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In the famous paper [AR-IIT] Auslander and Reiten intro-
duced what now are called Auslander-Reiten sequences, and one con-
sequence has been the definition of several numerical invariants
both of individual modules and of artin algebras. Let A be such

an algebra. Given an Auslander Reiten sequence

with all Yi indecomposable, thetumber r = a(Z) may be called the

number of middle terms, and is defined for all indecomposable non-

projective modules. Viewed as a function, o was considered by
Auslander and Reiten in [AR-0] where they defined a(A) to be

the supremum of a(2Z) over all indecomposable non-projective
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7. In fact o is always bounded. For any A-module M, denote its

length by {Ml.

Lemma. Let p = max|P|, where P runs through the indecom-
posable projective A-modules, let q = max|Q|, where Q runs
through the indecomposableinjective A-modules. For amy indecompo~

sable non-projective A-module 2,
2
a(Z) < (pg+th) ",

Proof. Consider an Auslander-Reiten sequence as displayed

above. We have |X| < pqlz], and 2] < (pq+l)iYi|, for all 1,

see [Ri2]. Thus

I
rlzl < Gas1) I 1yl = GarD)Clxlelz]) ¢ Garnd?lzl,
i=1

therefore a(Z) = r < (pq+1)2.

In [AR-IV], Auslander and Reiten asked whether every non-

semisimple artin algebra has Auslander-Reiten sequences with just

one middle term, and Martinez-Villa [M] pave an affirmative

answer to this question. In section 1, we are going to exhibit

explicitly a class of indecomposable non~projective modules V

with a(V) = 1,

let T be a component of the Auslander-Reiten quiver FA

of A. We say that T is regular provided there is no projective

and no injective module whose isomorphism class belongs to T.

In section 2, we show that any regular component I with

t
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a{(Z) = 2 for every module Z whose isomorphism class belongs
to T, is of the form ZA: or ZC_. This will be derived from a

purely combinatorial characterization of ZA:.

Section 3 1is devoted to a special class of algebras, the
string algebras (in the terminology of [SW], these are the spe-
cial biserial algebras whose indecomposable modules which are both
projective and injective, are serial). It is well-known that a
string algebra A satisfies a(A) < 2, There are two methods
known for obtaining a complete description of the Auslander—Reiten
sequences of a string algebra. One methodis based on the calcula-
tion of the indecomposable modules due to Gelfand-Ponomarev [GP].
It was developed in [BSh] for two special cases; and the general
case has been treated in [WW]: first, one determines the Auslan~
der-Reiten translate, and then the corresponding Auslander-Reiten
sequences. The second method is based on covering theory, see
[sWw] and [DS]. Our aim is to demonstrate that the Gelfand-Pomo-
marev technique is well suited to showing that certain maps between
indecomposable modules are irreducible, and that, in this way, one

obtaines essentially all irreducible maps, and therefore also all

Auslander-Reiten sequences.

1. Auslander-Reiten sequences with just one middle term.

Let J = rad A, and let e,f Dbe primitive idempotents in A.

Civen a non-zero element a € fJe, the A-module Ae/Aa is inde-

composable and non-projective, and we consider the Auslander-Reiten

sequence ending in Ae/Aa. Qur main interest lies in the case

SRR g
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a € fJe‘\sze, and we show that under this assumption

o(Ae/Aa) = 1, see corollary 1 below. (Note that if A is given
by a quiver T and relations, then any arrow of T gives, in
this way, an indecomposable module V with a(V) = 1, and diffe-
rent arrows give non-isomorphic modules; thus the number of Aus-
lander~Reiten sequences with just one middle term is at least the
number of arrows of TI'.) This result was inspired by the work of
K. Erdmann [E], who noted, and used extensively, a special case.
More generally, we consider non-zero elements a € fJe which are

"non-supportive" in the sense of the following definition:

A non-zero element a € fJe 1is called non-supportive pro-

vided any indecomposable direct summand C of Je/Aa satisfies

C N (soc(Ae/Ja))m # 0, where 1 : Ae/Ja —- Ae/Aa is the canoni-

cal projection.

Theorem., Assume that 0 %+ a € fJe 1is non~supportive. Then

a(Ae/Aa) = 1,

Proof. Let V(a) = Ae/Aa. By construction, there is the

minimal projective presentation

.a
Af — Ae —— V(a) —— 0

where .a denotes the right multiplication by a. It follows

that U(a) := D Tr v(a) is a submodule of the indecomposable in-

jective module D(fA); in particular, U(a) has simple socle.

Denote by

1Y
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0 —— U(a) —— N(a) —— V(a) — 0

an Auslander~Reiten sequence ending in V{(a). If V(a) is simple,
then soc N(a) 1lies in the kernel of e (otherwise, ¢ would
split), thus soc N(a) = soc U(a) 1is simple and N(a) is inde-
composable. Assume now that V(a) 1is not simple. Let
N(a) = ‘;1 Ni with all N, indecomposable, p = [ul,...,ut],

i=

T
€ [e],...,st} , where uy U(a) — N, ey : Ny — V(a).

Since U(a) has simplesocle, one of the My has to be mono, say
let 5 be mono. Let C = i§2 Ni’ p = [uz,...,ut] : U(a) — C,
and q = [82,...,Et]T : C—> V(a). With s also q 1is mono.
Since V(a) has a unique maximal submodule, it follows that €
is epi, and therefore also p 1is epi. Since U(a) has simple
socle, we conclude that p vanishes on soc U(a). We consider
the canonical projection = : Ae/Ja —> Ae/Aa. Since ¢ = :}J
is a sink map, there exists [w],n;] : Ae/Ja — N, 6C with
To=mEe 4 w;q. Now, 7 is surjective, q maps into rad V(a),
thus m e is surjective. The kernel of = is Aa/Ja, let

1 : Aa/Ja —> Ae/Ja be the inclusion map. Note that there exists

m' : Aa/Ja — U(a) satisfying K'{u],p]= linl,w;], since

[ .

