Y, and a linear transfor-
mation ¢: Xy ® M, - Y. A map from (Xg, Y,,0)to (Xf, Yi, ') is of the
form (f,g), with f1 X, > X}, g¥;— Y5 linear transformations satisfying
go=0'(f® 1,,). The category of representations of M, is denoted by
M (M)

Now consider the k-algebra R(m). The residue class of fxg€EFx*, G
modulo I(m) will be denoted by f*g. Note that these elements generate
R(m).

Given an R(m)-module Xg,, we may consider X both as an F-
vectorspace as well as a G-vectorspace, using the ring homomorphisms
F—R(m), fr—f*1 and G- R(m), g+— 1% g It will be clear below that
these maps are in fact inclusion maps, as soon as we know that R(m) is a
non-zero ring. Also, the R(m)-module structure on X defines a linear
transformation

n n
0y Xp®p Mg Yo, (px(x®>:f}mgi):§:]x'ﬁ*gn

i=1 i=
where x€ X, and all f;EF, g, € G. Here, we use that m generates the
bimodule M/, so that any element of M is of the form >'7_, fimg;, and @,
is well defined due to the definition of I(m). In this way, we obtain from
Xgemy @ representation (Xp, X, 0x) of pMg- Also, giyen an R(m)-
homomorphism f: Xgm = Xam» it is obvious that (f.f) is a map from
(X, X, 0,) to (X5, X5, 0x) in #(Mg); thus we obtain a functor
D: My~ (M), which obviously is exact, and commutes with arbitrary
direct sums.

1.1. PROPOSITION. The functor @ gives an equivalence between the
category My, and the full subcategory .9?(m)- of‘ all representations
Xy, Y. 0) of ¢ M with o(— ®@m): X~ Y being bijective.

Note that the map ¢(— ® m) is k-linear, but may not respect any other
module structure.
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Proof of Proposition 1.1. 1t is obvius that the image of @ is contained in
#(m), since for any R(m)module Xpmy» and any x € X, we have
Ox(x@m)=x-1%1=x, thus the map g, (~ @ m): X - X is the identity.
Conversely, given any representation (Xy, Yg, 9) of .M, which belongs to
#(m), we may construct an F * G-module structure on X as follows: given
XEX,fEF, g€ G, let x- (f*g) be defined by the equation

ox - (f*g) ®m)=p(x D fing).

Note that x - (f*g) is uniquely determined due to our assumption that
(Xr: Yg, p) belongs to .#(m). It is obvious that X as an F * G-module is
annihilated by I(m); thus, in this way, X becomes an R{(m)-module, and
clearly @(X,,,,) is isomorphic to (Xp. Yo, 0)

1.2. COROLLARY. The ring R(m) is hereditary.

Proof. The category .#(.M,) is hereditary, and .#(m) is closed under
extension, thus it is hereditary, too. (An abelian category is said to be
hereditary provided the functor Ext! is right exact in the second variable; of

course, the category of modules over a ring is hereditary if and only if the
ring is hereditary.)

1.3. We may give another interpretation to the functor @. Namely,
A (:M;) may be considered as the category of T(,.M)modules, where
T(; M) is the matrix ring (5 *). Now, & is the composition of the usual
Morita equivalence functor from Arim 1O A1 rimy» Where M,(R) denotes
the ring of 2 X 2-matrices over R, with a full embedding functor

.le{R(m,,—»%(FMg,. This full embedding functor is induced by a ring
epimorphism

&: T(, M) - My(R(m)).

We will see later that this ring epimorphism is in fact a monomorphism.

2. FINITE-DIMENSIONAL R(m)-MoODULES

Note that the ring R(m) is a k-algebra: we denote by sz g the full
subcategory of all R(m)-modules which are finite-dimensional k-
vectorspaces. Under @, the category »pm 18 mapped onto the full
subcategory 2(m) of all finite-dimensional representations in .# (m).

