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SELF-EQUIVALENT FLOWS ASSOCIATED WITH THE SINGULAR
VALUE DECOMPOSITION *

D. S. WATKINS ' AND L. ELSNER ¢

Abstract. A family of fiows which are continuous analogues of the constant and variable shift
QR algorithms for the singular value decomposition problem is presented, and it is shown that certain
of these flows interpolate the QR algorithm exactly. Here attention is not restricted to bidiagonal
matrices; arbitrary rectangular matrices are considered.
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1. Introduction. In recent years there has been considerable interest in contin-
uous analogues of the QR algorithm and other algorithms for calculating eigenvalues
of matrices. See, for example, the works of Symes [14]; Deift, Nanda, and Tomei [4];
Nanda (7], [8]; Chu {1]; Watkins [16]; and Watkins and Elsner [17], all of which have
appeared since 1982. See also the work of Rutishauser [12],(13] from the 1950’s, which
has been overlooked until recently. Given a matrix A whose eigenvalues are desired,
the QR algorithm produces a sequence Ay, Ay, Az, - such that each member of the
sequence is similar to A, and the matrices tend to upper triangular form. A continu-
ous analogue of the QR algorithm produces a smooth, matrix-valued function or flow
Bi(t), such that, for all ¢, B(t) is similar to A, and B(m) = A, for m =0,1,2, -
That is, the flow interpolates the QR algorithm. More generally we may have B(t)

similar to B = g(A) and B(m) = g(Apm) for some specified function g. Such a flow
must satisfy

(1) B(t) = F(t)~'BF(t)

for some nonsingular matrix function F(t). In [17] we studied functions of the type
(1), which we called self-similar flows.

When studying eigenvalues it is natural to employ similarity transformations,
since they preserve eigenvalues. For certain other problems, such as the generalized
eigenvalue problem and the singular value problem, it is more natural to consider
equivalences. Recall that two matrices A/A € C™™ are equivalent if there exist
nonsingular matrices F € C™ " and Z € O™ ™ guch that A = FAZ. If F and Z
are unitary, A and 4 are unitarily equivalent. A matrix-valued function B () defined
on some interval is called a self-equivalent flow if there exist smooth, nonsingular,
matrix-valued functions F(t) € C"*" and Z(t) € C™™ and B € C"*™, such that
B(t} = F(t)BZ(t). If F(t) and Z (¢) are unitary for all ¢, the flow is unitarily self-
equu{a!ent. In this paper we will develop unitarily self-equivalent flows associated with
th_e singular value decomposition (SVD). We presented self-equivalent flows associated
with the generalized eigenvalue problem in (18].

In [2] Chu presented a fiow which is a continuous analogue of the QR algorithm
for the SVD. The present paper constructs a large family of flows of which the flow
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of [2] is a single example. Where Chu restricted his attention to bidiagonal matrices,
we consider arbitrary (full or banded) rectangular matrices.

Our presentation begins with the introduction of an explicit version of the QR
algorithm which can be used to find the SVD of an (almost) arbitrary rectangular
matrix. By contrast, the implicit version of the QR algorithm which is usually used
can be applied only to unreduced bidiagonal matrices. Our explicit version is not
recommended for practical use. It is important because it adds to our understanding
of the QR algorithm and its relationship to self-equivalent flows. For simplicity we
consider the QR algorithm with a constant shift at first. We show that the algorithm
converges to the SVD for almost all starting matrices.

In §3 we show that every self-equivalent flow must satisfy a differential equation of
the general form B = CB+BD. Conversely, every solution of a differential equation of
this form must be a self-equivalent flow. This is a slight generalization of observations
made in (2], [3].

In §4 we introduce a family of unitarily self-equivalent flows associated with the
QR algorithm and present theorems which show that under mild assumptions the flows
converge to the SVD of the initial matrix B. One member of the family interpolates
the constant shift QR algorithm.

