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THE REGULAR COMPONENTS OF THE
AUSLANDER-REITEN QUIVER OF A
TILTED ALGEBRA

Craus MicHAEL RINGEL®

Abstract

Yet B be a connected finite—dimensional hereditary algebra of infinite representation
type. It is shown that there exists a regular tilling B-module if and only if B is wild and
has at least three gimple modules, In this way, the author detarmines the poasible form of
regular components which arise as s connecting component of the Auslander—Rsiten
quiver I"(4) of a tilted algebra A. The second result ssserts that for a filted algebra 4,
any regular component of I'(4) which is not a connecting component, is quasi —serial.

Let & be a field. A finite dimensional k-algebra A is said to be a tilted algebra
provided 4 is the endomorphism ring End(3T) of a tilting module T over a finite
dimensional hereditary k-algebra B(see [10]). A component of the Auslander—Reiten
quiver I'(4) of A which does not contain indecomposable modules which are
projective or injective, is said to be regular. In this paper, we are going to determine
the structure of the regular components of 7" (4), when A is a filted algebra.

Bo suppose B is & finite dimensional connected hereditary k-algebra of infinite
representation type, 7 a tilting module, and A=End(T"). If 3T is preprojective or
preinjective (so that A is a concealed algebra), the regular components of A correspond
10 the regular components of B, thus all are quasi-serial “>¥, So we may assume that
A i8 not a concealed algebra. In this case, 4 has precisely one connecting component™®,
and the connecting component is regular if and only if 7 is a regular B-
module. If the connecting component is regular, it is of the form ZA4(B*) where 4(B*)
is the valued quiver of the opposite algebra B*. Our first Theorem will give the
precise conditions on B for the existence of a regular tilting B-module; in this way we
determine the possible form of regnlar components which arise as connecting
components for tilted algebras. This theorem has been announced, under the additional
assumption on k to be algebraically closed, at the Puebla conference 1980, Our second
result asserts that for a tilted algebra all other regular components are quasi—serial.
The proof follows rather closely that of the corresponding result for hereditary
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algebras. The combinatorial part of the proof is separated in Section 2. Note that
according to [15], an algebra A is a tilted algebra if and only if the category A-mod
of all A-modules contains a slice. In an appendix, we present a modifiestion of the
definition of a slice which shows directly that the notion of a slice is self-dual. The
terminology used in this paper follows rather closely [15].

§ 1. Existence of Regular Tilting Modules

Theorem. Let B be a connected finite-dimensional hereditary algebra of infinste
representation type. There exists a regular iilting module ¢f and only ¢f B is wild and.
has at least three simple modules.

Proof If B has precisely two simple modules, any indecomposable regular
module X satisfies Ext'(X, X) %0 (see [12]), thus there cannot exist a regular
tilting module. If B is tame, and X is a regular tilting module, then dim X lies in
the proper subspace of K,(B) given by all vectors with zero defect, whereas the
dimension vectors of the indecomposable summands of a tilting module will generate:
Ky(B).

For the proof of the converse, we will need some preparations. The following
lemma is well-known. (Let us remark that one may strengthen the conclusion
congiderably (see [6, 14].) For the convenience of the reader, we sketch the proof. |

Lemma 1. Let C be a connected finite-dimensional hereditary algebra of énfindte
representation type. Let P, P’ be indecomposable projective O—modules. Then dim, Hom
(P, v7"P") is unbounded, for n €N.

Proof Let Py, +--, P, be the indecomposable projective B-modules, Qy, *++, Qu
the indecomposable injective B-modules, with top P;=socQ;, for 1<i<m. Lot z,=
ii_fﬁdim,, Hom (P,, +™"P,), an element in NU {co}. Since O is of infinite representation

type, the length of the indecomposable preprojective O-modules is unbounded™, thus
not all 2, can be finite. Let rad*(P,, P;) #rad(P,, Py). Then, the Auslander-Reiten
sequence starting in 77*P, has P, a8 a direct summand of its middle term, thus z,<
2z, for all ¢. Also, the Auslander-Reiten sequence starting in v~ "P; has v ""'P, as a
direct summand of ite middle term, thus z,<2z; for all ¢. Note that dimyHom (P,
+7*P;) =dim; Hom (s"Q,, Q,), for all 4, 4, and n. 8ince the Auslander-Reiten sequence
ending in 7"Q; has 7°Q, a8 a direct summand of its middle term, we see that z,<<2z;
for all §, Finally, the Auslander-Reiten sequence ending in 7@, has +"*1Q; as a direct
summand of ite middle term, thus z,<2z,; for all 4. It follows that 2;;= co for all 4, 4.
c M
o)
The B-modules may be written in the form X =[X, X, yx), where X, is a C-

If O, D are rings and M is a O-D-bimodule, we may form the ring B= [
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modules, X, & D-module, and yx: M ();) X ,>X, a O-linear map. There are two full

embeddings of the category of all O-modules into the category of all B-modules.
First of all, we may identify the O—module ¥ with the B-module (¥, O, o0); second,
we may send the O-module ¥ to the B-module ¥ = (¥, Hom¢(M, Y), ey), where ey:
M@ Hom (M, Y)Y is the evaluation map. In case D is a division ring, the B-

module P(w)=(M, D, w) with pu: M Q;JD—N}I the multiplication map, is

indecomposable and projective, its radical is M, and we denote its fop by E(w)=
Pw)/M.

As a consequence, we obtain the following lemma,

Lemma 8. Let O be a comwnecied finite-dimensional hereditary k-algebra of
infinite representation type, and M a non—zero projective C-module. Let D be a k-
c M
O D
éndecomposable preprojective O-modules are regular when considered as B-modules.