Q=1 = 1[ﬂl,ﬂ;][ ]J. However, Aa/Ja is simple, and p vanishes

.q
on soc U(a), thus tﬂ; = 7'p = 0. It follows that ime, =
l(w-niq) = 0. The length of Ae/Ja exceeds the length of V(a)
by 1, therefore

1 T, E
0 —> Aa/Ja — Ae/Ja 1, V(a) — O
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is exact, thus there exists an automorphism n of V(a) such

that 7 = TE M. Let e; €N, and q' = qn. Since n is an

automorphism, also the sequence

[u, p] [le

0 — U(a) ———ur N1 e C — V(a) — 0

is an Auslander-Reiten sequence. Note that e; is epi, mE =T,

and q' 1is mono. Given a map f : X — Y, we denote by soc f

the induced map soc X — soc Y. The functor soc is left

exact, thus

soc e;
[soc Hy,0] soc q°

0 — soc U(a) ———mn" ., soc NIO soc C ————~—» s0c V(a)

is exact. Actually, since we started with an Auslander-Reiten

sequence, and soc V(a) is a Proper submodule of V(a), it

soc ¢!

follows that [soc q'} is also epi. This shows that

soc V(a) = (soc Nl)e; @ (soc C)q'.

Since nle; = W, We see that (soc(Ae/Ja))n < (soc N])e;, thus

soc(Cq') = (soc C)q' intersects (soc(Ae/Ja))n trivially, con-

sequently C' N (soc(Je/Ja))r = 0 for any direct summand ¢' of

Cq'. On the other hand, q' is an irreducible monomorphism with

image contained in rad V(a) = Je/Aa, thus the image Cq' of q'

is a direct summand of Je/Aa. Since we assume that a ig non-

supportive, it follows that Cq', and therefore ¢ is zero. Thus

N(a) is indecomposable.
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In order to apply the theorem, we have to exhibit non-suppor-

tive elements.
Lemma, Any element in fJe‘\sze is non-supportive.

Proof. Let a € fJe‘\sze, and consider the exact sequence

m
0 — Aa/Ja —> Je/Ja —* Je/Aa —> O

given by the inclusion Aa < Je, and the restriction T of 7 to
Je/Ja. Since a ¢ Jz, we see that the simple submodule

Aa/Ja » Af/Jf is not contained in J(Je/Ja) = rad(Je/Ja), thus
the sequence splits. It foliows that soc(Je/Aa) 1is the image of
soc(Je/Ja) = soc(Ae/Ja) under 7, thus any indecomsposable direct
sumnand of Je/Aa intersects (soc(Ae/Ja))7m = soc(Je/Aa) non-

trivially.

Corollary 1. Let a € fJe‘\sze. Then a(Ae/Aa) = 1.

Corollary 2. Let E be a simple non-projective A-module.

Then there exists an Auslander-Reiten sequence O > X +>Y + Z + 0

with Y indecomposable and Hom(Z,E) # O.

Proof. We have E = Ae/Je for some primitive idempotent e.
2 -
Since E 1is non-projective, Je # 0, thus J e 1s a proper sub-
. - - e L 2
module of Je. Choose some primitive idempotent f with fJ e #

fJe. Let a € fJe‘\sze, and Z = Ae/Aa.

Tn case A 1is representation finite, this corollary was ob-
tained by Auslander and Reiten in [AR-IV]. Of course, there is

the following consequence.
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Corollary 3. (Martinez-Villa [M]): Any artin algebra with

non-zero radical has an Auslander-Reiten sequence with just one

middle term.

The set of Auslander-Reiten sequences

0 —> U(a) —> N(a) — V(a) —* 0 which we obtain using Corol-

lary 1, with V(a) = Ae/Aa, is closed under duality. By defini-

tion, a module is of the form V(a) 1if and only if it is the co-

kernel of a map ¢ between indecomposable projective A-modules

such that ¢ is irreducible inside the category of projective

A-modules. The dual description just furnishes a characterization

of the module U(a).

2. Regular components with o bounded by 2.

Let T = (Po,rl,r,a) be a stable valued translation quiver

(without multiple arrows or loops). [This means the following (see

[HPR]): (TO,F]) is a locally finite quiver without multiple

arrows or loops, T : S —> T, 1is a bijective map such that

- + - .
X = (tx) for any x € I',s here, x denotes the set of starting

. . . + ;
points of arrows with end point X, and x the set of end points

of arrows with starting point x. Finally, a : Pl-——*]N] * N, is

a function, the image of the 8rrow x — y under a will be de-

noted by (axy,a;y), and this function satisfies a 'l

TX,Y - aYX
Given a vertex z € T, define a(z) = ¥
y€z~

re the regular components

a;z. Typical examples

of stable valued translation quivers a

C of the Auslander-Reiten quiver FA of the artin algebra A.

By abuse of language, we say that an indecomposable A-module M
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belongs to C provided the isomorphism class [M] of M is a
vertex of C. The valuation a : C1 — N, xIN, is defined as
follows: given two indecomposable A-modules M,N in C(, let
Irr(M,N) = rad(M,N)/radz(M,N), and, if TIrr(M,N) # 0O, denote by
AN = 2[M]IN] its length as an End(N)-module, by a}'m = aEM][N]
its length as an End (M)-module. In fact a)jm is equal to the
multiplicity of M occuring as middle term in the Auslander-

Reiten sequence ending in N. We conclude that for any indecompo-

sable A-module Z in C, we have o(Z) = a([Z]).

Theorem. Let C be a regular component of I‘A, and assume
o is bounded by 2 on C. Then C is of the form ZA_, ZA_/<t">

(for some n € ]N]), ZC_, or ZA:.

For the shape of the valued tranmslation quivers ZA , ZC_
and ZA: we may refer to [HPR]. The proof of the theorem will be

given in this section. We will need some additional terminology.

Let T be a stable valued translation quiver. An additive
function f on T is amap f : I‘o —+ Z satisfying

f(x) + f(x) = I f(y)a'
y €x7 yx

for all vertices x of T. Such a function is said to be positive
provided it takes values in ]Nl , and unbounded provided it takes

arbitrarily large values. Also, f 1is said to be of bounded growth

provided there is ¢ € IN] with %f(x) < f(y) < cf(x) for every
arrow x — y. Obviously, if C 1is a regular component of Tp»

then the length function ¢ (which sends [M) to ([M]) = |M|)
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is a positive additive function on C, it is of bounded growth
(for ¢ we can take ¢ = pq+l using the notation of the first
lemma, see [Ri2]), and an important result of Auslander [A]

asserts that 2 is also unbounded.

