Modules of bounded length in Auslander-Reiten components

By

EUGENIA MARMOLEJO and CLAUS MICHAEL RINGEL

Let A be an artin algebra, and Γ a component of the Auslander-Reiten quiver of A. It has been asked [12] whether the number of isomorphism classes of indecomposable A-modules in Γ of fixed length is finite. This question is answered affirmatively for certain types of regular components. More generally, we consider regular components of full additive subcategories with sink maps in a length category.

Recall that a *length category* is an abelian category where every object X has a finite composition series; the length of such a composition series will be called the length of X and denoted by $|X|$. We denote by $[X]$ the isomorphism class of the object X, and we also write $|[X]|$ instead of |X|. Let $\mathscr A$ be a length category, and $\mathscr K$ a full additive subcategory. We consider $\mathcal X$ as a Krull-Schmidt category with short exact sequences, the short exact sequences being those in $\mathscr A$ which belong to $\mathscr K$. Thus, the Auslander-Reiten quiver $\Gamma(\mathscr K)$ of $\mathcal X$ is defined (see [11]), but we consider $\Gamma(\mathcal X)$ as a valued translation quiver, see [5], and we denote by $\tau_{\mathcal{K}}$ the Auslander-Reiten translation in \mathcal{K} . An (Auslander-Reiten) *component* $\mathscr C$ *of* $\mathscr K$ *is, by definition, the full additive subcategory generated by the* indecomposable objects X in $\mathcal K$ whose isomorphism classes belong to a fixed component Γ' of $\Gamma(\mathcal{K})$; of course, $\Gamma' = \Gamma(\mathcal{C})$. A component \mathcal{C} of \mathcal{K} is said to be *regular* provided Γ (%) is a stable translation quiver. (Note that a component % of $\mathcal X$ is regular if and only if the following condition is satisfied: if X is indecomposable in \mathscr{C} , then there exists a source map f and a sink map g for X in \mathcal{K} , and there are short exact sequences (f, f') and (g', g) which lie inside \mathcal{C} .) Let \mathcal{C} be a regular component of \mathcal{K} . We assume in addition *that there are indecomposable objects* C_1, C_2 *in* \mathscr{C} *and* X_1, X_2 *in* $\mathscr{K} \backslash \mathscr{C}$ *, with* Hom $(X_1, C_1) \neq 0$ and Hom $(C_2, X_2) \neq 0$. Finally, assume there is a constant d such that *for any indecomposable object X of* \mathcal{C} *, we have* $|\tau_{\mathcal{X}} X| \le d |X|$. These conditions are obviously satisfied in the case that $\mathscr C$ is a stable component of $\mathscr A = \mathscr K = A$ -mod. (For d, we may take $(\dim_k A)^2$, see [10]). They are also satisfied in the following situation: Let Λ be a tilting module, $\mathcal{K} = \mathcal{G}(\mathcal{F})$ the full subcategory of all A-modules generated by \mathcal{F} , and $\mathcal{A} = A$ -mod. (Here, take for X_1 a suitable dirct summand of \overline{A} , for X_2 a suitable indecomposable injective A-module; also if $\tau_X X$ exists, it can be embedded into τX , see [7], thus, again let $d = (\dim_k A)^2$.)

A valued quiver $A = (A_0, A_1, d, d')$ is given by a quiver (A_0, A_1) without multiple arrows, and two functions d, d' defined on Λ_1 with values in the set \mathbb{N}_1 of positive integers, if $\alpha: a \to b$ is an arrow, we write d_{ab} instead of $d(\alpha)$ and d'_{ab} instead of $d'(\alpha)$. A valued translation quiver $\Gamma = (F_0, F_1, d, d', \tau)$ is given by a valued quiver (F_0, F_1, d, d') and a