Proof Let M=M;® M, with M, indecomposable. The exact sequence

0> M@ My—P(w)—> E(w)—>0
shows that dimyExth(E(w), N)>dim,Homz(M,, N) for any O-module N.
According to the lemma, dim,Homy(M,, —) =dim; Home(M;, —) is unbounded on
the set of indepomposable preprojective C—modules. Thus, also dimyExt};(E (w), —) i8
unbounded on the set of indecomposable preprojective O-modules. Choose some
indecomposable preprojective O-module ¥ with
dimpaapen Ext! (B (@), N) «dim Ext' (B (w),N) gaon=>4.

Of course, End(% (w)) = D; and we denote by K the endomorphism ring of N.

Let N be the full subcategory of all B-modules (X, X,, 7x) with X, a direct
sum of copies of N. The category &N is equivalent to the category of representations of
the E-D-bimodule Hom, (Ext'(E(w), N), k). By our choice of N, this bimodule is of
infinite representation type, thus there are infinitely many isomorphism classes of
indecomposable B-modules belonging to N. The B-module N is injective as an object,
in N, Thus, for any indecomposable object X in N different from E(w), there is a
non-trivial map X—>N. It follows that N cannot be a preprojective B-module. On
the other hand, v3N =v¢N (see[15], 2.56.6). Thus, the preprojective O—module wgN
is not a preprojective B-module. Since the set of preprojective modules is closed
under predecessors, it follows that there are at most finitely many indecomposable O-
modules which are preprojeciive as B-modules. Of course, an indecomposable
preprojective O—-module cannot be preinjective as B~module, This finishes the proof.

The following result is a variant of an argument due to Bongartz™’,

Lemma 8. ILet O be a finite-dimensional k-algebra, let M be a non—gero

subalgebra of End(¢M) which és a division ring. Let B={ :l Then almost all
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projective O~module, and let D be a k-subalgebra of End(cM), whéch és a division
g ﬂ Let S8 be a tilting O-module. Then, there cxists an
indecompocable B-module Y with the following properties:

(a) S@Y és a tilting B-module, ‘

(b) there is an ewact sequence O—8'—>Y —>E (w)—0 with 8’ a non—zero dérect sum
of direct summands of S.

Proof let E, -, E, be a k-basis of Ext}(H(w), §). OConsider the
corresponding exact sequence

(B) 0> D8 ->Y' > E(w)—>o.

ring. Let B=[

One easily checks that @Y’ has no self-extensions (first, apply Hom(—, 8) in order
10 seo that Ext*(Y’, §) =0; apply Hom (8§, —) in order to see that Ext'(S, Y') =0;
finally, apply Hom(Y’, —) in order to see that Ext'(Y’, ¥") =0). Fix some
decomposition of Y’ into indecomposables. All but one direct summand will be
isomorphic o direct summands of §, the remaining one, say ¥, will map onto E(w)
with kernel 8§’ a direct sum of direct summands of S. In order to see that S’'#0, we
only have to show Ext} (# (w), 8) #0. We apply Hom(—, 8) to the exact sequence
(#) 0> M- P(w)—> E(w)—o

and obtain Ext}(E (), 8) ~Homz(M, §), the latter being non-zero, since M is a
non-zero projective O—-module and § is a tilting O-module. Also note that («) shows
that proj-dim« E(w) =1, thus proj-dim.¥Y <1. This finishes the proof.

The lemma will be applied in two different situations.

Corollary 1. Let O be a connected finite—dimensional hereditary k-algebra of
¢nfinite representation type, let M be a non-zero projective O~moaude, and let D be & k-

c M
subalgebra of End (cM) which ¢8 a division ring. Let B[O D]' Let S be a

preprojective télting O-module which ds reqular a3 a B-module. Then there ewists an
smdecomposable B—module Y such that S®Y s a regular tilting B-module.

Proof Choose Y as in Lemma 2. Since ¥ has the non-zero regular submodule
8, we see that ¥ cannot be preprojective. Also note that ¥ can be embedded into S’
Since 8’ is a preprojective C-module, there are infinitely many indecomposable O-
modules N; with Hom¢(8’, N,) #0, and therefore Homz (S, V) #0. This shows that
8’ cannot be preinjeciive, thus ¥ is not preinjective.

Corollary 8. Let O be a connected finite-dimensional hereditary algebra, let M
be a non—zero C-module which és projective but not dnjective, and let D be a k-subalgebra

o
of End(ocM) which is a division ring. Let B=[

L S
0 D] et Q be the minimal imjective
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cogenerator én C—mod. Then there eists an éndecomposable B-module ¥ such that Q@Y
é3 a tilting B-module, and Homs(Q, ¥') #0, Homy (Y, Q) #0. In particular, if Qésa
regular B—module, then QDY és o regtdar télting B-module. A v

Proof Since Q is a tilting O-module, we can apply the lemma. We obtain ¥
with Q@Y a tilting B-module and with an exact sequence

0—->Q =Y - E(w)—>0,
where Q' is non-zero and injective, In particular, Hom(Q, Y') »0. We claim that top
Y is not simple. Otherwise, ¥ i8 of the form ¥ =P (w) /U for some proper submodule
U of P(w). First, assume U =0. Applying Hom (@, —) to the exact sequence 0—>M —
P (w)—>E (0)->0, we obtain
0==Homz(Q, E(w))—>Ext3(Q, M)—Ext;(Q, P(w)).
Since QAP (w) i8 a tilting B-module, Ext}(Q, P(w)) =0, thus Ext3(Q, M) =0. But
this iinplies that M is injective (consider a minimal injective resolution of M, it is a
short exact sequence which has to split). This contradiction shows that U=0 is
impessible. Thus, assume U %0, We apply Hom(—, @) to the exact sequence 0—>U —
P (w)—Y —0, and obtain
Hom;: (U, Q) =Ext; (¥, Q).

