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Modules of bounded length in Auslander-Reiten components

By

FUGENIA MarRMOLEIO and CLAUS MICHAEL RINGEL

Let A be an artin algebra, and I’ a component of the Auslander-Reiten quiver of 4. it
has been asked [12] whether the number of isomorphism classes of indecomposable
A-modules in I' of fixed length is finite. This question is answered affirmatively for certain
types of regular components. More generally, we consider regular components of full
additive subcategories with sink maps in a length category.

Recall that a length category is an abelian category where every object X has a finite
composition series; the length of such a composition series will be called the length of X
and denoted by | X|. We denote by [X] the isomorphism class of the object X, and we also
write |[X]] instead of | X|. Let o be a length category, and ¢ a full additive subcategory.
We consider ¢ as a Krull-Schmidt category with short exact sequences, the short exact
sequences being those in .o/ which belong to . Thus, the Auslander-Reiten quiver I' (%)
of o is defined (see [11]), but we consider I' () as a valued translation quiver, see [5],
and we denote by 7, the Auslander-Reiten translation in . An (Auslander-Reiten)
component € of A is, by definition, the full additive subcategory generated by the
indecomposable objects X in #” whose isomorphism classes belong to a fixed component
I of T'(A); of course, I'" = I'(%). A component € of A is said to be regular provided
I' (%) is a stable translation quiver. (Note that a component € of " is regular if and only
if the following condition is satisfied: if X is indecomposable in %, then there exists a
source map f and a sink map ¢ for X in ', and there are short exact sequences (f,f”)
and (g', g) which lie inside 4.) Let € be a regular component of A . We assume in addition
that there are indecomposable objects C(,C, in € and X, X, in A\¥, with
Hom (X, C,) + 0 and Hom (C,, X,) + 0. Finally, assume there is a constant d such that
for any indecomposable object X of ¥, we have |1, X| < d|X|. These conditions are
obviously satisfied in the case that € is a stable component of &/ = 4" = A-mod. (For d,
we may take (dim, A)?, see [10]). They are also satisfied in the following situation: Let [T
be a tilting module, ¢ = #( ') the full subcategory of all A-modules generated by I, and
o = A-mod. (Here, take for X, a suitable dirct summand of [T, for X, a suitable
indecomposable injective A-module; also if 7, X exists, it can be embedded into 7 X, see
[7], thus, again let d = (dim, 4)*)

A valued quiver 4 = (4q, 4,,d,d) 1s given by a quiver (4,, 4,) without multiple
arrows, and two functions d, d' defined on 4, with values in the set IN; of positive integers,
if «: @ — b is an arrow, we write d,, instead of d{(x) and d,, instead of d' (). A valued
translation guiver I' = (I, I}, d, 4, 7) is given by a valued quiver (I, I, d, d') and a
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translation quiver (I3, 7, 7) such that for any non-projective vertex z and any arrow
y =z, wehaved,  =d, andd,,  =d,. Given a valued quiver 4, following Riedtmann
{9, 5] we define a valued translation quiver Z 4 as follows: (Z A), = Z x 4,; the translation
7 is given by 7((i,a)) = (i — 1, a), for ie Z, a e A,; there are arrows (i, a) — (i, b) and
{(i,b) = (i + 1, a) for any arrow a — b in 4 and any i€ Z, and the valuation for these
arrow is

dii,ayi,) = dap = Ay + 1,00
i
déi,aw,b) =dy, = (i) (i + 1,a)°

Since our translation quivers are allowed to have loops (but not multiple arrows), the
notion of a covering as defined by Riedtmann [9] has to be modified: let (I3, I7, 7) and
(I3, I, ©) be stable translation quivers (without multiple arrows); a map

w: (Io, Iy, 1) = (Ig, [T, 7)

is of the form 1 = (ny, %), where ny: I, — Iy, w2 [; — I7 are set-theoretical maps such
that for a: x — y, we have n; (): 7y (x) > 7g (¥), and 7g {1 (x)) = 1 (%4 {x)), for all non-pro-
jective x. Such a map is called a covering provided n, and n, are surjective, and the
restriction of m, to x™ is a bijection from x* onto m,(x)*, and its restriction to x~ is a
bijection from x~ onto 7,(x)”. The covering = is said to be finite, provided my * (x) is
finite, for every vertex x of I If I', I are valued translation quivers, a map n: I’ — I" is
given by a map =: (Iy, I3, 1) — (Ig, I7, 7) such that d; ).y = days Tryniyy = Ay, fOr any
arrow x — y. A covering of valued translation quivers is a map of valued translation
quivers which is a covering of translation quivers. '

Proposition. Assume there exists a covering n. Z A — I'(6), where A is either a finite
valued quiver without oriented cycles or else A = A%, B, C, or D_. Then, for every
fe N, there are only finitely many isomorphism classes of indecomposable modules in €
which have length | (in <f). Also, © is a finite covering.