We recall that a finite-dimensional representation of .M, is said to be
regular provided it is the direct sum of indecomposable representations of
the form (X.,Y,,¢) with dim X, =dim Y;, and we denote the full
subcategory of all regular finite-dimensional representations of .M, by 2.
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Now + is an abelian category |3], so we may speak of simple objects in 2,
composition series in ¢, and so on. We recall from [7] that any indecom-
posable object in 2 has a unique composition series in 2, and all its
composition factors in ¢ are isomorphic. Conversely, given any simple object
in 2, there are indecomposable objects in z of arbitrarily large length having
it as composition factor. (Thus, 2 is a direct sum of categories each of which
is serial with a unique simple object.)

Given 0 # a € M, one may construct a simple object S, in » as follows: let

S,= (Fp,Gg My Fr® (Mg Mo Mg /aG= Gg)

using the canonical projection of M, onto M, /aG. We denote by «(a) the
full subcategory of ¢ of all objects with composition factors in 2 being of the
form S,. We will need the following lemma.

2.1. LEMMA. Ler (X,,Y;.9) be a representation of M. Then
o(— ® m): X - Y is injective if and only if Hom(S,,, (X, Y5, 9))=0.

Proof. 1f (f,8):S,— (Xz, Y, ) is a non-zero map, then f#0, since 7,,
is surjective and gn,, = ¢(f® 1,,). However, o(f(1) ® m)=gn,(1®m)=0,
thus f(1) is a non-zero element belonging to the kernel of p(— ®m): X Y.

Conversely, assume there exists 0 # x € X with p(x ® m)=0. Define a
homomorphism (f; g): Smw— (X¢, Y5,9) by f(I)=x, and g(l)=m’,
where m’' is an element of M with 7,(1®@m)= 1€G. Thus
Hom(S,,, (X;, Y5, 9)) #0.

2.2. COROLLARY. ¢=1t(m) 1L «(m).

Proof. An indecomposable object (X, Y, @) in «(m) has a subobject of
the form S,,, thus Hom(S,,, (X, Y5, 9)) # 0, and by the lemma, (X, Y5, 0)
cannot belong to 2(m).

On the other hand, if (X;, Y, @) is an indecomposable object in 2 and not
belonging to «(m), then Hom (S, (X, Ye, 0))=0, thus ¢o(— ®m) is
injective. Since dim, X = dim, Y due to the fact that (X, Y4, ¢) belongs to 2,
the k-linear map ¢(— ® m) is bijective.

2.3. COROLLARY. Any indecomposable finite-dimensional R(m)-module
has a unique composition series With all composition factors being
isomorphic, and given any simple-dimensional R(m)-module, there exist
indecomposable R(m)-modules of arbitrarily large length having this module
as composition factor.

Note that, up to now, we do not yet know whether there are any non-zero
finite-dimensional R(m)-modules. In fact, we do not even know whether
R(m) may not be the zero ring.
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2.4. LEMMA. There exists a non-zero simple R(m)-module X with
dim, X =dim, F.

Proof. Following [2], we show that FmG = {fing| fEF, g€ G| is a
proper subset of M. Consider the group F* X G> which operates on M via
(/,8)x=/xg~', and not that the diagonal 4 = {(t, )tek” < F*XG”
operates trivially. Thus F* X G* /4 operates on M. Obviously, FmG\ {0} is
an F* X G*/4-orbit. In case k is finite we count elements: denote the
number of elements of a set S by | S|, and let n = | F|; then also |G| = n, and
|M|=n’, due to the fact that dim, M = dim M, = 2. Then

|FmG| = [FmG\{O}| + | <|F* X G* /4| + 1

_(n—=1)

Similarly, in case & is infinite, we count dimensions. This is possible, since

we deal with an action of the algebraic group F* X G* /4 on the affine
algebraic variety M. Let d = |F: k|, then

Dim(F* X G*/4)=2d — | < 2d = Dim M,

thus there are even infinitely many F* x G */4-orbits on M. Thus, also in
this case FmG is a proper subset of M.