translation quiver $(\Gamma_0, \Gamma_1, \tau)$ such that for any non-projective vertex z and any arrow $y \to z$, we have $d_{\tau z, y} = d'_{yz}$ and $d'_{\tau z, y} = d_{yz}$. Given a valued quiver Λ , following Riedtmann [9, 5] we define a valued translation quiver \mathbb{Z} A as follows: $(\mathbb{Z}A)_0 = \mathbb{Z} \times A_0$; the translation τ is given by $\tau((i, a)) = (i - 1, a)$, for $i \in \mathbb{Z}$, $a \in \Lambda_0$; there are arrows $(i, a) \to (i, b)$ and $(i, b) \rightarrow (i + 1, a)$ for any arrow $a \rightarrow b$ in Δ and any $i \in \mathbb{Z}$, and the valuation for these arrow is

$$
d_{(i,a)(i,b)} = d_{ab} = d'_{(i,b)(i+1,a)},
$$

$$
d'_{(i,a)(i,b)} = d'_{ab} = d'_{(i,b)(i+1,a)}.
$$

Since our translation quivers are allowed to have loops (but not multiple arrows), the notion of a covering as defined by Riedtmann [9] has to be modified: let $(\Gamma_0, \Gamma_1, \tau)$ and $(\Gamma_0', \Gamma_1', \tau)$ be stable translation quivers (without multiple arrows); a map

$$
\pi\colon(\varGamma_0,\varGamma_1,\tau)\to(\varGamma_0',\varGamma_1',\tau)
$$

is of the form $\pi = (\pi_0, \pi_1)$, where $\pi_0: \Gamma_0 \to \Gamma'_0$, $\pi_1: \Gamma_1 \to \Gamma'_1$ are set-theoretical maps such that for $\alpha: x \to y$, we have $\pi_1(\alpha): \pi_0(x) \to \pi_0(y)$, and $\pi_0(\tau(x)) = \tau(\pi_0(x))$, for all non-projective x. Such a map is called a *covering* provided π_0 and π_1 are surjective, and the restriction of π_0 to x^{\dagger} is a bijection from x^{\dagger} onto $\pi_0(x)^+$, and its restriction to x^- is a bijection from x^- onto $\pi_0(x)^-$. The covering π is said to be *finite*, provided $\pi_0^{-1}(x)$ is finite, for every vertex x of Γ' . If Γ , Γ' are valued translation quivers, a map $\pi: \Gamma \to \Gamma'$ is given by a map π : $(\Gamma_0, \Gamma_1, \tau) \to (\Gamma'_0, \Gamma'_1, \tau)$ such that $d_{\pi(x)\pi(y)} = d_{xy}, d'_{\pi(x)\pi(y)} = d'_{xy}$, for any arrow $x \rightarrow y$. A covering of valued translation quivers is a map of valued translation quivers which is a covering of translation quivers.

Proposition. Assume there exists a covering $\pi: \mathbb{Z} \to \Gamma(\mathscr{C})$, where Δ is either a finite *valued quiver without oriented cycles or else* $\Delta = \mathbb{A}_{\infty}^{\infty}$, \mathbb{B}_{∞} , \mathbb{C}_{∞} , or \mathbb{D}_{∞} . Then, for every $I \in \mathbb{N}$, there are only finitely many isomorphism classes of indecomposable modules in $\mathscr C$ which have length l (in \mathcal{A}). Also, π is a finite covering.

P r o o f. On \mathbb{Z} A, we define an additive function f by $f(x) = |\pi(x)|$. We show that for every $l \in \mathbb{N}$, the set $f^{-1}(l) = {x \in (\mathbb{Z}\Delta)_0 | f(x) = l}$ is finite. This obviously yields both assertions. Assume $f^{-1}(l)$ is an infinite set and let us derive a contradiction.