We then consider shifted and generalized QR algorithms and a family of analogous
flows. These flows differ from those considered earlier only in that the differential
equations they satisfy are nonautonomous. Given any shift strategy for the QR
algorithm for which none of the shifts is an eigenvalue of A*A or AA*, we show
how to construct numerous flows which interpolate the shifted algorithm. Of course,
almost all shift strategies satisfy this condition.

In the final section of the paper we show that all of the flows which we have
discussed preserve banded forms. That is, if the initial matrix B is banded, then B(¢)
has the same band structure for all ¢ > 0.

2. The QR algorithm for the SVD. Let 4 € C™*™. The most common
way of calculating the singular value decomposition of A is to apply a variant of
the implicit QR algorithm due to Golub and Kahan (see [6]). This requires that A
be reduced to bidiagonal form before the QR iterations are begun. We will discuss
an explicit variant which does not require the preliminary reduction to bidiagonal
form. While this variant is not recommended for practical use, it is useful for our
development. To keep matters simple we restrict our attention to the constant shift
Case at first. Let u be a fixed positive number. Setting Ag = A, we create a sequence
of unitarily equivalent matrices Ag, Ay, Aa,-- as follows: Given A;-;, perform QR
decompositions of both A Aoy +ply and A; A7 + pln:

(2) Al Air + pln = QiRi,  Ai Al 4+l = BS;,

where Q; € C™*™ and P, € C™*" are unitary, and R; € C™*™ and S; € C""" are
upper triangular with real, positive main diagonal entries. Now define A; by

(3) A; = PP A1 Q.
The reason for using the positive shift yu is that it guarantees that Al_jAi1+pln

and At—lA _y +ul, are nonsingular. Therefore the factors in the QR decomposxtlons

in (2) are uniquely determined, and so is A, via (3). If Ai is square and nonsingular,
We can take u = 0 and get uniquely determined A,. (If A is singular or nonsquare,
one can still carry out the steps (2) and (3) with 4 = 0, but not in a unique manner. )
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Since obviously

(4) AtA = Q1A Ai1Qi = RiQi — plm
and
(5) A;A: = P,’A;-]A:_lp.' = S—;P“ - #Iﬂ,

we see that the transformations A]_,A._; — A{A; and Ai1Al_, — A;A; amount
to QR steps. Therefore by standard results (see, e.g., (19)), the sequences (A7 A,} and
(A;A?) converge to diagonal form.

For:=0,1,2, -- let

Qi=1Q2--Qi, P.= PP, - F,
Ri=RRi_, Ry, Si = 85151
Then
) ATA; = QA AQ,,
(8) AA = PPAA*P;,
and by induction
(9) (A.A + ﬂIm)i = Q,’R{, (Afi* + [lln)i = P,'S;'.

These are @R decompositions.
In addition, it is not hard to show that

(10) AJA; = RiA:_ AR = RA*AR],
(11) AiAY = §iA; 1A} 57 = §,AA* S
and

(12) A; = S A R = S;ARTY,

(13) A = RiA;_ 87 = RjA* S,

Only in (12) and (13) do we use the fact that in (2) the same p is used in both
decompositions.

In order to get some idea of how this algorithm relates to the usual implicit
QR algorithm for the SVD, suppose A is square, upper triangular, and nonsingular,
with real, positive main diagonal entries. There is no loss of generality in making
these assumptions, for there exist procedures [5] for reducing an arbitrary problem
to problems for which the matrix has this form. Then by (12) all A; will be upper
triangular with positive main diagonal entries. By (3) we have

PiAi = A Qi

which. s]ixows that we can get A; by computing the QR decomposition of Ai—léj'
fl‘hus: 1‘t is enough to find Q;. If A is bidiagonal and unreduced, one can determine Qi
implicitly, without forming A}_, A;~1. This is documented in [6], for example.
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2.1. Convergence of the QR algorithm for the SVD. We have already
noted that A A, and A;A; converge to diagonal form. If all A, are upper triangular
with positive main diagonal entries, convergence of the A, to diagonal form can be
inferred from convergence of the A’ A;. For in this case A; is the upper Cholesky
factor of A’A,. By continuity of the Cholesky decomposition, convergence of A; A,
to diagonal form implies the same for A,. The main diagonal entries of A; converge
to the singular values of A. The columns of P, and Q; converge to the left and right
singular vectors, respectively.