We claim that for any x € M\FmG, the representation S, belongs to
R(m). Namely, if x € M\FmG, then FmNxG =0, and consequently
Fm® xG=M, since Fm and xG are k-linear subspaces. However, this
obviously implies that for the projection map 7n.:F,® M,x M,
M;/xG = G, the restriction to F X m is bijective.

2.5. COROLLARY. R(m) is an infinite-dimensional k-algebra.

Proof. The lemma aserts the existence of at least one simple finite-
dimensional R(m)-module X. By the previous corollary, there exist indecom-
posable modules with X as composition factor, and having a unique
composition series of arbitrarily large length. Since any such module is

monogenic, thus a factor module of R(m)g m)» it follows that R(m) cannot be
finite dimensional.

2.6. COROLLARY. The elements f* 1, fE F, form a division subring of
R(m), canonically isomorphic to F; the elements 1 * &, 8 € G, form a division
subring of R(m), canonically isomorphic to G. In this way, R(m) may be
considered as an F — G-bimodule, and the F — G-subbimodule of R(m),
generated by 1 ® 1 is isomorphic to .M.
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Proof. The first two assertions follow directly from the fact that 1x1is
non-zero. Now consider the bimodule map u:  M; - R(m). given by
mi-1® 1 (it is well defined due to the definition of I(m)). The image M of
u is non-zero, thus its left F-dimension is either one or two. However, if this
left F-dimension would be one, then it would coincide with any one of the
division subrings F = {f* I |f€ F} and G = {1 x g |g € G}. Since these two
division subrings generate R(m) as a ring, it follows from F=G that
R(m)= F is finite dimensional over k, a contradiction. This shows that u is a
monomorphism.

2.7. Tt follows that the ring epimorphism ¢ given in 1.3 is a
monomorphism. In fact, we may identify T(,M;) with the subring of

M,(R(m)) given by
(o &)

where we use the notation of 2.6.

<
QI X

3. R(m) Is A SUBRING OF A DIVISION RING

We are going to use the structure theory for infinite-dimensional represen-
tations of .M, as developped in [8] in order to derive further properties of
R(m). Recall that an indecomposable finite-dimensional representation
Xy, Y;,p) of M, is said to be preprojective, regular, or preinjective,
provided dim X, —dimY,; is <0, =0, or >0, respectively. The (not
necessarily finite-dimensional) representation 4 of M is said to be torsion
provided it is generated by finite-dimensional representations which are
regular or preinjective, and forsionfree provided Hom(B,A)=0 for any
finite-dimensional representation B which is regular or preinjective. Also, 4
is said to be regular provided it does not have an indecomposable finite-
dimensional direct summand which is preprojective or preinjective. Note that
.%#(m) contains only regular modules. (Namely, .#(m) is closed under direct
summands, now use 2.2.)

3.1. LEMMA. ®(R(m)p(m,) is torsionfree regular.

Proof. First, assume @(R(m)y.,) has an indecomposable direct
summand B of finite length. Then B has to be regular, say with regular socle
C. There exists an exact sequence

with B’ indecomposable. With B also C, and therefore also B’ belongs. to
#(m). This shows that B cannot be a projective object of the abelian
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category #(m), in contrast to the fact that B is a direct summand of the
projective object @(R(m)g,,,,). Similarly, we see that D(R(m)g(m) cannot
have a direct summand B which is a Priifer module. (Priifer modules are
infinite-dimensional indecomposable representations which are unions of
countable chains of finite-dimensional indecomposable regular represen-
tations.) Namely, in this case there exists an exact sequence (x) with B’
isomorphic to B, thus again B cannot be projective in .#(m). Our assertion
now follows from Proposition 4.8 of [8].

Recall that there exists a unique infinite-dimensional representation Q of
FM; with E=End(Q) being a division ring and such that Q is finitely
generated over £ (Theorems 5.3 and 5.7 of [8], and the main result of [9]).
In fact, dim,Q = 2, according to 5.7 of (8]. Also note that Q is torsionfree
regular and has no non-trivial fully invariant submodule.