According to Riedtmann [Rm], any stable translation quiver
is of the form ZA/G, where A 1is an oriented tree and G an

admissable automorphism group. In the same way, any stable valued

translation quiver is of the form ZA/G, where A is a valued

oriented tree and G is an admissable automorphism group, see

[HPR]. Thus, consider a stable valued translation quiver T = ZA/G,

where A is a valued oriented tree and G an admissable automor~

phism group. Suppose we have a(x) < 2 for all vertices x of T.

Then also a(x) < 2 for the vertices x of XA, therefore the

w0
ar Ao Ar2s oo Aus Cor 0T Aur

Cartan class of A 1is one of An’ C
o0

There are no positive additive functions on I'.An and ZCn, since

A and C_ are Dynkin diagrams; also, any positive additive fumc”

~

tion on ZA, ,ZA\, and ZC  is bounded, since A, 4,, C, 3

Euclidean diagrams, see [HPR], Thus, if vwe suppose that there

exists an unbounded positive additive function on T, then
A=A " i

w? Cpor» 0T A . In case A = A, and C_, the automorphisms
are just powers of T, For A = A, both ZA  itself, as well as

all proper quotiens ZAm/<Tn> (with n € ml) are known to be

realisable as regular components of I‘A, where A is a suitable

artin algebra. For A = Cps» only ZC_  itself can be realized in

this way. For, it has been shown in [HPR] that ZC /<t"> (with
[ -]

n € W,) does not admit an unbounded positive additive function.
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It remains to consider A = ﬁ:. We recall that a path LIS STTRENE

in T 1is said to be sectional provided X;op * X, for all

+1
1 <i<n (and cyclic, provided n > 1, and x, = xn). According
to Bautista and Smald [BSm], there is no sectional cyclic path

in FA.

Proposition. Let G be an admissable group of automorphisms

of ZA:, and let T =:ZA:/G. Assume that there is no sectional
cyclic path in T and that there exists a positive additive func-
tion on T which is unbounded and of bounded growth. Then

G = {1},

Proof. Assume G # {1}. Note that G contains no non-trivial
element of finite order, since G 1is supposed to be admissable.
We introduce coordinates in I = ZA: as follows: as set of ver-
tices of ZA:, we take the set of pairs (x,y) 5312 with x = ¥y
(mod 2), and with arrows (x,y) —* (x+1,y+1), (x,y) — (x+1,y-1).
Let g' be a non-trivial element of G, let g'(0,0) = (x;,yg).
Then g'(1,1) 1is either (xé+1,y$+l) or (xé+l,yé—l). In the
first case, let g = g', in the second, let g = (g')z. Denote
2(0,0) = (xo,yo) and note that g(1,1) = (xo+l,yo+l), thus g
is the translation of ZA: by (xo,yo). Since g has infinite
order, (x_,y,) * (0,0), and we can assume x_+y >0 (otherwise,
replace g by g~l). We have xo+yo + 0, Xy~Y, # 0, since other-
wise we obtain a sectional cyclic path in T. Consider the ver- ,
tices v = %{xo+yo,xo+yo), w = %{xo-yo,—xo+yo) in ZA:. Note

that v and w are linearly independent, and v+w = (x ,y ) =
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g(0,0). Consider the sublattice U of ZZ generated by v, w.
We can consider U as a3 stable translation quiver: let two verti-
ces u,u’ be joined by an arrow u — u' in U iff u-u' is
equal to v or w, and define Tyt = u~v-w. By assumption, there
exists an additive function on I' with various properties, and
we may lift it to a function on ZA:. Thus, there is given a posi-

tive additive G-invariant function f on ZA™ which is unbounded
[+ ]

and of bounded growth. We consider the restriction fU of f

to U. It is easy to see that fU is additive on U. Since f is
G-invariant, it follows that fU is TU-invariant. But U itself

is of the form ZA:; and, according to [HPR), any positive addi-

. . - - @ - L] ——
tive T-invariant function on ZAm 1s constant. Thus fU 18 con

stant, say f(u) = d for any u € U. On the other hand, any ver-
tex of ZA: = E can be joined by a path of length < X°+Yo"

with a vertex in U. By assumption, f is of bounded growth, say
£(a) < cf(b) for any arrow a — b. Thus, if a is an arbitrary
vertex of E, then f(a) < ctd, with t = Xty <l This contra-

dicts the assumption that f ig unbounded.

3. String algebras

If Q is a quiver, and B ig an arrow of Q, let s(g) be

its starting point and e(B) 1its end point. Recall that the cate-

gory of representations of Q is the category of kQ*-modules,

where kQ* is the path algebra of the opposite quiver of Q. A

path in Q* ig of the form BI"'Bn’ where Bi are arrows in Q

with s(g;) = €(B;4)) for 1 <icn anda zero relation on Q
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is just given by a path of length > 2. Let P be a set of zero
relations in kQ*, and <P> the ideal generated by P. Then

A = kQ*/<P> is called a string algebra provided the following

conditions are satisfied:

(1)  Any vertex of Q is starting point of at most two arrows.
(1*) Any vertex of Q 1is end point of at most two arrows.

(2) Given an arrow 8, there is at most one arrow y with

s(B) = e(y) and By € P.

(2*) Given an arrow Y, there is at most one arrow B8 with

s(8) = e(y) and By € P.

(3) Given an arrow B, there is some bound n(g) such that any
path Bl"'Bn(B) with Bl = B contains a subpath in P.

(3*) Given an arrow B, there is some bound n'(B) such that any

path Bi"'en'(B) with Bata) ™ g contains a subpath in P,

Note that we do not require Q to be finite, thus kQ*
may be an algebra without identity, but it always has sufficiently
many primitive idempotents. Conmsequently, A has sufficiently
many primitive idempotents e, and Ae and eA are always finite-

dimensional.