While the upper triangular case is the most important, it is nevertheless inter-
esting to study the convergence of (4;) in general. The following examples show
that convergence of A} A, and A, A} does not, in general, imply convergence of A; to
diagonal form.

Ezample 1. Let

. 01
[0 1],
which has singular values o3 = 1 and 03 = 0. Then

it i 00 e 10
AA=[0 1], Ad _[0 0},
% Q1 = I and P, = I, in (2) and, from (3), A; = A. Thus A; = Afor all i.

Ezample 2. Let A € C™*" be any unitary matrix. Then A"A=1,and AA =1I,.
Again A; = A for all 4.

These examples notwithstanding, the sequence (A;) usually does converge to di-
agonal form, as we shall now show. Our approach can also be used to prove the
convergence of the flows. We have the choice of a geometric proof in the spirit of [11]
and [15] or a proof along classical lines [19, p. 517]. In this case we opt for the latter
because it is shorter. )

In the statements and proofs of the convergence theorems we suppose Ae
with rank(A) = r. Let A = USV* be the SVD of A. Then U = [u1,---,un] €C"*",
V=lv, - vy, € C™™, and ¥ = diag{o1,--*,0r} € cn ™, lavhere ug, -+, U (the
left singular vectors of fi) are orthonormal eigenvectors (lf AA , U1, ", Um (the left
singular vectors of A) are orthonormal eigenvectors of AAdandeoy 2 20,>0

~ Ak A
are *the nonzero singular values of A. The common eigenvalues of A A + plm, and
AA" + ul, which are greater than y are A\; = 02 + 4,1 =1,2,---,7. Any additional

eigenvalues are equal to u.

Cnxm

Let ey,---,e; denote the canonical basis vectors for C’, where the value of j
depends on the context. Given vectors wy,- -+, Wk € C7, let (wy, -, wk) denote the
subspace of C? spanned by wy, - - -, Wk-

THEOREM 2.1. Suppose oy > 0k+1 for some k, and
(14) (o1, 08) O {eksr, - rem) = {0} (0 C™),

(15) (- ) N {exs1re--ren) = {0} (in C™).

Let {A;} be the sequence defined by (3). Partition each A; as
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with AY € C¥*k. Then AY) — 0 and A{) — 0 asi — co. The singular values of

A(‘) and A(2 converge to {oy,---,0x} and {ok+1, -}, respectively. The convergence
13 hnear with contraction number Agy1/Ak.
Remarks. (1) The subspace conditions (14) and (15) are satisfied for almost all

choices of A [15, pp. 429-430]. However, (14) is violated by the matrix in Example 1,
since in that case v; = es.

(2) The matrix of Example 2 does not satisfy ox > ox41 for any & because
01 =09 =--- =g, = 1. The only matrices for which all singular values are equal are
multiples of unitary matrices.

(3) The assumption that the shift y is positive simplifies the statement and proof
of the theorem but is not crucial to our arguments. All that is really needed is that

—u is not an eigenvalue of A" A and AA", and A" A+ pl,, and AA’ +pI, do not have
any eigenvalues of equal magnitude and opposite sign.

Proof. Define A € C™ ™ by A = diag{Ay, -+, Ar}. Then A*A + ul, = VAV".
By the first equation of (9) we have

Ry = (A"A+ pl,) = VAV

The subspace condition (14) guarantees that V* has a block LU decomposition

. Iy © X1 X
V*= = .
Lx [ Lar Ik ] [ 0 X }

Clearly
QiR:i = V(A'LA™YA'X.

