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The longitudinal polarization of the new Yale University—Stanford Linear Accelerator
Center polarized-electron beam has been determined at laboratory energies between 6.47
and 19.40 GeV. Spin-dependent elastic electron-electron scattering (Mgller scattering)
has been found to be a practical technique for polarization measurements at high energies.
The results are consistent with the energy and angular dependence predicted by quantum
electrodynamics and with an energy-independent beam polarization of 0.76+0.03.

Beams of polarized high-energy electrons will
provide unique information about the spin-depen-
dent structure of the electromagnetic and weak
hadron currents. The first such beam has re-
cently been accelerated from the Yale University-
Stanford Linear Accelerator Center (SLAC) po-
larized-electron source (PEGGY) to high energies
and has been found to possess a reversible, ener-
gy-independent polarization of 0.76+0.03. The
SLAC 8-GeV/c spectrometer® was used to detect
the scattered electrons in a single-arm Mgller-
scattering experiment in which both the electron
target and the incident beam were longitudinally
polarized. The measured asymmetry A = [o(4V)
—o(M)]/[o(¥) + o(41)], where o(4}) and o(*?) are,
respectively, the cross sections for beam and
target polarization directions antiparallel and
parallel, was used in conjunction with the known
target polarization to determine the polarization
of the incident high-energy electron beam.

PEGGY, described in detail elsewhere,* pro-
duces longitudinally polarized electrons by photo-
ionization of a state-selected Li® atomic beam,
with the sense of polarization determined by the
direction of a 200-G longitudinal magnetic field
applied at the photoionization region. The photo-
electrons, extracted at an energy of ~70 keV,
are transported to the SLAC injector. Measure-

ments carried out by Mott scattering at 70 keV
have shown that the polarization of the electrons
leaving PEGGY is 0.8+0.1.

After acceleration to high energy® the beam is
deflected by 24.5° into the experimental area.
This 24.5° magnetic bend causes the spin to pre-
cess relative to the momentum by an amount 6,
=yam(24.5°/180°), where y is the ratio of the elec-
tron energy to the electron mass and a=(g -2)/2
is the electron g-factor anomaly. If 0,is re-
stricted to multiples of 7 in order to maintain
longitudinal polarization, the useful beam ener-
gies are restricted to multiples of E;=3.237 GeV.
Thus at 3.237 GeV the spin precesses by 7 rela-
tive to the momentum; at 6.474 GeV, by 27; etc.
During this experiment the polarized beam de-
livered to the experimental area varied between
2x107 and 7 X107 electrons per pulse at repeti-
tion rates up to 180 pulses/sec. Since the com-
pletion of the experiment, modifications to PEG-
GY have led to an increased intensity of 8 x10®
electrons per pulse.

Mgdller scattering, which has been used at much
lower energies to determine the helicity of elec-
trons from B decay® and muon decay,” was chosen
to determine the high-energy beam polarization
because the cross section and analyzing power
are large and the process is purely quantum elec-
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FIG. 1. The Mgller asymmetry and laboratory cross
section plotted versus laboratory angle for the repre-
sentative incident energy of 9.712 GeV.

trodynamic. Figure 1 shows the Mdller asymme-
try® and laboratory cross section® at the repre-
sentative incident beam energy of 9.712 GeV. It
should be noted that for this energy, a center-of-
mass scattering angle (6, ,) of 90°, where the
asymmetry reaches a maximum of ¢, corresponds
to a laboratory angle of only 10 mrad. Thus any
Mgdller-scattering apparatus must be able to sep-
arate physically the scattered electrons from the
primary beam,

The experimental arrangement is shown in Fig.
2. The incident beam strikes a 0.025-mm-thick
Supermendur® target foil located 8.2 m upstream
from the pivot about which the spectrometer ro-
tates. The foil is magnetized to saturation in a
90-G longitudinal magnetic field and is inclined
at 20° to the beam in order to provide a large
component of longitudinal polarization. Reversal
of this 90-G field reverses the polarization of the
target. The effective degree of electron spin po-
larization in the foil, measured by the emf in-
duced in a pickup coil during magnetization rever-
sal, is 0.083+0.002. A C magnet, located down-
stream from the spectrometer pivot, separates
the Mgller-scattered electrons from the primary
beam. The electrons which enter the 8-GeV/c
spectrometer are deflected through angles be-
tween 6° and 10° while the primary beam is de-
flected by less than 2° in the fringe field. The C
magnet is positioned so that the particles enter-
ing the spectrometer appear to originate from
the center of the pivot at an angle 6, from the pri-
mary-beam direction. Since the spectrometer
normally views a target placed at this location,
the spectrometer optics are unchanged from those
applicable to a conventional high-energy experi-
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FIG. 2. Schematic outline of the experimental ar-
rangement. The heavy line shows the typical trajec-
tory of a scattered electron. Note that the trajectory
after bending in the C magnet can be extrapolated
(dotted line) through the spectrometer pivot point. The
beam-line vacuum extends through the C magnet. Q81
is the first quadrupole in the 8-GeV/c spectrometer;
SEQ is a secondary-emission quantameter used to mon-
itor the beam.