Proof OnZ4, we define an additive function f by f(x) = |z (x)]. We show that for
every le N, the set f ' () = {x e (Z4),|f (x) = [} is finite. This obviously yields both
assertions. Assume f ' (]) is an infinite set and let us derive a contradiction.

First, assume 4 is a finite valued quiver (without oriented cycles). Since Z A has only
finitely many t-orbits, some t-orbit contains infinitely many vertices from f ~(l). Thus,
there is a € 4, and an infinite subset I < Z, such that f((i, @) = [, for all i e I. We can
assume that a is the unique sink of A. Let % (i) be the additive subcategory generated by
all indecomposable objects X in &, with [X] = = ((i, b)) for some b € A,. If Z is indecom-
posable in ¥, then |7, Z| < d|Z|; thus, if Y - Z is an irreducible map of &, then
{Y]| < (d +1)|Z|. Since 4 has no oriented cycles, there is a bound »n on the length of
all paths in 4. Given b € 4, there is a path from b to ain 4 of length < n. Thus, forie Z,
there is a path in I' (%) from = (i, b)) to n((i, a)) of length < n. It follows that for ie I,

(b, )| = (d + 1) In{(a, )] = (d + 1)1
Let I'=(d + 1)"L. Then |Z] <} for any indecomposable object Z in €(}) with i e .
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Let X, X’ be indecomposable objects in £ \%, and let C, C' be indecomposable objects
in %, such that Hom (X, C) % 0, Hom (C, X'} + 0. Let [C] = =n({j, ¢)), [C"] = =((}, ).
First, suppose there are infinitely many i e I satisfying i £j. Let 0 & ¢: X — C. Using
the sink map of the indecomposable objects in %(j), we can factor ¢ =y, ¢,
where ¥, € Hom (X, C), ¢, e rad (C,, C), with C, € 6(j — 1). By induction, we obtain
a factorization ¢ =y, ¢, - ¢,, where ¥, e Hom (X, C,), o;erad (C;, C;_,), with
C,e%(j — i), and C, = C. However, as soon as the intervall [j — m, j] in Z contains 2"
elements from I, the Harada-Sai lemma [6, 13] asserts that ¢, - - - ¢ = 0. This contradicts
our assumption ¢ =+ 0, and shows that there are only finitely many i € [ satisfving i < J.
Similarly, if we suppose that there are infinitely many i e I satisfying i = j/, we use source
maps in order to factorize any 0 % ¢': C' — X' in the form ¢’ = ¢ --- @), ¥, Where
pierad (Ci_,, C), ¥, e Hom(C,,, X"), with Cy=C, and Cie%{j' + i), and again
the Harada-Sai lemma gives a contradiction. This shows that there are only finitely
many i € I satisfying i = j'. Thus, 7 is finite. This finishes the proof in the case that 4 is
finite.

Before we proceed to study the remaining cases, let us insert the following lemma on
sectional paths due to Bongartz [2] and Igusa-Todorov [8].

Lemma. Let A be a Krull-Schmidt category with short exact sequences, and having sink
maps. Assume the sink map for any indecomposable object Z with [Z] a projective vertex
in (A", is a monomorphism in A, Let X,,..., X, be indecomposable modules, and
fi X, — X,, 1 i< n, irreducible maps. Assume that for all 2 <i < n, either X, is
projective, or T, X; & X, _,. Then f, -+ f, £ 0.

Proof. (For the convenience of the reader, we sketch a short proof). Assume we have
f1 -+ f, = 0. Since irreducible maps are non-zero, we have n = 2. We can assusme that the
X, f; are chosen in such a way that n is minimal. In particular, [X,] is not a projective
vertex in I' (X), since otherwise f; ... f,_, = 0. Since f, is irreducible, there exists an
Auslander-Reiten sequence of the form

{gn *1 [{;]
0ot X,— X, ®X,.,—X,-0.
Assume for some ¢ = 2, the vertices [x;], t < i £ n, are non-projective in I (#). Then, for
n > i 2 t, we obtain inductively Auslander-Reiten sequences

Ff*]
i Givy
0o 1 X, 2N X @t X ® X, 2L X, 5 0.