In order to deal with the indecomposable modules for a string

algebra, we need the following notation: Given an arrow g of Q,

denote by 8”! 2 formal inverse for B8, with s(87') 1= e(8) and

.l)”| = 8. We form "paths” Cyeeely
-1
of length n > 1, where the c; are of the form B or 8 and

E(B-l) := g(B), and write (B

where s(ci) = e(ci+1) for 1 <i<mn, and we define
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( )_‘ =t c_l and s(c c) = s(c), e(c,...c.) = elc,).
Cl e -Cn n s e l » l LR n n ) ! n ]

A path c ...c of length n > 1 1is called a string provided
Cipp * c;l for all 1 < i < n, and no subpath CiCi4°*Ciat nor

its inverse belongs to P. In addition, we also want to have
strings of length O; by definition, for any vertex u of Q,
there will be two strings of length 0, denoted by l(u’]) and
l(u’_]), with both s(}(u,t)) = u and e(l(u’t)) = u, for

t = -1,1, and we define l(u,i) = I(u,—i)' In order to define
the possible compositions, we choose quite arbitrarily two func-
tions o0,e : Q]-—* {-1,1} with the following properties:

(a) If By # B, are arrows with s(8,) = s(B,), then

o(By) = -0(8,).

(b) If Y, *# Y, are arrows with e(y;) = e(y,), then

ely)) = -e(y,).

(¢} If B,y are arrows with s(B) = e(y) and By € P, then
o(B) = -e(y).

[In practice, one may proceed as follows: Choose some vertex u.
We are going to define o(B) for the arrows g with s(B) = u
and e(y) for the arrows y with e(y) = u. In case there are
arrows B ,y, with s(B8 ) = u = e(y,) and BoYo ¢ P, choose
such a pair and let 0(80) = | and e(yo) = -1, then use (a)
or (b) 1in order to define o(B) and e(y) for the
remaining arrows B8 and Yy with s(B) = u, and e{y) = u; note
that the condition (c) will be satisfied automatically. In

case there are no arrows B,»Y, with s(B) =u= e(y,) and

BV, € P, we only have to take care of the conditions (a) and
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(b), so there is no difficulty at all.] We extend the functions
0, to all strings as follows: if g 1is an arrow, let

G(B-I) = ¢(8), E(ﬁ-})' o(B); if C = ¢y...c is a string of
length n > 1, let o(C) = c(cn), and ¢(C) = e(c]); finally, de-
fine U(l(u,t)) = -t and E(i(u,t)) =t. If C=c¢...c and

D = dl"’dm are strings of length > 1, we say that the composi-

tion of C and D is defined provided ci"'cndi"'dm is a
string, and write CD = c]...cnd]...dm; also, we say that the

composition of and D 1is defined provided e(D) = u,

1(u,t)
e(D) = t, and, in this case, let l(u,t)D = D; we say that the
composition of C and ](u,t) is defined provided s(C) = u,

o(C) = -t, and, in this case, let Cl(u,t) = C, Note that given
arbitrary strings C and D such that CD is defined, then
necessarily o(C) = -¢(D). We define W(u,t) to be the set of

all strings C with e(C) = u, e(C) = t. Thus, M(u,t) contains
besides ](u,t) all strings C = Cpeesly where either c, = g

is an arrow with e(B) = u, €(B) = t, or c, = Bﬁl, wvhere B is an
arrow with s(B) = u and o(B) = t. Also, let W'(u,t) be the set
of all strings C in W(u,t) such that, first of all, all powers
Cn, n € nh , are defined, and second, C itself is not the power of
a string of smaller length. Let W be the set of all strings, and
W' the subset of all strings C which belong to some W'(u,t).

On W, we consider the equivalence relation p which identifies
every string C with its inverse C-]. On W', we congider the

equivalence relation p' which identifies every string C = CpeesaCy

in W' with the cyclically permuted strings
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- - .-] i
= < .
C(i) CiCi41° Sy "Gy and their inverses C(i)® 1 <1<n

We choose a complete set (! of representatives of { relative to

p, and a complete set W' of representatives of W' relative

to p'.

For any string C = CpeesCop Or C = 1(u,t)’ we define a re-
presentation M(C) of Q as follows: Let wu(i) = e(ci+]),
0<i<mn, and u(n) = s(C). Given a vertex v of Q, let
I, = | u@i) = v} < {0,1,...,n}, Then M(C), will be a vector-
space of dimension the cardinality of I,, say with base vectors
Z:s i€ I,. If c; = B, an arrow, define B(zi-l) =z, if
c; = B—], with B an arrow, define B(Zi) =z

for 1 i <n.

1A

i-1°
If vy :w— w' is an arrow and zj is one of the base vectors

of M(C)  and Y(zj) is not yet defined, let y(zj) = o, Obvious-
ly, M(C) 1is a representation of Q which satisfies the relation

in P, and M(C) 1is called a string module. Note that M(C) and

-1 . . .
M(C ') always are isomorphic (or equal, since M(C) 1is defined

only up to isomorphism), and M(i(u t)) is the simple representa-
]

tion corresponding to the vertex u.

Now, assume there is given a string C = Cleauc which be--
n

longs to W'. Let Z be a k-vectorspace, and ¢ an automorphism

of Z (thus, (Z,9) may be viewed as an k[T,T_]]~modu1e where

the action of the variable T on 2 is given by applying ¢)-.

We are going to define a representation M(C,p) of Q. Given 2

vertex v of Q, let I; = {i | e(ci+l) = v} - {0,1,...,n=1},

- and let M(C,cp)v be the direct sum ® Z

; i Z, of Z.
epr i of copies i
v
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If c, = B is an arrow, define the action of B on Z, by sen-

ding z € Z, to o¢(z) € Zo; if ¢, = B-l, with B an arrow, de-

1

fine the action of £ on Zo by sending z € Zo to ¢-](z) € Z].