Define A; € C*** and A, € CI™~F)>X0m—k) by A = diag{As,---, s} and A2 =
diag{Ak+1,---}. Then A = diag{A;,A}, and

. " Ik 0
A'LA™ = : — )

Since Ak > Agt1, A'LA™* — I, linearly with contraction number Ax41/Ax. Let
Q‘Ri be the QR decomposition of A*X. Then since A'X is block upper triangular,
Q, must have the block diagonal form §; = dlag{Q(') (‘)} where Q(') e C*** and

QY € Ctm=k1x(m=k) are unitary. Now Q,R; can be written as
QiRi = VQu(QIN' LA™ Q)) R,

Let Q;R; be the QR decomposition of QAN LA—*Q;. Since QN LA Qi — I lin-
early with contraction number Ax4;/Ak, the same is true of Q,—. Since

Ri = (VQiQ:)(RiRy),
and QR decompositions are unique, we have
Qi =VQiQi.
Repeating this argument starting from the second equation of (9), we find that

‘P‘f =Ui)§lg,‘,
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where P; and I:’, are unitary, P; = diag{ﬁl('-),ﬁz(")}, with 131(:') e C** and B, - I,
linearly with contraction number Agyq/Ax-
By (6) Ai = P*AQ;, so

A; = PP (U*AV)QiQ: = P! (PrEQ:)Q:.

Define L, = dia.‘g{al" ,ak} € Ckx’:_ and 22 = diag{0k+1,' } € C(ﬂ—k)x(m_k),
and let B; = P{"*5,0") and C; = B{"*%,0{". Then

A(') A(i) ~ [B' 0 ]:
A= H M2 | Zpe| Di )
[ ]l e

Since 15'-" — I, and Q; — I,,, we see that Ag'l) — 0 and Ag‘r} — 0 at the claimed rate.
Since B; and C; have singular values {01, --,0x} and {ox+1, -}, respectively, the
singular values of Ag’.l) and Ag;) must converge to these sets at the stated rate. 0

THEOREM 2.2. Letr > --- > 1; be the distinct nonzero singular vfzfufs of A,
ond let vy = 12 + p, k = 1,---,4, be the corresponding eigenvalues of A A+ ply,
and AA" + ul,. Let my denote the multiplicity of 7x and vg, k = 1,---,7. (Thus
My + -+ m; =r.) Suppose the subspace conditions (14) and (15) hold for every k
Jor which o > 041 1. Then (A;) converges to the block diagonal form

-

[ W, 0 - 0 O

0 =wnW, --- 0 O

(16) A S R
0 0 - mHW; 0

0 0 - 0 0]

where Wi, € C™<X™* g unitary, k = 1,---,5. Convergence of the kth main diagonal
block is linear with contraction number px = max {Vk+1/Vk, Vk/Vk-1}, where v = 00
and v 1 = p. (Vi1 =0ifm=n=r)

Remarks. (1) If A is upper triangular, the blocks in (16) must be upper triangular.
Since a matrix which is both upper triangular and unitary must be diagonal, we get
convergence to diagonal form in this case, provided the subspace conditions (14) and
(15) are satisfied.

(2) The nonzero singular values of most matrices are distinct. In this case, as-
suming that the subspace conditions are satisfied, A; — diag{6y,---,0r} € C"f"",
where |6x| = o4, k = 1,-- -, r. The columns of the cumulative transformation matrices
Qi and P; converge to (multiples of unit modulus of) right and left singular vectors,
respectively. .

(3) Every problem can be reduced to one or more subproblems for 'whi?h A is
Square and bidiagonal, with real, strictly positive entries ozAltbAoth the main Q1Pgond
and the superdiagonal. If A is of this form, then both A°'A + ul and AA + ul
are unreduced tridiagonal matrices. It follows that the singular values are distinct
[10], and the subspace conditions (14) and (15) are satisfied for all k [9], [15]. Thus
Convergence to diagonal form is guaranteed in this case.