First, assume Δ *is a finite valued quiver* (without oriented cycles). Since $\mathbb{Z}\Lambda$ has only finitely many *τ*-orbits, some *τ*-orbit contains infinitely many vertices from $f^{-1}(l)$. Thus, there is $a \in A_0$ and an infinite subset $I \subseteq \mathbb{Z}$, such that $f((i, a)) = I$, for all $i \in I$. We can assume that a is the unique sink of Δ . Let $\mathcal{C}(i)$ be the additive subcategory generated by all indecomposable objects X in \mathscr{C} , with $[X] = \pi((i, b))$ for some $b \in A_0$. If Z is indecomposable in \mathscr{C} , then $|\tau_{\mathscr{K}}Z|\leq d|Z|$; thus, if $Y\to Z$ is an irreducible map of \mathscr{K} , then $|Y| \leq (d+1)|Z|$. Since Δ has no oriented cycles, there is a bound n on the length of all paths in Δ . Given $b \in \Delta_0$, there is a path from b to a in Δ of length $\leq n$. Thus, for $i \in \mathbb{Z}$, there is a path in $\Gamma(\mathscr{C})$ from $\pi(i, b)$ to $\pi((i, a))$ of length $\leq n$. It follows that for $i \in I$,

$$
|\pi((b, i))| \leq (d + 1)^n |\pi((a, i))| = (d + 1)^n l.
$$

Let $l' = (d + 1)^n l$. Then $|Z| \leq l'$ for any indecomposable object Z in $\mathcal{C}(i)$ with $i \in I$.

Let X, X' be indecomposable objects in $\mathcal{K}\backslash\mathcal{C}$, and let C, C' be indecomposable objects in \mathscr{C} , such that Hom $(X, C) = 0$, Hom $(C', X') = 0$. Let $[C] = \pi((i, c)$, $[C'] = \pi((i', c'))$. First, suppose there are infinitely many $i \in I$ satisfying $i \leq j$. Let $0 + \varphi: X \to C$. Using the sink map of the indecomposable objects in $\mathscr{C}(j)$, we can factor $\varphi = \psi_1 \varphi_1$, where $\psi_1 \in \text{Hom}(X, C)$, $\varphi_1 \in \text{rad}(C_1, C)$, with $C_1 \in \mathcal{C}(j - 1)$. By induction, we obtain a factorization $\varphi = \psi_m \varphi_m \cdots \varphi_1$, where $\psi_m \in \text{Hom}(X, C_m)$, $\varphi_i \in \text{rad } ((C_i, C_{i-1}),$ with $C_i \in \mathcal{C}(j - i)$, and $C_0 = C$. However, as soon as the intervall $[j - m, j]$ in \mathbb{Z} contains $2^{i'}$ elements from I, the Harada-Sai lemma [6, 13] asserts that $\psi_m \cdots \varphi_1 = 0$. This contradicts our assumption $\varphi \neq 0$, and shows that there are only finitely many $i \in I$ satisfying $i \leq j$. Similarly, if we suppose that there are infinitely many $i \in I$ satisfying $i \geq j'$, we use source maps in order to factorize any $0 + \varphi' : C' \to X'$ in the form $\varphi' = \varphi'_1 \cdots \varphi'_m \psi'_m$, where $\varphi'_i \in \text{rad } (C'_{i-1}, C'_i), \ \psi'_m \in \text{Hom } (C'_m, X'), \text{ with } C'_0 = C', \text{ and } C'_i \in \mathscr{C}(j'+i), \text{ and again}$ the Harada-Sai lemma gives a contradiction. This shows that there are only finitely many $i \in I$ satisfying $i \geq j'$. Thus, I is finite. This finishes the proof in the case that Δ is finite.

Before we proceed to study the remaining cases, let us insert the following lemma on sectional paths due to Bongartz [2] and Igusa-Todorov [81.

Lemma. *Let J{ be a Krult-Schmidt category with short exact sequences, and having sink maps. Assume the sink map for any indecomposable object Z with [Z] a projective vertex in* $\Gamma(\mathcal{K})$, *is a monomorphism in* \mathcal{K} *. Let* X_0, \ldots, X_n be indecomposable modules, and $f_i: X_{i-1} \to X_i, 1 \leq i \leq n$, irreducible maps. Assume that for all $2 \leq i \leq n$, either X_i is *projective, or* $\tau_{\mathscr{K}} X_i \not\approx X_{i-2}$. Then $f_1 \cdots f_n \neq 0$.