Since U0, and Q is a cogenerator, Homy(U, Q) #0. Since G@Y is a tilting module,
Ext}(Y,Q) =0. This contradiction shows that also U0 is impossible. Altogether, we
see that top ¥ is not simple. Thus ¥ maps onto a simple factor module E of @'. Since
E is injective, F ig a direct summand of @, thus Hom (Y, Q) #0.

~ Let Bbea connected finite-dimensional hereditary k-algebra. We assume that B
is basic and not simple, and we denote by es, -+, €, a complete set of orthogonal
primitive idempotents. We denote by P (i) =Be, the indecomposable projective B-
module corresponding to e;. Let J be the radical of B. The species (Fi,iMy)1<t,s<n Of B
is obtained as follows: let F,=eBe,, this is a division ring, and let M;=¢(J/J%)e;,
this is an F-F~bimodule. Denote dyy=dim ((M,)r,, di;=dimpg,(,M;). The valued quiver
A(B) of B has n vertices, say indexed by the number 1, «--, n, there i8 an arrow i<j
provided ;M;+0, and this arrow is endowed with the pair of numbers (dy, di;). Note
that the species of B, or even the valued quiver of B determines the representation
type of B, but B-mod is not necessarily equivalent to the category of representations
of its species (see [6]). In case w is a source of A(B) let e= Z‘;e,, let C=¢Be, M=

c M '

o o)

With B also its opposite algebra B* is a finite-dimensional hereditary k-algebra;
we obtain 4(B*) from A4(B) by changing the orientation of any arrow, replacing at
the same time the pair (dy, di;) by the pair (di;, d;;). The category of all B*-modules
is dual to the category of all B-modules, a duality is given by forming the k—dual

eBe,, D=F,. Then B is isomorphic to [

-
T
-
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Note that the k—dual 7" of a regular tilting B-module T is & regular tilting B*-
module. There is a second possibility of changing the algebra but keeping regular
iilting modules: Let a be a sink in the valned quiver 4(B). Then U(a) =7 P(a) ®
‘(-2 P(4) is a preprojective iilting B-module, and B(a) =End (U (a)) is a finite—dimen—~

sional hereditary k-algebra. This process is a special case of a socalled APR-tilt (see
[8]), it generalizes the well-known reflection functors of Bernstein-Gelfand-
Ponomarev; we will call it the reflection at the vertex 4. The valued quiver of B(a)
is obtained from 4(B) by changing the orientation of all arrows of 4(B) ending in
8, and by replacing for these arrows the numbers (d,;, di;) by (d&,, dos). Given any
vertex b of 4(B), there exists a finite sequence of reflections such that & bocomes a
gink, and also a finite sequence of refleciions such that  becomes a source (we even
may require that b becomes the unique sink, or the unique source, respectively). Note
that for T a regular tilting B-module, and ¢ a sink of 4(B), the B(a)-module Hom,
(U (a), T) is a regular tilting B(a)-module.

With these preparations, we are going to show the existence of regular tilting
modules. Let B be a connected finite-dimensional hereditary k-algebra which is wild
and has at least three simple modules. We may assume that B is basic. We choose, as
above, a complete set ¢4, ---, ¢, of orthogonal primitive idempotents, and use the
notation introduced there, ‘

Let 4" be a connected valued subquiver of 4(B) which i8 not 2 Dynkin diagram,
and suppose there are vertioes of 4(B) which do not belong to 4. It is easy to see that
fhere exists a vertex w of A(B) such that the quiver 4” obtained from A4(B) by
deleting w (and all arrows starting or ending in ) is connected. We may assume
that w i8 a source, replacing otherwise B by an algebra obtained from B by a finite

‘ ' 0O M
sequence of reflections., We write B in the form [O D]' where 4(0) =4’ and D=

F.. Since 4" is connected, and not a Dynkin diagram, C is of infinite representation
type. Lemma 2 shows that there are preprojective tilting O-modules § which are
regular when considered a B-modules. Now Corollary 1 shows the existence of a
regular tilting B—module. ,

Let us derive several consequences. Since }»>3, we see that the existence of an
errow with valuation (d,, di;) satisfying dydi,>4 implies that B has a regular tilting
module. Thus, we can assume d,dj, <8 for any arrow. Also, if dydj,~8 for some 4, 7»
and n>>4, then B has a regunlar iilting module. Thus, if dydiy =8 for some 4, j, then
we will assume n=3. Also, if 4(B) contains a cycle, then A(B) is just a primiiuve
cycle (with some valuation).

First, we consider the case of 4(B) being a primitive cycle with some valuation.
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Up io duality and reflections, we may assume that the underlying quiver of 4(B) is of
the form

B—— Bt e ooy

/ QN
'Y N\
1 ri-8
N

r4-lerd2eeris—~1

with £>>2, s>1, and dyy=1, d\3=>2.

