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Modules of bounded length in Auslander-Reiten components 

By 

EUGENIA MARMOLEJO and CLAUS MICHAEL RINGEL 

Let A be an artin algebra, and F a component  of the Aaslander-Reiten qmver of A. it 
has been asked [12] whether the number  of isomorphism classes of indecomposable 
A-modules in F of fixed length is finite. This question is answered affirmatively for certain 
types of regular components.  More generally, we consider regular components  of full 
additive subcategories with sink maps in a length category. 

Recall that a length category is an abelian category where every object X has a finite 
composition series; the length of such a composition series will be called the length of X 
and denoted by ]XI. We denote by [X] the isomorphism class of the object X, and we also 
write I[x]l instead of lXl. Let ~ be a length category, and . ~  a full additive subcategory. 
We consider • as a Krull-Schmidt category with short exact sequences, the short exact 
sequences being those in d which belong to JU. Thus, the Auslander-Reiten quiver F ( S )  
of c f  is defined (see [111), but we consider F(cg') as a valued translation quiver, see [5], 
and we denote by z~e the Auslander-Reiten translation in 24#. An (Auslander-Reiten) 
component cg of S is, by definition, the full additive subcategory generated by the 
indecomposable objects X in c f  whose isomorphism classes belong to a fixed component  
F '  of F(2(C); of course, F' = F ((s A component  cg of 2U is said to be regular provided 
F (c~) is a stable translation quiver. (Note that a component  cg of 24# is regular if and only 
if the following condition is satisfied: if X is indecomposable in c6, then there exists a 
source map  f and a sink map  g for X in Y ,  and there are short exact sequences ( f f ' )  
and (g', 9) which lie inside cg.) Let (g be a regular component of S .  We assume in addition 
that there are indecomposable objects C1, C2 in cg and X i ,  X2 in X\cg,  with 
Horn (X 1, C1) ,I= 0 and Horn (C 2, Xz) + O. Finally, assume there is a constam d such that 
for any indecomposable object X of c~, we have I r~ X I < d [Xt. These conditions are 
obviously satisfied in the case that cg is a stable component  of ~r = 2(( = A-rood. (For d, 
we may take (dim k A) 2, see [10]). They are also satisfied in the following situation: Let AT 
be a tilting module, ~f" = (Y (AT) the full subcategory of all A-modules generated by A T, and 
sr = A-rood. (Here, take for X~ a suitable dirct summand of A T, for X 2 a suitable 
indecomposable injective A-module; also if zx  X exists, it can be embedded into ~ X, see 
[7], thus, again let d = (dim k A)2.) 

A valued quiver A = (Ao, A1, d,d') is given by a quiver (A o, A~) without multiple 
arrows, and two functions d, d' defined on A ~ with values in the set N I  of positive integers, 
if ~: a ~ b is an arrow, we write d~b instead of d(~) and d~ab instead of d'(~). A valued 
translation quiver F = (Fo, F1, d, d', ~) is given by a valued quiver (F o, ~ ,  d, d') and a 
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translation quiver (F0, F1, z) such that for any non-projective vertex z and any arrow 
y ~ z, we have d~,y = d'y~ and d'~,y = dye. Given a valued quiver A, following Riedtmann 
[9, 5] we define a valued translation quiver 2g A as follows: (2~ A)o = ~ x A o; the translation 
z is given by z((i, a ) )=  ( i -  1, a), for i t ; g ,  a ~ Ao; there are arrows (i, a ) -*  (i, b) and 
(i, b) --, (i + 1, a) for any arrow a --* b in A and any i 6 Z, and the valuation for these 
arrow is 

d( i ,a) ( i ,b)  = dab = dl i ,  b)(i + 1,a) ,  

t t t 
d ( i ,a) ( i ,b)  = d~b = d ( i , b ) ( i+  1,a). 