P r o o f. (For the convenience of the reader, we sketch a short proof). Assume we have $f_1 \cdots f_n = 0$. Since irreducible maps are non-zero, we have $n \ge 2$. We can assume that the X_i , f_i are chosen in such a way that n is minimal. In particular, $[X_n]$ is not a projective vertex in $\Gamma(\mathcal{K})$, since otherwise $f_1 \dots f_{n-1} = 0$. Since f_n is irreducible, there exists an Auslander-Reiten sequence of the form

$$
0 \to \tau_{\mathcal{K}} X_n \xrightarrow{\{g_n \ast\}} X_{n-1} \oplus X'_{n-1} \xrightarrow{\left[\begin{smallmatrix} J_n \\ \ast \end{smallmatrix}\right]} X_n \to 0.
$$

Assume for some $t \ge 2$, the vertices $[x_i]$, $t \le i \le n$, are non-projective in $\Gamma(\mathcal{K})$. Then, for $n > i \geq t$, we obtain inductively Auslander-Reiten sequences

$$
0 \to \tau_{\mathcal{K}} X_i \xrightarrow{[g_i * *]} X_{i-1} \oplus \tau_{\mathcal{K}} X_{i+1} \oplus X'_{i-1} \xrightarrow{[f_i] \atop \text{def } \mathcal{K}} X_i \to 0.
$$

Here, we use that $\tau_{\mathscr{K}}X_{i+1} \neq X_{i-1}$. Since $f_1 \cdots f_n = 0$, there exists $h_n: X_0 \to \tau_{\mathscr{K}} X_n$. with $h_n g_n = f_1 \cdots f_{n-1}$. Inductively, we obtain for $n > i \geq t$ maps $h_i: X_0 \to \tau_{\mathcal{K}} X_i$ with $h_i g_i = f_1 \cdots f_{i-1}$. If $t = 2$, then $h_t g_t = f_1$ is a factorization of the irreducible map f_1 with g_t not a split epimorphism, thus, h_t has to be a split monomorphism, thus an isomorphism, but this means $X_0 \approx \tau_{\mathscr{K}} X_2$, impossible. Thus, $t \geq 3$, and we can assume that $[X_{t-1}]$ is a projective vertex in $\Gamma(\mathcal{K})$. The sink map for X_{t-1} is of the form

$$
X_{t-2} \oplus \tau_{\mathscr{K}} X_t \oplus X'_{t-2} \xrightarrow{\begin{bmatrix} f_{t-1} \\ g_t \\ g_{t-1} \end{bmatrix}} X_{t-1},
$$

and by assumption, this is a monomorphism in \mathcal{K} . Now

$$
[f_1\cdots f_{t-2},-h_t,0]\begin{bmatrix}f_{-1}\\g_t*\end{bmatrix}=0,
$$

thus $f_1 \cdots f_{t-2} = 0$. But this contradicts the minimality of n. This finishes the proof.

R e m a r k. This lemma gives a direct proof to a result due to Bautista and Smalo [4]: The Auslander-Reiten quiver of an artin algebra does not have sectional cyclic paths.

Next, consider the case $A = \mathbb{A}_{\infty}^{\infty}$. We assume that $\mathbb{A}_{\infty}^{\infty}$ has a set of vertices the set \mathbb{Z} of integers, and that there are arrows $a \to a + 1$, for any $a \in \mathbb{Z}$. It follows that the set of vertices of $\mathbb{Z}A_{\infty}^{\infty}$ is $\mathbb{Z}\times\mathbb{Z}$, with arrows $(i, a) \rightarrow (i, a + 1)$ and $(i, a) \rightarrow (i + 1, a - 1)$, for all $i, a \in \mathbb{Z}$. Let g be an additive function on $\mathbb{Z}/\mathbb{A}_{\infty}^{\infty}$. Then, for all $i, j, a, b \in \mathbb{Z}$,

$$
g((i, a)) + g((j, b)) = g((i, b + j - i)) + g((j, a + i - j)).
$$

In particular

$$
g((i, a)) + g((0, 0)) = g((i, -i)) + g((0, a + i)),
$$

for all i, $a \in \mathbb{Z}$. Assume that g takes values in \mathbb{N}_0 , and let $l_0 = g((0, 0))$. If $g((i, a)) = l$, then both

$$
g((i, -i)) \le l + l_0
$$
 and $g((0, a + i)) \le l + l_0$.