3.2. LEMMA.  Q belongs to .#(m).

Proof. Let Q=(Q;,0Qu,n) with 7:0.® FPMg—QF. Now Q is
torsionfree, thus Hom(S,,, Q) =0, thus n(— ® m) is injective.

Assume n(— ® m) is not surjective; say, assume there is g € Q”, not in
the image of #(— & m). There exists a finite-dimensional subrepresentation
A=(Ap,A¢,n) of Q with g€ 4", (This is a direct consequence of the
construction of Q in 5.2 and 5.3 of [8].) We denote by P(0)= (0, G, 0) and
P(1)=(Fp, M, 1,,) the two indecomposable projective representations. The
homomorphisms P(0) - (X, Y;,0) are of the form a, = (a;, ay) with
y&€Y, where a;=0:0~X,, and «/:G, - Y,, a;(g)=yg. Consider the
kokernel of (am): P(0)- P(1)@ B, say, (By): P(1)® A > B. Note that y
cannot be split mono. (Otherwise, we can assume y=(N:4->S®A4 and
write §=(3!) with B,: P(1)~ S, B,:4 > S. It follows that p.a, +a,=0.
Write 8, = (85, 8Y), thus q=ay(1)=—f;a’(1)=B7(—m), and therefore
n(—B3(1) ® m) = B#(~m) = g contradicts our assumption on g.) Now the
defect of B is —1, and all indecomposable representations C of M, with
defect —1 and with a non-zero, non-invertible map A — C have dimension
vector > dim B, thus B is indecomposable, Also, y is a monomorphism, and
we may suppose that y is, in fact, an inclusion. Thus, we consider 4 as a
subrepresentation of B. The inclusion of 4 into Q extends to a map & from B
into @, since B/A is regular, and & is a monomorphism (since otherwise the
image of & would be a subrepresentation of Q of defect >0). Thus, we can
assume 4 & B < Q, and by the construction of B = (B',B", n) there exists
X€B' with n(x® m)=gq, in contrast to our assumption on g. Thus
n(— ® m) is surjective on @, and therefore Q belongs to .#(m).

3.3. PROPOSITION. R(m) is a subring of E and End(Eg ) = E.

Proof. Since Q is in #(m), there exists a right module Tom with
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®(Igm)=0. We have E=End(Q)= End(/ ), and dim, @ =2 implies
that dim, 7 = 1. Now any embedding of @ into a regular representation of
M splits, thus Q is an injective object of #(m) and I is an injective R(m)-
module. We have seen above that @(R(m)gn,) is torsionfree, thus it embeds
into a direct sum of copies of Q (5.5 of {8]), and therefore R(m)gm, can be
embedded into a direct sum of copies of /. This shows that Iy, is faithful.
As a consequence, the double centralizer map R(m)—End(.1) is a
monomorphism of rings. Since dim /=1, we can identify End(.1) with E,
thus R(m) is embedded into E. Using this identification, the module Ey, is
isomorphic to I -

Observe that if m’ is another generator of the bimodule M and R(m') is
the corresponding ring, then the skew fields of fractions of R(m) and R(m')
are isomorphic, since they are both the endomorphism ring of the unique
representation Q of M.

4. PROOF OF THE THEOREM

4.1. PROPOSITION. Any non-zero right ideal of R(m) has finite
codimension in R(m).

Proof. We have seen above that R(m) is a subring of a division ring E,
such that End(Eg,)=E operating by left multiplication on E, and
P(Egm) = Q. The exact sequence

0 - R(M)g(m = Erem 2 (E/R(m))p(m O

gives under @ an exact sequence
0= G(R(M)g(m) — @~ PE/R(m))~ 0

in R(m). According to Corollary 6.1 of |8], ®(E/R(m)) is a torsion regular
module, thus we see that @(R(m)) is a torsionfree rank 1 module.
Let Uy, be a non-zero right ideal of R(m). The exact sequence