For 2 <i <mn, if ¢, =8 for an arrovw 8, define the action of
-1

B omn Zi to be the identity map from Zi to Zi-l; if c; = B
with B an arrow, define the action of B on Z. , to be the
identity map from Zi—l to Z.. If v : w—rw' 1is an arrow,
and the action of Yy 1is not yet defined on some Zj EEM(C,w)w,
let y|Zj be the zeroc map. In this way, we obtain a representa-

tion M(C,p) of Q which satisfies the relations in P, and

M(C,9) 1is called a band module, Actually, we obtain in this way

a faithful functor M(C,-) from k[T,T_l]-mod into A-mod.

Let ¢ be a complete set of representatives of indecomposable

automorphisms of k-vectorspaces with respect to similarity.

Theorem. The modules M(C), with C € @, and the modules
M(C,p) with C € W', ¢ € &, provide a complete list of indecompo-

sable (and pairwise non-isomorphic) A-modules.

This theorem is essentially due to Gelfand-Ponomarev. In
[GP], they have considered a special case, however their proof ge-
neralizes without serious difficulties to the general case. In
fact, such generalizations were worked out in [Ril] and then in
[DF). The essential features of the proof, the use of certain func-
tors, will be repeated below and are explained in full detail in
[Ri1]. We will show that these functors provide complete control

of the irreducible maps in A-mod.
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Given a vertex u of Q, let us construct certain subfunctors
of the functor A-mod —* k-mod which sends the A-module M, or,
equivalently, the representation M of Q, to the vectorspace Mu.
We will denote the zero subspace of M by 0, Let C € W(u,t)
with s(C) = v. In case there exists an arrow B : w— v with

composition CB defined, let C (M) = CBMW; otherwise, let

- . —-I
C (M) = COV. In case there exists an arrow Yy : v — w with Cy
defined, let C+(M)=CY_IOW; otherwise, let C+(M) = CMV. It is

obvious that C (M) c C+(M). We define

+ + + - -
Fr,e® =0 _ync )(M)/[(t(u’_t) nc )+(|(u’_t) nchHim.

In this way, we obtain a functor F] c ¢ A-mod — k-mod. Also,
]

given a string C € W' (u,t), let

cC'M) =y c“ou, c'"(M) = n c“uu
n n

Then C'(M) S C"(M), and C induces on C"(M)/Cc'(M) an automor-

phism, which we denote by oy Let F.(M) = (C"(M)/C' (M) )
4

96, M
as a k[T,T-l]-module. Note that we obtain in this way a functor

Fo : A-mod — k[T,T_l]-mod.

On the other hand, we have embedding functors
SI,C ! k-mod — A-mod, sending the one-dimensional vectorspace to
M(C), where C 1is any string. For C € W', we have the embedding
functor SC : k[T,Tq]-mod —* A-mod which sends (Z,¢9) to
M(C,9). Denote by I the disjoint union of the set of pairs (1,C)
with C € W/, and the set W', thus, for any i € I, there are de-

fined functors S; : Ai —> A-mod and F. : A-mod —+ Ai’ where
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Ai = k-mod, in case i = (1,C), C € W, and Ai = k[T,T-ll-mod,
in case i € W'. The methoed of Gelfand and Ponomarev (as presented

in [Ri1]) establishes the following result:

Proposition. The functors Fi,si (i € 1) satisfy the
following:
(i) Fs; =~ idAi, F.5; =0 for i *j .
(ii) The set {Fi | i € I} is locally finite and reflects iso-
morphisms.
(iii) For every M in A-mod, and every i € I, there is a map

Y : SiFi(M) — M such that Fi(yi,M) is an isomorphism.

i,M
As an immediate consequence of these conditions, one obtains

the following:
(iv) for any A-module M, the map (Yi,H)i : : SiFi(M) —_— M

is an isomorphism.

In particular, the indecomposable A-modules are of the form

$;(X), with X indecomposable in A,. Therefore:
(v) if M is an indecomposable A-module, and i € I, then

either Fi(n) « 0 or else M is isomorphic to SiFi(H)'

This shows that the theorem formulated above follows directly

from the proposition. Also note the following consequence of (ii)
and (v):
(vi) if X,Y are in A, and f : S;(X) — Si(Y) is a map

with F.(f) an isomorphism, then f 1is an isomorphism.
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As a first observation which we are going to present here,
we want to show that the functors S; preserve irreducibility of

maps .

Lemma. Let A,B be Krull-Schmidt categories, and
S : A— B, F:B-—>A be additive functors with the following
properties:
() FSuidA.
(2) If M 1is indecomposable in B, then either F(M) = O,
or else M 1is isomorphic to SF(M).
(3) If X,Y are in A, and f : S(X) — S(Y) is a map in B

with F(f) an isomorphism in A, then f 1is an isomorphism.

Then the image of an irreducible map in A under S is irreducible

in B.

Proof. First we show that for M indecomposable in B,
either F(M) = 0 or else F(M) is indecomposable. Let M be
indecomposable in B and F(M) # 0. According to (2), we have
M m SF(M). Assume F(M) = X, 6 X,, with XX, both non-zero. Then
SF(M) = S(X‘) & S(Xz), and both S(Xl)’ S(XZ) are non-zero, accor-

ding to (1). This contradicts the indecomposability of M.

Now, let y : X —> Z be irreducible in A. Using condition
(1}, one immediately observes that S(y) camnot be split mono
or split epi. Let f : S(X) — M, g : M — S(Z) be maps in B
with S(Y) = fg. Apply F. Now, FS(Y) is irreducible, by (1), and
FS(y) = F(f)F(g), thus F(f) 1is split mono or F(g) 1is split epi.

We consider the case of F(f) being split mono. Decompose
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M= ng Mj, with EB indecomposable, write f = (fj)jEJ with
f. : S(X .. Si = .)). tFS(X) — . i
; (X)y— MJ Since F(f) (F(fJ))JEJ 5(X) ng F(M.) is

split mono, and all F(Mj) are indecomposable or zero, there is

a subset J' of J such that the map

(F(£:)):cqv ¢t FS(X) —*> @ F(M.) is an isomorphism, and, more-
3773€3 jeqr 3

over, all F(Mj) are non-zero. According to (2), we can assume

M. = S(Y.) for some Y. in A, for all j € J'.let Y= @& Y.,

and apply (3) to the map

f' = (f.). : S(X) — S(¥Y) = ® S(Y.) = @ M. : since F(f')
173er’ j€J" ] AR ]
is an isomorphism in A, it follows that f' is an isomorphismin B,

But this shows that f is split mono. A similar argument in the

case that F(g) 1is split epi shows that g is split epi.