For, since B is wild, at least one pair 4, j satisfies d;d;;>2. We can assume that
dy=1, otherwise replace B by B*. After a sequence of reflections at suitable vertices
different from ¢ and j, we can assume that ¢ is tne only sink. Now, if j is not a source,
then B is as stated, with i=1, j=2. So, assume j is a source. In this case, reflection at
the vertex 4 and afterwards replacing the algebra by its opposite gives the desired
form, again with ¢4=1, §=2, )

o M
We write B—[O D]’ where 4(0) has the vertices 1, +-, ¢#+3s—1, whereas Dw

F,,s. We denote by Qo (), 1<é<r+s—1 the indecomposable injective C-module with
socle K (¢), thus Q-':é-):ng (3) is the minimal injective cogenerator in C-mod. We

will show that Q i8 2 regular B-module. As a consequence, Corollary 2 asserts the
exigtence of & regular tilting B-module. |
Consider the indecomposable projective B~module P(r-+s), it has a sub-module
U which is a direct sum of d),,,, copies of P(r). Let X =P (r+s)/U. Note that Homs
(P@), X)=0, for 2<é¢<r. The modules E(2), -, E(r), and X are pairwise
orthogonal bricks, and Ext}(F (¢+1), E(¢)) %0 for 2<s<r, Exti(E(r), X)*0,
Ext; (X, E(2)) #0. Thus E(2), ---, E(r), and X belong to a ¢ycle in B-mod. This
shows that all these modules are regular B-modules; in particular Q¢(r) =E(r) is a
regular B-module. Similarly, for sz>2, the module Qu(r+s—1)=FE(r+s—1) is a
regular B-modules. For 1<¢<r+s~—1, the module Q¢{i) maps non—trivially to Q¢ (s)
or to Qo(r+s—1), thus all Qy(¢) are preprojective or regular, On the other hand,
€0 (1) mape non-trivially to any Q¢(¢), 1<i<r+s—1. We will show that Q¢(1) is
not preprojective, this then implies that none of the modules Q¢(i), l<é<r+s—1
can be preprojective. Take non-zero maps h:E (1)—>P(r) and 4":E (1)—>X, and denote

. h
by Y the pushout of 2 and 4/, thus the cokernel of [ 2 ]: E(1)—> P(r)@X. It is casy

$0 see that ¥ is indecomposable. Algo, using a projective resolution of ¥, one cheeks
without difficulty that Exth(¥, ¥') 0. The socle of P(r) is a direct sum of copies of
E(1), and, since djy>>2, the socle of P(r) is not simple, Note that ¥ has a (unique)
sabmodule X’ isomorphic to X, and a submodule P’ isomorphie to P(r) with P'+ X’
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=Y, and P'NX’ igomorphic to E(1). It follows that ¥ /X'~P'/P'N X’ has a
submodule of the form K (1). Since P'/P' X' is a O-module, Hom¢(Y /X', Qo(1))
#0, thus Homp(Y, Qy(1)) 0. Since ¥ is an indecomposable B-module with Ext}
(Y, Y)#0, we see that Q¢ (1) cannot be preprojective,

It remains 1o consider the case where A(B) does not contain a cycle. Thus, let
A(B) be a tree with some valuation. First, let dydiy<1 for all 4, j, thus we may
neglect the valuation. It is well-known (and easy o see) that in this case 4(B)
containg a subquiver which is of the form B,, B, &,, or B, thus the existence of a
regular tilting B-module has been established above, Bimilarly, assume next that
didiy <2 for all 4, j, and dydi, =2 for at least some pair 4, j. Now, either ’taire /i‘; a
second pair 8, t with d,d,, =2, thus A(B) contains a subquiver of the form BB,, BO,,
or CO’,., or there is a branching vertex in 4(B), and A(B) contains a subquiver ,B\ﬁ
or O’D,., or, finally, 4(B) contains a subquiver of the form F,; or F,,. Always, there
is a connected subquiver which is not Dynkin, thus there oxists a regular tilting B-
module. Thus, assume now that d,d; =8 for some 1, j. By previous considerations, we
know that n=8, thus, up o reflections, A(B) is of the form

o €—— 0 &—— 0o

1 2 3

with valuation (di, dis) = (a, b), (das, dhs) = (c, d), where ab=38, and 2<cd<38 (the
case cd =1 would be tame). The valuation may be read off from the dimension vectors
of the indecomposable projective B~-modules P (i) and the indecomposable injective B~
modules @ (4), namely

dim P (1) =[1, 0, 0], dim P(2) = [b, 1, 0], dim P(3) = [d, d, 1],

dim Q(1) =[1, g, ac], dim Q(2) = [0, 1, ¢], dim @(3) = [0, 0, 1].
The Coxeter transformation & (it is determined by the equalities (dim P(5))Zz= ~
dim @(4)) is given as follows:

-1 —a -—ac
Dp=| b 2 2¢ |,
0 d ed-1

where we have used gb=38. Consider now the module. Qo(1); its dimension vector is
dim Qg (1) = [1, 4, 0], and

[1, @, 0]Dp=[2, g, ac],

[1, @, 0]9%=1[1, acd, ac(cd—1)].
Bince Qo (1) is not projective, dim 75Q (1) = (dim Qg (1))Ps=[2, @, ac], thus 75Q, (1)
i# not projective. Therefore dim +3Qo(1) = [1, acd, ac(pd~1)]. We see that thero is a
non-trivial map 23Q,(1)—>Q(1), its kernel has dimension vecior [0, u, v] with u>
scd—a=a(cd—1)>1. Thus, v4Q(1) has a submodule of the form E(2)=Qy(2). This
shows that the B-modules Qo(2) and Q,(1) belong to a cycle in B~mod, thus they are
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regular B-modules. As a consequence, there exists a regular tilting B-module.