Assume there are infinitely many vertices (i, a) with $g((i, a)) = l$. If there exists some fixed i_0 , and infinitely many different a_s , $s \in \mathbb{N}$, with $g((i_0, a_s)) = l$ for all $s \in \mathbb{N}$, then there are infinitely many b_s , $s \in \mathbb{N}$, with $g((0, b_s)) \leq l + l_0$, namely all the $b_s = a_s + i_0$. Otherwise, there must exist infinitely many different i_s , $s \in \mathbb{N}$, and for any i_s some a'_s with $g((i_s, a'_s)) = l$; in this case $g((i_s, -i_s)) \leq l + l_0$. It follows that for some fixed value $l' \ (\leq l + l_0)$, there are infinitely many different vertices (i, a) with $g((i, a)) = l'$ and $i = 0$ or $i + a = 0$.

We apply this to the given additive function $f(x) = |\pi(x)|$. We see that there is a fixed value *l'* and infinitely many different $a \in \mathbb{Z}$ such that either $f((0, a)) = l'$ or $f((-a, a)) = l'$. First, assume there are infinitely many different $a \in \mathbb{Z}$ such that $f((0, a)) = l'$. Take integers u, v such that there are at least 2^{*v*} different $a \in \mathbb{Z}$ with $u \le a \le v$ and $f((0, a)) = V$. For every $b \in \mathbb{Z}$, choose a representative $M(b) \in \pi((0, b))$, note that there exists an irreducible map α_b : *M(b)* \rightarrow *M(b + 1).* The Harada-Sai lemma [6, 10] asserts that $\alpha_{u} \alpha_{u+1} \cdots \alpha_{v-1} = 0$, whereas the lemma above yields that this composition is non-zero. In order to be able to apply our lemma, we have to observe that for all i, $a \in \mathbb{Z}$, we have $\pi((i - 1, a)) \neq \pi((i, a - 2))$, since π is assumed to be a covering. Similarly, we proceed in the case that there are infinitely many $a \in \mathbb{Z}$ such that $f ((-a, a)) = l'$. This finishes the proof for $\Lambda = \mathbb{A}_{\infty}^{\infty}$.

Consider now $A = \mathbb{B}_{\infty}$, \mathbb{C}_{∞} , or \mathbb{D}_{∞} . The set of vertices of A is \mathbb{N}_0 for $A = \mathbb{B}_{\infty}$, \mathbb{C}_{∞} , and $\mathbb{N}_0 \cup \{0\}$ for $\Delta = \mathbb{D}_{\infty}$; there are arrows $a \to a + 1$, for $a \in \mathbb{N}_0$, and, for $\Delta = \mathbb{D}_{\infty}$, an additional arrow $0' \rightarrow 1$; the only nontrivial valuation is for the arrow $0 \rightarrow 1$ for $\Delta = \mathbb{B}_{\infty}$ and \mathbb{C}_{∞} , namely $d_{0,1} = 1$, $d'_{0,1} = 2$ for $\Delta = \mathbb{B}_{\infty}$, and $d_{0,1} = 2$, $d'_{0,1} = 1$ for $\Delta = \mathbb{C}_{\infty}$.

The function f on $Z\!\!\!Z\!\!\!Z$ defines a function g on $Z\!\!\!Z\!\!\!Z_{\infty}^{\infty}$ as follows: let

$$
g((i, a)) = \begin{cases} f((i, a)) & \text{for} \quad a \geq 1 \\ f((i + a, -a)) & \text{for} \quad a \leq -1 \end{cases}
$$

and

$$
g((i, 0)) = \begin{cases} 2 f((i, 0)) & \Delta = \mathbb{B} \\ f((i, 0)) & \text{provided} \quad \Delta = \mathbb{C} \\ f((i, 0)) + f((i, 0')) & \Delta = \mathbb{D} \end{cases}
$$