Here, we use that 7, X;,, & X; (. Since f;---f, =0, there exists #,: Xy — 7, X,
with h,g, = f, -+ f,— . Inductively, we obtain for n > i Z ¢t maps h;: X; - 7, X; with
hyg;=f,- fi_,- Xt =2, then h, g, = f, is a factorization of the irreducible map f; with
g, not a split epimorphism, thus, #, has to be a split monomorphism, thus an isomorphism,
but this means X, & 1, X ,, impossible. Thus, t = 3, and we can assume that [X, ,]isa
projective vertex in I' (7). The sink map for X, _, is of the form

Ji-1
4

X 2@, X, ® X;~2“i_’Xz~1>
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and by assumption, this is a monomorphism in #". Now

t—1
[fl "-f,_z,—h,,()]l: d; }:Oﬁ
*

thus f, -+~ f,_, = 0. But this contradicts the minimality of n. This finishes the proof.

Remark. This lemma gives a direct proof to a result due to Bautista and Smale [4]:
The Auslander-Reiten quiver of an artin algebra does not have sectional cyclic paths.

Next, consider the case A = AZ. We assume that A% has a set of vertices the set Z of
integers, and that there are arrows a — a + 1, for any a € Z. 1t follows that the set of
vertices of ZAL is Z x Z, with arrows (i, a) — (i,a + 1) and (i, a) > (i + 1, a — 1), for all
i,acZ. Let g be an additive function on ZA. Then, for all i,j,a,beZ,

g a) + gL o) =g(Gb+j—N+glia+i—)).

In particular
g((i @) + g((0,0) = g(G, — 1) + 90, a + 1)),

for all i, a € Z. Assume that g takes values in Ny, and let [, = g{(0, 0)). If g ((i, @)) = I, then
both
g, —N=1+1, and g(Oa+i)sI+1,

Assume there are infinitely many vertices (i, a) with g ((i, a)) = .. If there exists some fixed
io, and infinitely many different a,, s € N, with g ({iy, a,)) = [ for all s € N, then there are
infinitely many b,, s € N, with g((0, b)) £ I + I,, namely all the b, = a, + iy. Otherwise,
there must exist infinitely many different i, se N, and for any i, some a4, with
g{li,, a)) = I; in this case g((i,, —i)) <[+ [,. It follows that for some fixed value
I'(L1+ 1), there are infinitely many different vertices (i, a) with g{({, a)) = I'and i = 0 or
i+a=0.

We apply this to the given additive function f(x) = |n(x)|. We see that there is a fixed
value I and infinitely many different a € Z such that either f((0,a)) = or f{(—a, a)) =I.
First, assume there are infinitely many different a € Z such that f((0, a)) = I'. Take in-
tegers u, v such that there are at least 2 different ae Z withu < a < vand £((0, a) = 1.
For every beZ, choose a representative M (b) e n((0, b)), note that there exists an
irreducible map o,: M(b) > M (b + 1). The Harada-Sai lemma [6, 10] asserts that
O, 0,11 - %, = 0, Whereas the lemma above yields that this composition is non-zero.
In order to be able to apply our lemma, we have to observe that for all i, a € Z, we have
n{(i — 1, @)) + n((i, a — 2)), since 7 is assumed to be a covering. Similarly, we proceed in
the case that there are infinitely many a € Z such that f((— a, a)) = I'. This finishes the
proof for 4 = A%,

Consider now A =B_, C_, or D, . The set of vertices of 4 is Ny for 4=B_, C_,
and N, U {0’} for 4 = ID_; there are arrows a — a + 1, for ae Ny, and, for 4 =D,
an additional arrow 0’ — 1; the only nontrivial valuation is for the arrow 0 — 1 for
A=B_andC_, namelyd,, = 1,dy, =2for4=B_,anddy, =2,dy, = 1fora=C,_.

9*
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The function [ on ZA defines a function g on ZAY as follows: let

w2 12
and
2 1, 0) 4=8B
g((i, 0) =4 f(G, 0)) provided 4 =C.
S@0) + £ 0)) 4=D

Oune easily checks that g is additive on ZAZ, since f is additive on ZA. It follows that
for some fixed value ! there are infinitely many different vertices (i, a) ¢ Z x Z with
g(i,a) =1 and i =0 or i + a = 0. Consequently, there are infinitely many different
ae N, such that either /((0,a)) =1 or f((—a,a)) =I'. Again, we obtain a contradic-
tion by using both the Harada-Sai lemma and our lemma above. This finishes the
proof.

Remark 1. The special case of 4 being a star has been treated before in {1].

Remark 2. ltis obvious thatfor 4 = A% B_,C,,D_, there are no finite coverings
ZA - I'. This shows that under our assumptions, any component I” with a covering
ZA—>T,4=A% B, C,, D, is actually of the form ZA. For of = A-mod, this has
been observed in [5] in the cases A=B_, C_, D, and in [3] in the case 4 = A%,
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