This finishes the proof of the theorem. :

In general, a valued quiver 4= (4, 4;, d, d') is given by a quiver (4, 4y)
without multiple arrows, and two functions &, d’ defined on 4, with values in the set
N, of positive integers; if a: a—b is an arrow in 4;, we usually write d,, instead of
d(a), and d;, instead of @'(x). Recall that for any finite~dimensional algebra B, there
is defined its valued quiver A(B). A connected valued quiver 4 will be said to be
wild, provided 4=A4(B) for some wild finite-dimensional hereditary algebra B, Note
that 4 i8 wild if and only if it is neither a Dynkin diagram nor a Euclidean diagram,
A valued translation quiver I'= (I'y, I'y, d, d’, 7) i8 given by a valued quiver (I,
Iy, d, d’) and a translation quiver (I'y, I'y, %) such that for any arrow y—z, with ¢
non-projeative, we have d,,,,=~d), and d;,,,=d,,. Given a valued quiver 4= (4,, 4, d,
d’), there is defined, in the uwsusl way, a valued translation quiver Z4 as follows:
(Z4)o=Z x 4, thus the vertices of Z4 are pairs (¢, a) with ¢€Z, a€ 4y; the trans—
lation 7 is given by 7((4, @)) = (i—1, a); there are arrows (4, a)—>(4, b) and (4, b)
- (i+1, a), for any arrow g—b in 4, and any ¢€Z and the valuation for these
arrows is given by

i’ i !
da, X ) ™ dab - du, B41,0) ,d(s.u)(c.b) == p ™= d(i.b)(i-l-:l.l) .

Let B be a connected, finite-dimensional hereditary algebra, and T a tilting
module. The component of the Auslander-Reiten quiver I'(4) of A=End(:T)
containing the isomorphism classes [Homy(T, @)], with @ an indecomposable
injective B-module, is called a connecting component, In cage 5T, is not preprojective
or preinjective, I'(A) has a unique connecting component; in case T is regular, the
connecting component i3 of the form ZA(B*). Thus, there is the following
consequence:

Corollary, Let Abe a wild conmected valued gquiver with at least three wertices.
Then there ewists a finite-dimensional algebra A such that the Auslander—Reiten quiver
I"(4) has 6 component of the form Z4.

~ Proof Let 4~ A(B") for some finite-dimensiona] hereditary algebra B, let 37 be
a regular tilting B-module, and 4=End(zT"). Then, the connecting component of 4
has the form Z 4, :

§ 2. The Stable Valued Translation Quivers with a
Monotone, Strict Additive Function

Lot I'= (I'y, I'y, a, &, %) be & valued translation quiver. A function f: I'\—>Z i8
called an additive function for I' provided for any non-projective vertex 2& I'o,

":; 4 '
£
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D) +1(0) = B S @)

A function f: I'e—>Z will be called strict provided f(z) +f(y) for every arrow z—y.
Also; f will be called monotone provided for every arrow #—>y, with both ver tices
@, y non-projective, f(z) < f(y) implies f(zz) < f(zy). Of course, a strict function is
monotone if and only if for every arrow z—y with both @, y non-projective, f(2)<<
J(y) implies f(zx) <f(vy), and this happens if and only if for every arrow ¢—y
with both z, y non-injective, f(z)>f(y) implies f(z"2)>f(+"y). We are going to
analyse the stable valued translation quivers which admit a monotone, strict, additive
funciion with values in the set N, of non—negative integers.

We denote by A.. the valued quiver with N, as set of vertices, with arrows a—>a
+1, for all a €N;, and with valuation d,,4,1=1=d},,,1, for all aEN;. Note that A.
with the prescribed orientation has a unique source and no sink,

A finite valued quiver 4=(4,, 4, d, d') will be called a star with center e,
provided the underlying graph of (4,, 4;) is a star with center ¢, and such that, in
addition,

dw=1 for a+e¢, and
=1 for b+#c¢;
the number ;d,’,o+ g dew will be called the number of branches of 4. A typical

example of & star is the following valued quiver:

;'o--»o

' /
0——-»0\ 0

o3 N / (3, 1)

/' ANCRY)
/N
0—>0 0

for any arrow q¢—b, the numbers d;, d;, are indicated in the form a——-—~—>(b°‘” %) b,

provided at least one of the numbers is different from 1; the number of branches of
this star is 8. !

Proposition. Let 4d¢a , connected valued quiver. Then the _followmg conditions
are equivalent: ' : :

(i) Z4 admits a monotone, strict, addstive function with values in Ny, -

(i") ZA4 admits a monotone, strict, additive function with values én Ny,

(i) 4 ds egther A, or a star, but not a Dynkin diagram.

The proof will be done in several steps. Some of the partial resulta requj;re less
yestrictive assumptions, We recall that a function f: I'e—>Z is said to be a subadditive
funoction for the valued translation quiver I'= (I, I'y, d, &', %) provided for every
non-projective vertex z2& I, :
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fG2)+f(2) >,§ FW) .

If f is a subadditive function for I', and z is a non-projetive vertex, 2~ ={y1, -, 1}
with pairwise different vertices yy, -+, ¥, then
FE<EF @)y 1mplioa 3 F U0 ha< f 3.

If f is a strict function for I', then f is monotone if and only if for every arrow

a—>y with both », y non—projective,
f(@)<f(y) implies f(ve)<f(wy),
and this is equivalent to the condition that for every arrow z—>y with both @, ¥ non~-
Anjective,
f(@)>f(y) implies f(z72)>f(v"y).
Given a valued quiver 4, and @ a vertex of 4, we call the number 8(a) -Z‘]di,+

gd., the branching number at the vertex a.

Lemma 1l Let A be a valued guiver, and f & monotone, sirict, subadditive
functéon for ZA with values in No. Let a be a vertex of 4, and suppose that B(a)>38.
Let v=(4, a) for some i€ Z. '

Q) If f(v) <f(zv), then f (w) <f(vv) for all u€o™,

(1" If f(v) < f(v™v), then J(w) <f(v7v) for all wE vt

(@) fw)<f() for dl wu€w™, or f(u)< f(zv) for abuco™.