0= Ugm = R(M)g(m R(m)/U—-0

gives under @ an exact sequence

0- PUgim) D(R(M)g(m) = @(R(m)/U)- 0,

and again by Corollary 6.1 of 8], ®(R(m)/U) is a torsion regular module.
Of course, all simple regular composition factors of ®(R(m)/U) belong to
+(m), thus @(R(m)/U can be embedded into a direct sum of Priifer modules

P; (see [8, 4.5]) which belong to #(m), say,
PR(m)/U) < ® P;. (*)

iel

ST e
-
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Since any P; belongs to .#(m), it is of the form ®(X,), for some R(m)—
module X;, and X; is the union of a countable chain of finite-dimensional
submodules. The inclusion (*) corresponds to an inclusion

R(m)/Uc & X,.

iel

Since R(m)/U is monogenic, we may suppose that the index set [ is finite,
and since X, is the union of a chain of finite-dimensional submodules, the

projection of R(m)/U into any X; is finite dimensional. Thus R(m)/U itself is
finite dimensional.

4.2. COROLLARY. R(m) is a bounded noetherian domain.

Proof. We have seen in Section3 that R(m) is a domain. If
U,cU,<S .- is an ascending chain of right ideals, we may suppose that
U,+# 0, thus U, is of finite codimension and the sequence has to stop after a
finite number of steps. Also, given a non-zero right ideal U,,,, of R(m),
consider the annihilator J of Vemy = (R(M)/U)g(my- It is a two-sided ideal,
and a subring of the double centralizer End(;nqp,,,,) V). However, since ¥ is
finite dimensional over k, the same is true for End(¢ngqp,,,,) Ve thus R(m)/J
is finite dimensional, and therefore J # 0.

Thus, we have seen that R(m) is right bounded right noetherian. Since the

construction of R(m) is left-right symmetric, we conclude that R(m) also is
left bounded left noetherian.

5. EXAMPLES

In order to deal with specific examples, we look at the ideal I/(m) of F x G.
Considering M,; as a right F°° ® x G-module with a generator m, M Fop@,G 1S
isomorphic to F°° ®, G/L with a right ideal L. Given r € F°* ®, G, say,
r=2,/,®g; with f;E F, g€ G, write F=3",f,* g, € F x G (which is well
defined). Now, it is clear that if {r,, Fyses I} is @ generating set of L (as a
right F°° ®, G-module), then I(m) is generated, as a two-sided ideal, by the
set {F, Fy,.., F.}. In particular, if F°P ®, G is semisimple (which is the case,
for instance, when F and G are separable over k), then any one-sided ideal is
generated by a single element; thus, I(m} is generated by a single relation.

5.1. Let F,G be commutative fields with a common subfield k of
index 2 both in F and in G. Let Mg =p(F®,G);, and me M any
generator of (M, for example, m = 1® 1. Then R(m)=F %, G.

Note that for F=G, and chark#2, the field F has a unique
automorphism o fixing &, and (F ®, F), is the direct sum of a submodule of
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the form .F, and one of the form .F,. (the left action being given by
multiplication, the right by twisted multiplication, the twist being o). Since
these two subbimodules are non-isomorphic , all elements outside these two
subbimodules are generators of .(F, ® F);. (The case of k=1, F = C has
been considered in detail in |4].)

5.2. Let F be a division ring, finite dimensional over k. Then the
canonical bimodule (F@® F), has a generator if and only if F is not
commutative. Of course, if F is commutative, any non-zero elementof F® F
generates a subbimodule of the form ,F,. If F is not commutative, take an
element f outside the center of F, then it is easy to see that (1,/)EF@F is
a generator of the bimodule.

5.3. Other examples may be constructed as follows: Let H be a
commutative field with two subfields F, G of index 2 such that also FNG
has finite index in H. Let k= FN G, and .My = zH. For example, let H be
the splitting field of X* —2 over @, and { a primitive third root of unity. We
can take F=Q[3/2], and G=Q[{ - V2], and obtain for m=1€ H the Q-
algebra

ROmy= Q121+ QUEYTY/E 1+ /22 YT+ 12 8Y/D).
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