-1
We apply this to the functor F. : k[T,T " J-mod —A-mod,

C
where C € W'. Note that in k[T,T -!]-mod, any indecomposable
module X has an Auslander-Reiten sequence of the form

0+ X-+Y>Xs» 0, and that the corresponding Auslander-Reiten
quiver is a family of homogeneous tubes. Any Auslander-Reiten
sequence O -~ X —£+ Y—X— 0 in k[T,T-I]-mod gives rise

to an exact sequence

Fo(f) F.(g)
0 —> FC(X) ———— FC(Y) —_— FC(X) — 0

where both Fc(f) and Fc(g) are irreducible (and where FC(X)
is an arbitrary indecomposable band module). Thus we obtain in

this way the Auslander-Reiten sequences for the indecomposable
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band modules, and we see that for any C € W', the set of modules
of the form M(C,¢) is closed under irreducible maps, and that

the corresponding components of PA are all homogeneous tubes.

It remains to consider the string modules. Of course, in this
case our previous strategy does not give any information, since for
C € W, the category AI,C = k-mod has no irreducible maps.

The key observation is that for any string C there is at most
one arrow B with CB a string, and at most one arrow Yy Wwith
Cy'] a string (this is clear for strings of length > I, and the

conventions concerning strings of length O have been made in

order to preserve this property). We say that C starts on a Eeak

provided there is no arrow R with CB a string, and that C

. . . - _l )
starts in a deep provided there is no arrow y with Cy a string.

Let C,D be strings and B an arrow such that CBD is a
string. Then there is a canonical embedding of M(C) into M(CBD)

as follows: let C be of length n, and D of length m, thus

CBD is of length n+m+l. By construction, M(CBD) is given by

+ i -
n+m+Z2 base vectors ZoseessZoy gy OR which A operates accor

ding to the shape of CBD. It is obvious that the subspace with

basis ZyseresZoy is s submodule and of the form M(C). Of course,

the corresponding quotient M(CBD)/M(C) is just M(D), and we

call the induced map M(C8D) — M(D) the canonical projection.

Lemma. Let C be a string, not starting on a peak. Let

BO,BI,...,Br be arrows such that Ch ~ CSOSII...Bbl is a string

starting in a deep. Then the canonical embedding M(C) — M(Gy)
is irreducible,
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Proof. Let C be of length n, belonging to ®(u,t), thus
C,, is of length n#r+l, and also in W(u,t). Denote by 1" and
+ -

(u,-t) and 1 = lzu ~t)* In addition, we
¥ ’
+

have to consider the functors C;, C;, C—, C, all being subfunc-

1~ the functor 1+ = |

tors of the functor A-mod — k-mod given by N +— N . Actually,
we claim that C; = ¢ . In order to see this, let v = s(so),

W o= e(Br). Given an A-module N, we have

+ -1 -1 -
C,(N) = CB B, ...B N =CBN =cC (N).

By construction, M(Ch) is given by base vectors

ZoreverZo el and M(C) may be considered to be the subspace with

base vectors Z sreesZpe However, we prefer to denote the base

vectors of M(Ch) by zé,...,z;+r+l, so that the canonical map

u : M(C) — M(C is given by z;u = zi, for 0% i < n. Note

n
that z  belongs to (1+ n ¢ )(M(C)) and not to

[t n ¢)+(17 n cMHIM(C)), whereas z! belongs to

a’n C;)(M(Ch)) and not to [(l+ n C;)+(I— n C;)](M(Ch)).

Assume there is given a factorization u = fg, where f : M(C) -=+ N,
g :N— M(Ch), and we consider zof. Since z°€(l+ n ¢hHmee),
we see that zof € (i+ n C+)(N). First, consider the case that

z f does not belong to [a* ncH+(1™ N ¢ )1(N). In this case,

f 1induces a non-zero map FI,C(M(C)) — F],C(N)’ thus f is
split mono. Second, assume that z f belongs to

0% n cy+a1” n cHlm, say z £ = ¥ *Yps where y, eatnecH
and Yo €(1” n ¢ct)(). The images under g satisfy

g€ (' n CIMCC)), yy8 € (™ 0 chHme)). Also

z' € (1" n C;)(M(Ch)) - (1% 0 ¢HQUC,)). Since both 2} = z,fg =
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+ -~ .

y]g+y2g and 8 belong to (1 N C )(M(Ch)), the same is true
- + -
for y,g, thus y,g € (17 N CHME)NAT 0 CHMC)) =
- - - + .
(1 OcC )(M(Ch)) = (1 N Ch)(M(Ch)). Since z; = ylg+y2g does not
belong to {(!+ n C;)+(1- p] C;)](M(Ch)), it follows that ¥,8
does not belong to [(1+ n C;)+(l_ n C;)}(M(Ch)). This shows that
: i - since

the map Fi,Ch(g) : Fl,Ch(N) — FI,Ch(M(Ch)) is non-zero,
it sends the residue class of the element yl € (1+ ncoHM =

(1+ N C+)(N) to a non-zero residue class in F (M(Ch))-
h 1,C

As a consequence, g 1is split epi. This finishes the proof.

We say that the string C ends on a peak provided there is

no arrow B with B_EC a string, and that C ends in a deep

provided there is no arrow Y with YC a string. Of course, C

ends on a peak iff C-'I starts on a peak, and C ends in a deep
iff Cml starts in a deep., Also, if C and D are strings

and B is an arrow such that 8¢ is a string, then there is
a canonical embedding M(C) — M(DB—lC), and the corresponding
quotient M(DB-]C)/M(C) is just M(D); the induced.map

M(DB-lc) —> M(D) 1is called the canonical projection. The pre-

vious lemma may be reformulated as follows:

Lemma. Let C be a string, not ending on a peak. Let

Bo’el""’st be arrows such that KC = Br...B]BEIC is a string

ending in a deep. Then the canonical embedding M(C) — M(hC) is

irreducible.