Since our  translation quivers are allowed to have loops (but not multiple arrows), the 
notion of a covering as defined by Riedtmann [9] has to be modified: let (F0, F~, z) and 
(F d, F~, z) be stable translation quivers (without multiple arrows); a map 

~: (Co, q ,  z) -~ (rd, r ; ,  z) 

is of the form n = (~o, nt), where no: Fo ~ F~, n~: F1 -~ F /a re  set-theoretical maps such 
that for c~: x ~ y, we have n 1 (~): n o (x) --* no (y), and no (z (x)) = z (% (x)), for all non-pro- 
jective x. Such a map is called a covering provided n o and nl are surjective, and the 
restriction of n o to x + is a bijection from x + onto n 0 (x) +, and its restriction to x -  is a 
bijection from x -  onto % (x)-. The covering n is said to be finite, provided n o i (x) is 
finite, for every vertex x of F'. If F, F'  are valued translation quivers, a map n: F ~ F '  is 
given by a map n: (F o, Ft, z) ~ (F~, FI' , z) such that d~(x~(y ~ = d~y, d'~(~)~(y) = d'~y, for any 
arrow x -~ y. A covering of valued translation quivers is a map of valued translation 
quivers which is a covering of translation quivers. 

Proposition. Assume there exists a covering n: • A ~ F (~), where A is either a finite 
valued quiver without oriented cycles or else A = ~k~, No~, I ~ ,  or IDa. Then, for every 
I ~ N,  there are only finitely many isomorphism classes of indecomposabIe modules in c~ 
which have length l (in ~4). Also, ~z is a finite covering. 

P r o o f. On ~ A, we define an additive function f by f (x) = [ n (x) l. We show that for 
every l~ N, the set f - 1  ( / )=  {x e (ZA)o[ f (x )  = l} is finite. This obviously yields both 
assertions. Assume f -  1 (/) is an infinite set and let us derive a contradiction. 

First, assume A is a finite valued quiver (without oriented cycles). Since •A has only 
finitely many z-orbits, some z-orbit contains infinitely many vertices from f - 1 (l). Thus, 
there is a e A 0 and an infinite subset I ~ ~g, such that f((i ,  a)) = I, for all i e I. We can 
assume that a is the unique sink of A. Let cg (/) be the additive subcategory generated by 
all indecomposable objects X in ~, with [X] = n((i, b)) for some b ~ A 0. If Z is indecom- 
posable in cg, then ]z~Z[ __< d [Z]; thus, if Y --+ Z is an irreducible map of ~ ,  then 
F Y[ _-< (d + i) [Z[. Since A has no oriented cycles, there is a bound n on the length of 
all paths in A. Given b ~ Ao, there is a path from b to a in A of length =< n. Thus, for i ~ ~, 
there is a path in F (cg) from n (i, b)) to n ((i, a)) of length __< n. It follows that for i e I, 

[n((b, i))1 < (d + 1)" [n((a, i))1 = (d + 1)"1. 

Let I' = (d + 1)"l. Then [Z] < l' for any indecomposable object Z in cg(/) with i t  I. 
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Let X, X'  be indecomposable objects in W\cg, and let C, C' be indecomposabte objects 
in cg, such that H o m  (X, C) 4: 0, Horn (C', X') + 0. Let [C] = rc ((j, c)), [C'] = ~ ((j', e')). 
First, suppose there are infinitely many i e I satisfying i < j. Let 0 4= cp: X -~ C. Using 
the sink map of the indecomposable objects in cg(j), we can factor q~ = O~(Pl, 
where Oa e Horn(X, C), (Pi e rad (Ca, C), with C1 ~ cg(j _ 1). By induction, we obtain 
a factorization ~0 = qJ,, ~0,, . . .  qh, where O,, e Horn (X, Cm), cpi ~ rad ((C~, C~_ 1), with 
C~ ~ cg(j _ i), and Co = C. However, as soon as the intervall [j - re, j] in ~g contains 2 r 
elements from I, the Harada-Sai lemma [6, 13] asserts that Ore' '" q~ = 0. This contradicts 
our assumption ~0 4= 0, and shows that there are only finitely many i ~ I satisfying i < j. 
Similarly, if we suppose that there are infinitely many i s I satisfying i > j', we use source 
maps in order to factorize any 0 4: qo': C' ~ X'  in the form (p' = q)'l "'" q)~/J~,, where 
cp' i e rad (C'~_ i, C'i), ~b',, ~ Horn (C~,, X'), with C;  = U, and C'i e cg ( f  + i), and again 
the Harada-Sai lemma gives a contradiction. This shows that there are only finitely 
many i s I satisfying i > f .  Thus, I is finite. This finishes the proof in the case that A is 
finite. 