Proof. It follows from Theorem 2.1 that the off-diagonal blocks tend to zero.
Furthermore, the singular values of the kth main diagonal block tend to the multiple
singular value 7, at the stated rate. It remains only to show that the convergence of
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the singular values implies the convergence of the main diagonal blocks of (A4;). While
this is not hard to do, we have found that it is just as easy to prove the theorem from
scratch, using a variant of the argument which was used in the proof of Theorem 2.1.
We will show that P; = UP; and Q; = VQ,, where P, and @, converge to specific
block diagonal unitary matrices. It follows that (A;) converges to the form (16).

Let A = diag{A1,A2,---}, as in the proof of Theorem 2.1. Under the present
hypotheses A has the form A = diag{v1Im,,v2m,, -, VjIm,,0}. As in the proof of
Theorem 2.1 we have, from the first equation of (9), Q;R; = VA'V*. The subspace
conditions (14) guarantee that V* has a block LU decomposition

L, 0 0 I Xy - X11.1+1

Loy Lo 0 0 I - Xajn
V*=LX=| . ) ) . . . . . J

Livi1 Ljy12 -+ Ljt154 o o - I

where Ly, € C™**™* k =1,---,5. Noting that
QiR = V(NLA~Y)A X
we examine the product A*LA~*. Clearly

My O 0
o My My 0O
MNIA™ =\ M3 Mz Maz - |

where M = (v;/vi)!L;x. Therefore
AiLA_i - diag{Lu, L22, Tty Lj+1,j+1}.

Consider the QR factorization diag{Li1,Las,- -, L1141} = QR. Obviously Q is
block diagonal:

Q = diag{QhQ'—’a T aQJ'+I}'
Let Q;R; be the QR decomposition of A'LA=%, Then Q; — Q as 1 — 0o. Also
= (VQi)(R:A*X).

Since VQ; is unitary and R,A‘X is upper triangular with positive main diagonal
entries,

Qi =VQ;.
Repeating this argument starting from the second equation of (9), we find that
P,=UP,
where P, —» P = diag{P,, P,, - - Piq}).

It now follows easily that (A; ) converges to block diagonal form. For

Ai = PP AQ; = Br3Q; — P*30.

By hypothesis, ¥ has the form ¥ = diag{r1lm,, -+, 7;Ipn,,0}, so
? 'mj b b}

A — diag{rlf’fQI, e TJ-IE’;‘Q_,-,O} = diag{nWy, .- -, ,W;, 0},
where Wy = P{Qx, k=1,---,j. O
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3. The differential equation of a self-equivalent flow. Let B € C"*™, and
consider the self-equivalent flow
(17) B(t) = F(t)BZ(t).
Then B(t) satisfies a differential equation, which can be found by differentiating (17).
B = FBZ+FBZ
(18) = FF-'B+BZ'Z
= CB + BD,

where C = FF~! and D = Z-1Z. Conversely, suppose B(t) is the unique solution of
an initial value problem

(19) B=CB+BD, B(0)=B.
Let F and G be the solutions of the initial value problems

F=CF, F(0)=1,

Z=2zD, Z(0)=1L

Then B(t) = F(t)BZ(t). That is, B(t) is a self-equivalent flow. To prove this r-er?ullt,
let B(t) = F(t)BZ(t). Differentiate B as in (18) to find that B satisfies the 1n¥t1al
value problem (19). Since the solution of (19) is unique, B = B. This result is a slight
generalization of theorems appearing in Chu [2],[3].

In (19) we have purposely left the form of C and D vague to show that the form
is unimportant. C and D could be constant matrices or prespecified functions of ¢,
but the most interesting instances of (19) are those for which C and D also depend

on B, since (19) is then nonlinear. o .