(3) There emists nEN, such that for all wEv*, both f (=*Hw) <f(+"v), ond
Sy <f o). |

Proof (1) Assume f(v)<f(wv). We want to show that f (u) <f(wv) for all uc
~. Assume for the contrary, f(u) =f(vv) for some u€ v", say =1y, Where U, *=, t

.are pairwise different vertices and o™= {t, *-, U}. Since f is strict, f(zu) <f(u),

-thus
f(ul) (dllhﬂ 1) +2f(ui)d:lw<f('v):

.gince f is subadditive. Since f is monotone, f(wv)<f(w) implies f(v%)<f (w,),'

-thus also
t .
) (au— 1) + S (a0,
-where we use that dpy=dis,+y, for all —y. The subadditivity for f gives

J (o) +f (w) = (v0).
;Smce v €y, for all 1<i<t. Lot B—de, note that 8= B8(a), thus 8>8. Then

F0) + £ (8> ( () + (0)) (g —1) + 3 (F (o) 5 () e
}'f('“’) (dmc 1) +§ fv)die ”f(""”) (B— 1)! ,

b Y0

-_— )
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therefore
F(0)>F (v0) (B—2) > (v0);
since 82>8. This contradiction shows that f (u) <f(zv) for all u€v™,

(1" ) follows by duality.

(2, 8) Choose jEZ with £((j, 4)) being minimal under all £((¢, a)), ¢€Z. Lot
2= (4, a). Then f(2)<f(vz), thus f(22)>f(y) for all y€2z~, by (1). Since f is
monotone, f(wv)>f(uw) for all u€v~, provided v= (¢, a) with ¢>j. Also, f(z) <
f(z72), thus f (w) <f(zz) for all wE€z* = (+72)~, by (1*). Using again the fact that f
is monotone, f(u) < f(v) for all u€v™, provided v= (4, a), with ¢<j+1. Thus, for
v= (%, @), and uC v, the following holds: if ¢=4 or ¢=3j+1, then both f(u)<f(v)
and f(u)<f(wv); if i<j, then f(uw)<f(v); if i>j+1, then f(u)<f(zv). This.
finishes the proof of (2). Also, we see that for ¢=j~—1, j, or j+1, and v=(i, a),
wcov*, we have f(rw)<f(v) and f(w)<f(v), For general ¢, let n=4—4. Then
Fa™w) < f(v) and f(w) < f(v). This proves (3).

Lemma 2. Let 4be a valued quirer, and f @ monotone, sirict, additive function.
Jor Z4 with values én Ny. Let a be a vertex of 4, and suppose B(a)=2. Then a has
precésely two neighbors; ¢f b is a nesghbor of a, then dg=1 provided a—b, and dya=1
provided b—>a. Let z= (4, a) for some 4 € Z, let z~ = {y1, ya}, and suppose f(y1) <f(ya)-
Then, for dbn€Z, f(vy;) <f(v'2) < f (v'ya), f(3"ys) < f (+**12) < f (+°9).
~ Proof 8ince B(a) =2, given any i€Z and z=(i, a), either z~ ={y;, ys} with
Y1%Ys, and d,=1=d,,,, or else s~ = {y} with d],=2; in the second case, lot 4y =y/s=y..
Since f is additive,

| F(w2) +F (D) =Ff (va) +f (wa).
We can assume f(y1) < f(ys). We claim f(y:) < f(7z). Assume for the contrary-
f(w2)<f(yy), thus also f(72) <f(ys). The additivity shows that f(yy) < f(z) an¢
Sf(ys) < f(2). Since f is monotone, we conclude that for all n>0,

F (@) < f(#"y0) < f (32).
In this way, we obtain an infinite decreasing sequence
F@)> f(32) > f(z%) >

of non-negative integers, impossible. This shows that f(y,) < f(7%). By the additivity-
of f, this implies f(2) < f(va). By duality, we also have f(y1)<f(z), and therefore
also f(72) < f(ys). This gives the case n=0 of the stated inequalities. At the same
time, we have shown that f(y1) < f(ys), thus y;# ya. This excludes the case z~={y},
thus ¢ has precisely two neighbors. If b—>a, then (3, b) is one of gy, ys, and therefore:
d=1. If a—>b, then (i—1, b) is one of g4, g, and therefore d,,=1.

Finally, consider vz=(i—1, a). Now, (v2)"={zys;, 75}, and we claim that.
J(7y1) < f(vys). Otherwise, the previous considerations, applied to 7z instead of z,
yield f (v2) < f (7y1). But, since f is monotone, f(y1)<f(z) yields f(sy;)<f(v2)..
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This shows that f(ys) < f(ya) yields f(z"y1) < f (+"ya ) for all n>>0. By duality, f(y1)
< f(ya) also yields f(v"y1) < f(7"ya) for all n<<0. Thus, the inequalities for n=0
imply those for arbitrary n € Z. This finishes the proof.

Given a function f on (Z4) with values in Ny, where 4 is a valued quiver, and
given a € 4, denote by us(a) =pu(a) the minimum of all values f((4, a)), withé¢E€Z.

Lemma 8. Let 4 be a valued quiner, and f a monotone, sirici, additive funciion
Jor Z4 with values én No, Let a be a vertex of 4,

(1) If B(a)=8, then for all neighbors b of a, we have B(b) <2.

(2) If B(a) =2, then there ewists a neighbor b of a with B(b) <2, and p(d)<
p(a). » |

Proof (1) Assume B(a)=>8. Part (8) of Lemma 1 asserts that for suitable
FEZ, and z= (4, a), ‘

fGw)<f(2), f(w)<f(2)

for all wEz*. Let b be a neighbor of a. If a—b in 4, let w= (4, b); if b—>a in 4, let
w=(j+1, b). Then w€2*, and z€w™. It follows that B(d) <2. Otherwise, apply part
(2) of Lemma 1 t0 v=w and u=z: we obtain f(2)< f(w), or f(z)<f(vw), a
contradiction.