Before we proceed to study the remaining cases, let us insert the following lemma on 
sectional paths due to Bongartz [2] and Igusa-Todorov [81. 

Lemma. Let J {  be a Krult-Schmidt category with short exact sequences, and having sink 
maps. Assume the sink map for any indecomposable object Z with [Z] a projective vertex 
in F(3ff), is a monomorphism in aft. Let Xo . . . . .  X ,  be indecomposable modules, and 
f~: Xi_ a -+ Xi,  1 <_ i <_ n, irreducible maps. Assume that for all 2 <_ i <<- n, either X i is 
projective, or vet X~ ;~ X i_ 2. Then f i  "'" f .  4: O. 

P r o o f. (For the convenience of the reader, we sketch a short proof). Assume we have 
f l  " "  f ,  = 0. Since irreducible maps are non-zero, we have n > 2. We can assume that the 
Xi, f~ are chosen in such a way that n is minimal. In particular, [X,] is not a projective 
vertex in F (Jr), since otherwise f l  ... f , - 1  = 0. Since f ,  is irreducible, there exists an 
Auslander-Reiten sequence of the form 

O ~ z x X ,  ~X,  1 | X',-1 ~X, -* 0. 

Assume for some t > 2, the vertices [xi], t < i < n, are non-projective in F(Jf'). Then, for 
n > i > t, we obtain inductively Austander-Reiten sequences 

F4"7 

Here, we use that ~zXi+ l  ;~ X i - i .  Since f l  " " f ,  = 0, there exists h,: X o --, va.X . 
with h,g,  = fa  "" " f , -1 .  Inductively, we obtain for n > i > t maps h~: X o ~ ~arX~ with 
h~ 91 = fa "'" f~-a- If t = 2, then h t gt = f~ is a factorization of the irreducible map f~ with 
9t not a split epimorphism, thus, ht has to be a split monomorphism, thus an isomorphism, 
but this means X o ~ vat X2, impossible. Thus, t > 3, and we can assume that [X: 1] is a 
projective vertex in F (J{'). The sink map for X~_ 1 is of the form 

Xt -  z @ ~ Xt | X;_ z Xt -  1, 
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and  by  assumpt ion ,  this is a m o n o m o r p h i s m  in JY(. N o w  

h,,01L j--0, 
thus  f~ . . .  f ,_  2 = 0. But  this  con t rad ic t s  the min ima l i t y  of n. This  finishes the proof.  

R e m a r k.  This  l e m m a  gives a direct  p r o o f  to  a resul t  due to Baut i s ta  and  Smalo  [4]: 
The  A u s l a n d e r - R e i t e n  quiver  of an ar t in  a lgebra  does  no t  have  sec t ional  cyclic paths .  

Nex t ,  consider the case A = Ar We assume tha t  N ~  has  a set of vert ices the set N of  
integers,  and  t ha t  there  are a r rows  a ~ a + 1, for  any  a s 2g. I t  fol lows tha t  the set of 
vert ices of 2 g ~  is 2g x 2g, wi th  a r rows  (i, a) --, (i, a + 1) and  (i, a) ~ (i + i ,  a - 1), for all 
i, a ~ 2g. Let  g be an  addi t ive  funct ion on  2gNU. Then,  for all i,j, a, b ~ 2g, 

g ((i, a)) + g ((j, b)) = g ((i, b + j - i)) + g ((3", a + i - j ) ) .  

In  pa r t i cu l a r  

g ((i, a)) + g ((0, 0)) = g ((i, - / ) )  + g ((0, a + i)), 

for all i, a s ;g. Assume  tha t  g takes  values in N o ,  and  let lo = g ((0, 0)). I f  g ((i, a)) = l, then 
bo th  

g ( ( i , - i ) ) < l + l  o and  g((0, a + i ) ) < l + I  o. 