Also, using duality, we obtain the following dual versions:
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Lemma. Let C be a string, not starting in a deep. Let
Y,3Yys+++sY, be arrows such that CC = Oy, Ypeoevy is a string
starting on a peak. Then the canonical projection M(Cc) — M(C)

is irreducible.

Lemma., Let C be a string, not ending in a deep. Let
-1 - .
YosYyseresY, be arrows such that L= Yr ..,Yl Yoc is a string

ending on a peak. Then the canonical projection M(CC) — M(C)

is irreducible.

We have now obtained a large number of irreducible maps bet~
ween string modules, and we are going to show that we have obtained
essentially all. We need some additional terminology: a string
C = Cpeency is said to be direct provided all ¢, are arrows,
and inverse provided all c, are inverses of arrows; by definition,
the strings of length O are both direct and inverse. Note that

M(C) 1is serial (or "uniserial") provided C is direct or inverse.

First, let us consider a vertex u, and let P(u) be the in-
decomposable projective module corresponding to u. Always, P(u)
is a string module, say P(u) = M(Clcz) where C' is direct,

C, 1is inverse, s(C]) = u, and such that C!C2 both starts and
ends in a deep. If the length of both C, and C, is zero, then
P(u) is simple, thus no irreducible map ends in P(u). Now,
suppose Cl = Br...B; with r > 1. Then M(Br...Bz) is a direct
summand of rad P(u) (for r =1, e(B]) = v, e(Bl) = t, we mean

by BrBr—]"‘BZ just ](v,t))’ and the inclusion map
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M(Br...Bz) —-*-M(Br...BZBE Cz) is just the canonical embedding

M(Br"'BZ) — M(Br...Bz)h = M(Br"'BZBICZ)' Similarly, for
- - -1 =2, .
C2 = yll...ysl with s > 1, the string module M(y2 oY, ) is
a direct summand of rad P(u), and the corresponding inclusion
' . . - - -1 -1
map is the canonical embedding M(yzk...ysi) —_— hM(y2 et Y ) =

-1 -1 -1
M(C]Y] YZ "'YS )-

In the same way, the indecomposable injective module corres-

1 18

inverse, D2 is direct, s(D]) = u, and such that DID2 both starts

ponding to the vertex u is of the form M(DIDZ)’ where D

and ends on a peak. The dual consideration shows that we can write
M(D]DZ)/soc M(D]Dz) as the direct sum of at most two serial mo-

dules and that the corresponding projections are just canonical pro-

jections.

Next, we are going to determine the Auslander—Reiten sequen-

ces containing string modules. First of all we consider those with

just one middle term. Recall that we have constructed, in section

1, for every arrsw 8 in Q an Auslander-Reiten sequence

0 — U(B) —= N(8) — V(B) — O,

with N(B) indecomposable, Here, N(B) = M(B), where

Byl el o .

Yp *+°Y) BS) ...8_ " starts in a deep and ends on a peak
(with yi,G.
-1

3 being arrows), U(B) = H(Y;l---Y;!), V(B) =
-1
TR ), the map U(B) ~—+ N(B)

M(§ is the canonical embedding,

and the map N(B) — V(B)

-1

-1 - -
1 ...Gs ), and that ¢ = Yr]---Yll is a

is the canonical projection. Note that
) B
B (Yr ooy )h = C(G
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string which ends on a peak, but does not start on a peak {(whereas

-1

1 ...Gs

) is a string which starts in a deep but does not end in

a deep). We call this Auslander-Reiten sequence a canonical exact

sequence.

Consider now a string C with neither M(C) injective, nor
isomorphic to any U(B). First, assume C neither starts nor ends
on a peak, thus both nC and Ch’ and also hCh(* h(ch) = (hc)h)
are defined. The exact sequence

By

0 —» M(c) L2281, M(,C) ® M(C,) M(,C) — 0

(here, and in the following, we denote a canonical embedding by u,
a canonical projection by p) will be called a canonical exact
sequence. Next, assume C does not start on a peak but ends on a
peak, thus Ch is defined. Since C 1is not inverse (otherwise

M(C) would be of the form U{(R)), we can write C in the form

C= y;l...y;}yoD with r > 0, thus C = D+ Of course, D itself
does not start on a peak, thus also Dy is defined, and there is

the following exact sequence

u
0 — M(C) Ap vl M(D) o M(Ch) J-:P—L M(Dh) ~* 0,

called a canonical exact sequence. In case C starts on a peak,

but does not end on a peak, we similarly write C = D, for some D,

and have the following exact sequence which is called canonical:

p
0 — u(©) 42l u( ) 0 u(D) —L‘—“l M(,D) — 0.
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Finally, suppose C both starts and ends on a peak. Since M(C)

is not injective, C is not of the form C = C362 with c, in-

verse, C2 direct, thus C isg of the form
-1 -1 -1 .
C=v. -1, Y,D8, By«-B, with r,s > 0, thus C = cP.» and

there is the following exact sequence

P
0 — m(c) LB_P1, M(D,) @ M(_D) -LEJ-M(D) — 0,

again called canonical,

Proposition ([WW,SW,DS]);The canonical exact sequences are the

Auslander-Reiten Seéquences containing string modules.

Proof. we only have to verify that the two maps occuring in

the exact sequence are irreducible. This ig clear in case the middle

term is indecomposable (of course, in thig case, we also may use

the general result of section |, but we do not need this), and it

is also clear in case there are two middle terms which are not iso-

morphic (for if £, 0 X — Y, are irreducible maps, i = 1,2,
with X, Y., Y, indecomposable, and Y, Y, not isomorphic, then
[f],le X Y, o Y, is irreducible, and there is a dual asser-

tion). Thus

» We only have to consider the cage where C neither

Starts nor ends on a Peak and M( 10 k’M(Ch), and the dual case

where D pejither starts nor ends in a deep and M(D ) a:M(CD)-
c

We treat the first case in detail , the second follows by duality:

Lemma. Let Bys B; be arrows with
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(%) B, * By>» e(Bo) = e(B]), s(Bo) = s(B]), and Y8; €P for all

arrows vy, and i
Let C = (BOB;')S for some s > o (where (BOB;])0 = |

vided By € W(ua,t)). Then HC = (8 B;l)

= 1,2,

(u,t) PTO”
s+

Ch’ the space
Irr(M(C),M(Ch)) is two-dimensional, and a basis of Irr{M(C),M(Ch))

is given by the (residue classes of the) canonical embeddings

M(C) —> M(Ch) and M(C) — M(hC).