One easily checks that g is additive on $\mathbb{Z}A^{\infty}_{\infty}$, since f is additive on $\mathbb{Z}A$. It follows that for some fixed value *l'* there are infinitely many different vertices $(i, a) \in \mathbb{Z} \times \mathbb{Z}$ with $g((i, a)) = l'$ and $i = 0$ or $i + a = 0$. Consequently, there are infinitely many different $a \in \mathbb{N}_1$ such that either $f((0, a)) = l'$ or $f((-a, a)) = l'$. Again, we obtain a contradiction by using both the Harada-Sai lemma and our lemma above. This finishes the proof.

R e m a r k 1. The special case of Δ being a star has been treated before in [1].

R e m a r k 2. It is obvious that for $\Delta = \mathbb{A}_{\infty}^{\infty}, \mathbb{B}_{\infty}, \mathbb{C}_{\infty}, \mathbb{D}_{\infty}$, there are no finite coverings \mathbb{Z} A \rightarrow F. This shows that under our assumptions, any component F with a covering $\mathbb{Z} \Delta \to \Gamma$, $\Delta = \mathbb{A}_{\infty}^{\infty}$, \mathbb{B}_{∞} , \mathbb{C}_{∞} , \mathbb{D}_{∞} is actually of the form $\mathbb{Z} \Delta$. For $\mathcal{A} = A$ -mod, this has been observed in [5] in the cases $\Delta = \mathbb{B}_{\infty}$, \mathbb{C}_{∞} , \mathbb{D}_{∞} , and in [3] in the case $\Delta = \mathbb{A}_{\infty}^{\infty}$.

References

- [1] M. AUSLANDER, R. BAUTISTA, M.I. PLATZECK, [. REITEN and S.O. SMALO, Aimost split sequences whose middle term has at most two indecomposable summands. Canad. J. Math. 31, 942-960 (1979).
- [2] K. BONGARTZ, On a result of Bautista and Smalo on cycles. Comm. Algebra 1t, 2123-2124 (1983).
- [3] M. C. R. BUTLER and C. M. RINCEL, Auslander-Reiten sequences with few middle terms, with applications to string algebras. Comm. Algebra 15, 145-179 (1987).
- [4] R. BAUTISTA and S. O. SMALØ, Nonexistent cycles. Comm. Algebra 11, 1755-1767 (1983).
- [5] D. HAPPEL, U. PREISER and C. M. RINGEL, Vinberg's characterization of Dynkin diagrams using subadditive functions with application to DTr-periodic modules. LNM 832 , $280-294$, Berlin-Heidelberg-New York 1980.
- [6] M. HARADA and Y. SAI, On categories of indecomposable modules I. Osaka J. Math. 7, 323-344 (1970).
- [7] M. HOSHINO, Splitting torsion theories induced by tilting modules. Comm. Algebra 11, 427- 441 (1983).
- [8] K. IGUSA and G. TODOROV, A characterization of finite Auslander-Reiten quivers. J: Algebra 89, 148-177 (1984).
- [9] CHR. RIEDTMANN, Algebren, Darstellungsköcher, Überlagerungen und zurück. Comment. Math. Helv. 55, 199-224 (1980).
- [10] C. M. RINGEL, Report on the Brauer-Thrall conjectures. LNM 831, 104-136, Berlin-Heidelberg-New York 1980.
- [11] C. M. RINGEL, Tame algebras and integral quadratic forms. LNM 1099, Berlin-Heidelberg-New York 1984.

- [12] C. M. RINGEL, Representation theory of finite dimensional algebras. Durham lectures. In: Representations of Algebras. London Math. Soc. Lecture Note Series. 116, 7-79 (1986).
- [13] C. M. RINGEL, The regular components of the Auslander-Reiten quiver of a tilted algebra. To appear in Chinese Ann. Math.

Eingegangen am 22.11. 1986

Anschrift der Autoren :

Eugenia Marmolejo Claus Michael Ringel Fakultät für Mathematik Universität Bielefeld Universitätsstr. 1 D-4800 Bielefeld i