Assume  there  are  infini tely m a n y  vert ices (i, a) wi th  g ((i, a)) = t. If there  exists some fixed 
i o, and  infinitely m a n y  different  a s, s ~ N ,  wi th  g ((io, as)) = I for all s e N ,  then there  are  
infini tely m a n y  b s, s e N ,  wi th  g ((0, bs) ) < l + Io, name ly  all the b s = a s + i o. Otherwise ,  
there  mus t  exist infini tely m a n y  different  i~, s e N ,  and  for any  i t some  a's wi th  
g((i s, a ; ) ) =  l; in this case g((i s, - i s )  ) <=l+ l o. It  fol lows tha t  for some fixed value  
1' (<  l + lo), there  are infini tely m a n y  different vert ices (i, a) wi th  g ((i, a)) = l' and  i = 0 or  
i + a = 0 .  

We a p p l y  this  to the given addi t ive  funct ion f (x) = [ ~ (x)]. We see tha t  there  is a fixed 
va lue  l' and  infinitely m a n y  different a e ~ such tha t  e i ther  f ((0, a)) = l' or f ( ( -  a, a)) = l'. 
Firs t ,  a s sume there  are infinitely m a n y  different a e ;g such tha t  f ((0, a)) = I'. Take  in- 
tegers u, v such tha t  there  are a t  least  2 v different  a ~ ~g wi th  u -< a -< v and  f ( (0 ,  a)) = l'. 
F o r  every b ~2g, choose  a represen ta t ive  M ( b ) e  ~((0, b)), note  tha t  there  exists an  
i r reduc ib le  m a p  ab: M ( b ) ~  M ( b  + 1). The  H a r a d a - S a i  l e m m a  [6, 10] asserts  tha t  
~, ~, + 1 " "  % - 1  = 0, whereas  the l e m m a  a b o v e  yields tha t  this c o m p o s i t i o n  is non-zero .  
In  o rde r  to  be able  to a p p l y  ou r  l emma,  we have to  observe  tha t  for all i, a e 7/., we have 

((i - 1, a)) + ~ ((i, a - 2)), since ~r is a s sumed  to be a covering.  Similar ly,  we p roceed  in 
the case tha t  there  are infini tely m a n y  a ~ ~ such tha t  f ( ( -  a, a)) = l'. This  finishes the 
p r o o f  for  A = ~ .  

Consider now A = ]Boo, IE=, or Doo. The  set of vert ices of A is N o for A = IBm, Coo, 
and  N o  u {0'} for A = D |  there  are a r rows  a ~ a + 1, for a e N o ,  and,  for  A = Doo, 
an  add i t i ona l  a r r o w  0' ~ 1; the on ly  non t r iv ia l  va lua t ion  is for the a r r o w  0 -* 1 for  
A = ]Boo and  II;oo, name ly  do~ = I, db~ = 2 for  A = ~oo, and  do1 = 2, d~l = I for A = tE~. 

9* 
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The function f on NA defines a function g on 2 ~  as follows: !et 

and 

g ((i, a)) = ~ f  ((i, a)) for a > 1 
( f  ((i + a, -- a)) a < - 1 '  

[ 2 f((i, o)) 
g ((i, 0)) = ~ f((i, 0)) 

[ f ((i, 0)) + f ((i, 0')) 
provided A = r  

A = I D  

One easily checks that g is additive on 2~&~, since f is additive on ;EA. It follows that 
for some fixed value !' there are infinitely many different vertices (i, a )~  g x ~ with 
g ((i, a)) = l' and i --- 0 or i + a = 0. Consequently, there are infinitely many different 
a e N1 such that  either f ((0,  a)) = l' or f ( ( -  a, a)) = l'. Again, we obta in  a contradic-  
t ion by using both the Harada-Sa i  lemma and our lemma above. This finishes the 
proof. 

R e m a r k 1. The special case of A being a star  has been treated before in [1]. 

R e m a r k 2. It is obvious that  for A = & ~ ,  ~ |  (Eo,, D ~ ,  there are no finite coverings 
ZA --) F. This shows that  under our assumptions,  any component  F with a covering 
2gA --) F, A = & ~ ,  IBm, (E~, D ~  is actually of the form ;EA, Fo r  mr  A-mod, this has 
been observed in [5] in the cases A = ~ ,  ~o~, D ~ ,  and in [31 in the case A = & ~ .  
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