ment. The spectrometer determines the momen-
tum, p, of particles to 0.2% in a 21-element scin-
tillation-counter hodoscope; the angle 6 is like-
wise measured to 0.3 mrad in a 55-element hodo-
scope, The vertical entrance aperture of the
spectrometer (located 1.9 m from the pivot) is
limited to +1 cm by a set of tungsten slits.
Particle identification is effected by means of
a gas-filled threshold Cherenkov counter and a
lead-Lucite shower counter. The two-body kine-
matics of Mgller scattering ensures a nearly lin-
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FIG. 3. Binned event frequency for a typical run
(beam energy =19.40 GeV, 0., =128.5° plotted ver-
sus Al , the deviation of the measured 6, from the
value predicted for e-e kinematics. Bin width is 3
mrad. The data have been corrected for the nonuni-
form acceptance in Af;. The region between the ar-
rows was used to form the raw asymmetry listed in
Table I.
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TABLE 1. Summary of polarization measurements. 6, is the spin-
momentum precession angle; A, is the asymmetry expected for a fully
polarized beam in the absence of non-Mgller backgrounds; A,,, is the
uncorrected asymmetry observed in the region indicated in Fig. 3; f is
the fractional contamination due to non-Mgller backgrounds; and P =A,,,/
A hax(1=f) is the longitudinal beam polarization averaged over both sen-

ses of source polarization.

E Oc.m,
(GeV) 0, (deg) A ax A f P
6.474 2w 75.5 0.0551 0.0286+0.0017 0.33 0.768+0.051
9.712 3w 90 0.0607 =0.0384+0.0016 0.19 ~—0.734+0.033
9,712 3w 120 0.0402 -0.0233+0.0030 0.02 ~—0.588+0.074
11.331 3.5m 99 0.0584 0.0009+0.0028 0.15 0.018+ 0.057
19.402 67 128.5 0.0308 0.0224+0,0025 0.07 0,785+ 0.088

ear relation between 6, and p for events within
the small spectrometer acceptance. The back-
ground events, which arise mainly from radia-
tive Coulomb scattering, are smoothly distribut-
ed in the (p, 6) plane. Figure 3 shows event fre-
quency (corrected for detector acceptance) ver-
sus A0, the deviation of 6, from that value ex-
pected from two-body kinematics.

The experiment comprised a series of runs,
each lasting about 1 h, during which the sense of
source polarization was unchanged. The sign of
the target polarization was reversed 50 times
during each run in a ++— —.,., pattern of 100
“mini-runs.” The number of events in each mini-
run was converted to a cross section by normal-
izing to the charge collected by a secondary-
emission quantameter. These data were correct-
ed for electronic (~0.2%) and computer (~10%)
dead times and for ambiguities in the p or 6,
hodoscopes (~3%). The 25 measurements of the
“real” asymmetry and the 50 measurements of a
“false” asymmetry which were extracted from
each run showed nearly ideal statistical behav-
ior,!' Non-Mgdller backgrounds were dependent
on kinematics and varied between 2% and 339%
(see Table I).

The raw asymmetries, typically 0.03, were
converted to beam polarizations by dividing by
the factor (1 -7)AuP,, where fis the ratio of
the non-Mgdller events to the total number of
events, A,, is the Mdller asymmetry for fully
polarized beam and target, and P, is the longi-
tudinal component of the target polarization (P,
=0,083 cos 20°).

The results, uncorrected for small spin-depen-
dent radiative effects,? are summarized in Table
I, and the longitudinal beam polarization is plot-

ted as a function of beam energy in Fig. 4, Over
the energy range studied, 6.47-19.4 GeV, the
data are consistent with lowest-order quantum
electrodynamic predictions for Mgller scattering
and with a longitudinal beam polarization of mag-
nitude 0.76+0.03, independent of energy and the
sense of source polarization. The uncertainty in
the polarization contains comparable contribu-
tions from statistics and from the target-polari-
zation uncertainty, with a smaller contribution
from uncertainty in the background correction.
Finally, it is interesting to note that the experi-
mental data shown in Fig. 4 are in excellent
agreement (<1%) with the accepted value of the
electron g-factor anomaly.

We gratefully acknowledge the technical sup-
port of M. Browne, D. Constantino, R. Eisele,

TTE/E,

FIG. 4. The longitudinal component, P, of the beam
polarization plotted versus mE/E,, the angle through
which the spin precesses relative to the momentum dur-
ing the 24.5° bend into the experimental area. E is the
beam energy and E;=3.237 GeV. The curve shown is
a best fit to the data and has an amplitude P;=0.76
+0.03. P, is the only free parameter.
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New Class of Bound-State Solutions in Field Theory
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It is suggested that bound states can emerge in field theory as alternate solutions to the
Bethe-Salpeter equation, not corresponding to the Neumann-series (perturbation-theory)
solution. These new solutions are asymptotically similar to elementary-particle solu-
tions and imply nonperturbative anomalous dimensions in the Wilson operator-product ex-
pansion. For Goldstone bosons in standard quark models as well as for certain solvable
ladder models, these are the only bound-state solutions.

It is not at all clear that renormalizz}ble field
theories possess any bound states. The Bethe-

Salpeter equation' (BSE) in the ladder approxima- b p+q P P¥a
tion (Fig. 1) can sometimes be solved exactly®™ k k+q
if one ignores the mass of the exchanged particle. +

These calculations yield branch points rather P’ p+q o p4q

than Regge poles® for the ¢-channel partial-wave
amplitudes at g, =0. Perturbation calculations®
of the same class of diagrams indicate that these
branch points are fixed.” This is disturbing be-
cause the Schrodinger equation, which possesses
bound states and moving Regge poles, can be de-

FIG. 1. The Bethe-Salpeter equation (BSE) for T (p,
p’,q) in the ladder approximation. A bound state corre-
sponds to a pole in T at g2=mpy?, The bound-state ver-

tex function ¢ (p,q) satisfies the homogeneous BSE.
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