Conversely, assume C

is a string which neither starts nor
ends on a peak, and assume M(hC)ss M(Ch). Then there are arrows

By»B; satisfying () such that C = (Boﬁ;l)s for some s > o,

Proof. First, let Bo, B!

be arrows satisfying (*), and
C= (BOB;I)S, for some s > o, In order to show that the residue

classes of the two canonical embeddings M(C) _—evM(Ch) and

M(C) —» M(hC) are linearly independent in Irr(M(C),M(Ch)), we

may restrict to the subquiver given by the arrows Bo, Bl

(and
the vertices S(Bo)’ e(Bo)), thus we deal either with the Kronecker

quiver (in case s(Bo) * e(Bo)), or with the algebra
k[X,Y1/ (x2,¥2,xv)

(in case S(BO) = e(Bo)). However, both alge-
bras and their representations are well-known.
For the converse, let

C be a string which neither starts nor
have

ends on a peak, and assume M(hC) & M(Ch)' We claim that we must
n® = Gy

i
of C-t

is odd, the middle letters of C and

-1 -1 -
. [Otherwise, C, = (hC) = (C )h’ thus C=¢C
However, if the length of C
have different exponent, whereas for

C of even iength
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- -1
# o, the two middle letters would be of the form g8 ! or B B
with 8 an arrow, and this is excluded. Finally, our conventions

for strings of length zero imply also in this case C # ¢t

-1 -
Let .C =y ...y Y. = 1 o -
et 1 Yq V1Y C, and Cy CBOBI ...Br . Since hC Cp» we

. . -1
have r = q. Also, r > 1. [Otherwise, C starts with Yo o
since Ch does; but then C starts with Y;lY;!, and so on, this

giving a contradiction.] First, consider the case of C of length

zero. Then we must have r = s = 1, and the arrows Bo’ B, satis-

1
fy (%). Second, assume the length of C 1is non~zero. Then
C= er', and also C = C"B;l, thus C contains as letters both
arrows and inverses of arrows. Therefore C = YooY -ID' and

7o
also C = D"BOB;I...B;I. It follows from C = ,C that p' = D,

so we denote D' by D. Now D is a string which neither starts

nor ends on a peak, .D = D, » and the length of D is properly
smaller than the length of C. By induction, we may assume that D
is of the form (BOB;])S where Bo'Bl satisfy (%) and s 2 O,

and therefore C = Dh = (BOB;l)S+}. This finishes the proof.

We note the following consequence of the proposition.

Corollary. The only Auslander-Reiten sequences containing

string modules and having a unique middle term are those of the

form O — U(B) ~— N(B) — V(B) ~— 0, with B an arrow of Q.

It seems to be of interest that in this way, we obtain a

complete description of the boundary of the components of T,

containing string modules. The boundary is given by the arrows



AUSLANDER-REITEN SEQUENCES 175

[X] — [Y] with X,Y indecomposable and either X injective

or Y projective, and by the I-simplices corresponding to Auslan-
der-Reiten sequences with a unique middle term. Let a be the
number of arrows of Q. Then, there are precisely a arrows

[X] — [Y] in I, with X injective, namely the arrows given by
the maps Q(R) : Q(x) — Q(y), where B is an arrow with e(8) =x,
s8(B) = y. There are precisely a arrows [X] — [Y] in Ta with
Y projective, namely the arrows given by the maps P(R) :

P(x) — P(y), where again B is an arrow with e(B) = x, s(B) = y.
and, as we have seen above, there are precisely a Auslander-Rei-
ten sequences with a unique middle term and containing string

modules; again, these Auslander-Reiten sequences are indexed, in a

natural way, by the arrows of Q.

Theorem. Let A be a string algebra. Them a(A) < 2, and
all but finitely many components of I‘A are of the from ZA: and

ZAQ/<T>,

Proof. All components of PA which contain band modules are
homogeneous tubes, the components of PA which contain string
modules and which are without boundary, are regular, and therefore

of the form ZA:, according to section 2,

Our interest in elucidating the irreducible maps for string

algebras arose from a study of the representation theory of the

quiver with relations
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b, b_
z, z_icb =c¢b_
x
¢ c

proposed by I.M. Gelfand [G]. It is clear that its finite-dimen-
sional representations form the full subcategory C of those re-
presentations M of the finite-dimensional algebra A given by

the quiver with relations

for which M(a) is an isomorphism. The algebra A admits an

automorphism group G of order 2 (its generator interchanging

Zy» 2, b, b_, c,, c_, and fixing x, y, and a) and the twisted

group algebra B = A[G], in the sense of [RR], is given, in

characteristic not equal to 2, by the quiver with relatioms

: c2b1 = 9, cib2 = o,

Thus B is a string algebra and the results above may be used to

obtain its indecomposables and its Auslander-Reiten quiver. In

characteristics other than 2, the methods of [RR] then yield the
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indecomposables for A and its Auslander-Reiten quiver, and these
in turn give corresponding information about the category ( of
representations of the Gelfand quiver. In this way, we see that the
regular components of I‘A are of the form TA:, ZD_, ZAm/<-r> and
lAm/<12>, and there is one non~regular component. The indecomposable
A-modules M with ([M] in a component of the from ZA_[<t> or
’Am/<12> all belong to C. Each of the remaining regular components
contains precisely nine indecomposable modules belonging to C.
Finally, the non-regular component contains precisely one indecoum-
posable module from C. In addition one can show that the irre-
ducible maps in C remain irreducible as maps in A-mod. We should
mention that the Gelfand problem first has been treated, in arbi-
trary characteristic, by Nazarova and Rojter in [NR]. In [K],
Khoroshkin gave a solution in characteristic not equal to 2,

using an approach similar to the one outlined above.
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