(2) Assume 8(a) =2. Choose ¢ € Z, such that for z= (4, a), we have f(z) ~pu(a).
Lemma 2 asserts that we can write 2~ = {y4, ¥a} with

Flyd<f(z) and f(zy)<f(2).

Since y; €2~ it follows that y;=(4, b) or =(¢+1, b) for a neighbor b of 4. As

previously, it follows that B8(5) <2. Otherwise, apply part (2) of Lemma 1tov=7"¢1

and ©=z, and obtain a contradiction, Also, we see that
p() < f(y) <f(2)=p(a).
Proof of the implication (i)=>(ii): Let 4 be a connected valned quiver and f a
monotone, strict, a,dditive function for Z4 with values in N,. Assume a4 is a vertex of

4 with B8(a;) =2. According to Lemma 8, there exists a neighbor ag of a; with B(as)

<2 and pu(as) <pu(ay). We use induction in order to obtain a sequence ay, as, -, G
with g,,1 being a neighbor of a,, and B(&) =2, for 1<é¢<r—1, such that
p(as) >p(as) >+ >plar).

Since the numbers u(a;) are non-negative integers, such a sequence must stop

eventually; therefore, we can assume 8(a,) =1. Thus, a,_; is the only neighbor of a.
Any vertex €;, 2<i<—1, has as neighbors just the vertices @_;, and @;;1. By Lemma
2, the vertex &y has besides @, an additional neighbor, say @, The following is already
known about the valuation: if @ — b, then d,,=1 provided o€ {a1, *-, @}, and
#.,=1 provided b€ {as, *++, a,}. In case all vertices g of 4 satisfy B(a) <2, we casily,
seo that A=A, or else d==A, for some n, thus 4 is a tree (the latter case d=A,
actually cannat secur, as we will see below). Now assume there exists a vertex ¢ of 4
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with B(c)=>8. Lemma 8 asserts that all neighbors a of ¢ satisfy 8(a) <2. But then our
previous considerations show that 4 is a star with center ¢. If 4 is & Dynkin dia-
gram, then Z4 does not admit any non—irivial additive function with values in N,
(see [9]), thus 4 cannot be a Dynkin diagram. This finishes the proof of the
implication (i)-—>(ii).

Lemma. Let 4be cither A, or o star whose conter 48 the only sink, and let f be
an additive function for Z4 with values n Ny. Then, for every arrow a: a—>b ¢ 4, and
i€Z, : ,
(G, @) <f(G, 8), fF((6+1, a))<f((4, b)).

Proof By our choice of orientation, there is a path gp—>a3— -+ —>a,_; —>a, in 4
such that G, i8 a source and a;_y =~a, ay=~b; moreover, B(ay) =1, B(a;) =2 for 1<j<¢.
The additivity of f yields by induction on j>1 '

F((§, a5)) =f((8, a5-2)) +f((i+], ao)),

thus we conclude

£ (G, B))~f((4, a)) =£((3, a)) = £((4, @-1))
=f((i+t, a))>0.
Similarly,

(@, ) —f((i+1, a)) =f((4, a0))>0.

Corollary. Let 4 be cither A. or a siar. Then any additive function on Z with
values in N, it sirict and monotone.

Proof of the implication (ii)=s(i’): First, consider the case 4=A,, recall that
the set of vertices of d=A,, is just Ny. The function f on (Z4), defined by f((3, a))
=g obviously is additive.

Assume now that 4is 2 star, but not a Dynkin diagram. If 4 is a Euclidean
diagram, theh Z4 admite an additive function J with values in Ny which even is +—
invariant (as in the case 4=A_). Thus, we can sgsume that 4 is wild. If 4, has at.
least three vertices, consider Z4 as a connecting component for some 1ilied algebra, as
constructed in section 1, and let f be the length function. Then f is additive, and
takes values in N;. Finally, it remains to consider a wild star with precisely two
vertices, It is sufficient to deal Wwith

0 4, 1 0,

G b

where d>>5. In this case, the additive function 5. defined by F((0, @)) =2 and
j((O, b)) =1 takes valueg in Ny (see [18]). This finishes the proof.
‘Every stable valued translation quiver I" i8 of the form I'=Z:4/@, where 4 18 a
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valued quiver whose underlying graph is a tree, and G is a group of automorphisms
of Z4, and let &x: Z4—->Z4/G =1 be the corresponding projection (it is a covering).
Any function f: I'y—> Z gives rise to the function f: (Z4),—Z defined by f(z) =
f(x(x)). If f is additive, or subadditive, or sirict, or monotone, the function f will
have the same property. As a consequence, there is the following corollary:

Corollary. Let I be a stable valucd translation guiver which admits ¢ monotone,
stréct, additive function with values in No. Then I' =Z A/G, where 4 i3 either A, or o
star, but not @ Dynkén déiagram, and G és a group of automorphisms of Z4.

§ 3. The Quasi-Serial Components

Components of the form ZA,, /G, with G a group of automorphisms of ZA.., are
called quasi—serial (see [18]).

Theorem. Let A be a tilted algebra. Then, any regular component of I'(A)
which 48 not a connecting component, és quasi—serial.

Proof Let B be a finite-dimensjonal, hereditary k—algebra and T a tilling
module with A=End(3T). The regular components of I'(4) different from the
connecting ccmponent correspond to the regular components of the relative
Auslander-Reiten quivers of F(3T) and G(3T). Here F(5T') is the full subcategory
of B-mod given by all B-modules X with Homz(7, X)=0, and G (zT") is the full
suboategory of B-mod given by all B-modules which are generated by ;T. Up to
duality, we may assume that we deal with a regular component I" of the relative
Auslander-Reiten quiver of G (T), and we want to show that I" is quasi-serial. We
need the following result due to Hoshino; recall that the subcategories F(sT') and
G(3T) form a torsion pair in B-mod, the modules in G(3T") being the torsion
modules, those in F(57') the torsionfree modules.

Lemma®, (Hoshino) Let 0> X —>Y —»>Z—>0 be ¢ relative Auslander—-Reiten
sequence in G (pT). Then X s the G (3T) -torsion submodule of +Z.

Here vZ = DTrZ denotes the usual Auslander-Reiten translate of Z in B-mod.
Since B is hereditary, + aotually is a functor (from B-mod into itself), and is left
exact. We write 7cZ for the G'(sT)-torsion submodule of zZ, for any B-module Z.
The Hoshino lemma asserts that the restriction of v¢ to G (5T') just yields the relaiive
Auslander-Reiten translation. Of course, with = also 7 is a functor, since the
assignement of the torsion submodule with respect to a fixed torsion pair is functorial.
There is the following consequence:

Corollary. The endo-functor v¢ of B—mod preserves monomorphésms.

Proof Leta: X—Y bea monomorphism in B-mod. Since v is left exact, 7a
+X—<Y is a monomorphism. But zge is the restriction of 7o to the G (T )-torsion
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submodule 76X of +X, thus also 74« is 2 monomorphism.

Let I" be a regular component of the relative Auslander-Reiten quiver of G'(;T).
Let D be the additive subcategory generated by the indecomposable B-modulcs X
with [X7] belonging o I". For X indecomposable in D, let f([X]) = | X |, the length
of X ag a B-module. Of course, f is an additive function on I' with values in Nj.
Note that any relative irreducible map in G(3T) is a monomorphism or an
epimorphism in B-mod (for, its image is again generated by »T, thus in G(;T’). As a
consequence, f i8 sirict. We claim that f is also monotone, For, assume X, Y are
indecomposables in G(5T'), there existe a relative irreducible map a: X—Y¥ and |X|
<|Y|. Then a cannot be an epimorphism in B~mod, thus & is 2 monomorphism in
B-mod. Since 7 preserves monomorphisms, we conclude [75X|<|7.¥ |. Thus, we
can apply the proposition in section 2, and conclude that I is either quasi-serial or of
the form Z4/@, where 4 is a star but not a Dynkin-diagram, and G a group of
automorphisms of Z4. Thus, assume I" is of the form Z4/Q, with 4 a star but not a
Dynkin diagram, let #:Z4—>Z4/G'=I" be the canonical projection. Let ¢ be the center
of 4, and for any ¢ €Z let w((é, ¢)) = [M,], where M, is an indecomposable module in
D. Note that 7eM,=M, i, for all € Z. We claim that M, is cogenerated by any M,,
with §<<j. It is sufficient to show that M, is cogenerated by M,,,. Since 4 is not a
Dynkin diagram, the number 8 of branches of 4 is at least three, thus the relative
Auslander-Reiten sequence ending in M, is of the form
| O»M,»éy.,iaﬁi M350,
with B>8. Note that since 4 is atree, all the given maps a Y — M, are
monomorphisms in B-mod, thus we obtain 2 monomorphism in B-mod

8 ®a, 8
M- g—)l Yy— 1(?1M‘+1'

Lot m= | M,|. Fix some §>>0. Since M, is cogenerated by M,, there actually is a
monomorphism My,— G,i-) M; in B-mod. Applying 7%, we obtain a monomorphism

M_;"TgMo““-)@ Mo.
Now, |@ M| =m?, thus we sce that | M _,| <m?, for all §>>0. But it has been shown

in [11] that o is a finite covering and that the number of isomorphism clagses in D
containing modules of a fixed length is finite, This contradiction shows that I" has o
be quasi-gerial.

Appendix: The notion of a slice,

Let A be a finite dimensional k~algebra. Let . be a module class in A-mod which
satisfies the following two conditions:

(a)  is sincere.
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(B) .¥ is path closed.

Then the following two conditions are equivalent:

(8) Let M be indecomposable and not projective,and let S be indecomposable and
in .%. If there exists an irreducible map § — M, then M or #M belongs to &,

(8’) Let N, 8 be indecomposable and suppose S belongs to .¥. If there existe an
irreducible map N—>S, then either N belongs to %, or N i8 not injective and v~ N
belongs to &.

Proof Clearly (3") implies (3): Let M, S be indecomposable, M not projective,
S in ¥, and assume there exists an irreducible map 8—>M. Let N =vM. Then there is
an irreducible map N — 8, and by (8’), we conclude one of N, ¥~ N belongs to ..

Oonversely, assume (8), and let N, § be indecomposable, § in &, with an
irreducible map N — 8. If N is not injective, then (8) applied to M =+"N yields that
one of N, 7~ N is in .. Thus, assume N is injective. Since .% is supposed to be sincere,
there is an indecomposable 8’ in % with Hom(S’, N)+0. Thus §'<N <S8, and
therefore N belongs to ., according to (B8).

In addition, the following condition is of interest:

(y) If M is indecomposable and not projective, then at most one of M, and +M
belongs to &,

We call & a glice (in A-mod) provided the conditions (a), (8), (y) and (5) are
satisfied. Note that all these conditions are self-dual, thus .% is a slice in A-mod if and
only if & *={Homy(S, %)|SE€SL} is a slice in A%-mod. According to the
consideration above, this notion of a slice coincides with that of [15].
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