It will sometimes be useful to write the self-equivalence relation in shghtlly dlfﬂlerent
ways, such as B(t) = S(t)BR(t)~!. Using the equation &(R~!) = —R™'RR™', we
find that B(t) = S(t)BR(t)~! if and only if

(20) B=CB-BD, B(0)=25,
Where S and R satisfy
S =CS, S(0) =1,

R=DR, R(0)=1
Similarly, the relationship B(t) = P(t)"'BQ(¢) holds if and only if
(21) B=BD-CB, B(0)=21,
Where P and Q satisfy

Finally we note that P (respectively, Q) is unitary for all ¢ if and only if C(t) (respec-
tively, D(t)) is skew-Hermitian for all ¢.
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4. QR flows for the SVD. Every matrix C € C*** (k = n or m) can be
expressed uniquely as a sum

(22) C = p(C) +o(C),

where p(C) is skew-Hermitian, and ¢(C) is upper triangular with real entries on the
main diagonal, Let B € C™"™™. Given any real-valued function f defined on the
spectra of B*B and BB*, consider the flow

(23) B = Bp(f(B*B)) - p(f(BB*))B, B(0)=B.
This has the form (21), so B(t) = P(t)~! BQ(t), where

(24) P=Pp(f(BB*)), P(0)=1,

(25) Q=Qp(f(B°B)), QO)=1.

Since p(f(BB*)) and p(f(B* B)) are skew-Hermitian, P(t) and Q(t) are unitary, and
we have

(26) B(t) = P(1)* BQ(t).

We get as a special case the flow of Chu [2] by taking B to be real, square, and
bidiagonal, and taking f(z) = z.

Using (22) and the equation f(BB*)B = Bf(B*B), we see that (23) can also be
written as

(27) B =o(f(BB*))B- Bo(f(B'B)), B(0) = B.
This has the form (20), so

(28) B(t) = S(t)BR(t)"!,

where

$=o(f(BB")S,  S(0)=1,
R =o(f(B*B))R, R(0)=1.
Since o(f(BB*)) and o( f (B* B)) are upper triangular with real main diagonal entries,

S(t) and R(t) must be upper triangular with positive main diagonal entries.

Taking the conjugate transpose of (23), we find that B* satisfies the differential
equations

3+ = | B'p(f(BB*)) - p(f(B*B))B* . e
7 _{ o(f(B*'B))B* - B*s(f(BB*)) } B(0)* = B7,

from which it follows that

(29) B(t)* = Q(t)*B*P(t) = R(t)B*S(t)~!,

where P, Q R, and S are as defined above. (Of course the expression B(t)*. =
Q(t)* B* P(t) is already obvious.) The matrices B(t)*B(t) and B(t)B(t)* also satisfy
certain differential equations. Easy computations show that

(30) S (B"B) = (BB, p(/(B* BY) = [o(/(5" B)), B* B,
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1) % (BB") = [BB",o(/(BB"))] = [o(/(BE")), BF"),

where [X. Y] = XY ~ Y X. Thus B*B and BB* are QR flows of the type described
in [16).[17], and elsewhere. We also note that

(32) B(t)*B(t) = Q(t)"B*BQ(t) = R(t)B*BR(t)*,

(33) B(t)B(t)* = P(t)*BB*P(t) = S(t)BB*S(t)~".
Because these are QR flows, we have [16],{17]
(34) exp(f(B*B)t) = Q(1)R(t),

(35) exp(f(BB*)t) = P(1)S(t).

These are QR decompositions.

4.1. The relationship between the QR flows and the QR algorithm for
the SVD. For a special choice of f the QR flow interpolates the constant shift QR
algorithm. Obviously f(z) = log(z + u), u > 0, is defined on the common spectrum
of BB and BB", )

THEOREM 4.1. The QR algorithm (2), (3) with initial matriz A and the QR
flow (23) with f(z) = log(z + u) and initial matriz B = A are related by A; = B(5),
1=0,1,2,---. In other words, the QR flow with f(z) = log(z + u) interpolates the
QR algorithm with constant shift u. o .

Proof. The assumptions imply that A*A+ ul,, = exp(f(B*B)) and AA* +pl, =
exp(f(Bfr))_ Therefore (34) and (35), taken at t =0, 1,2,- -, can be rewritten as

(36) (A.‘A + ,ufm)f = Q()R(s), i=0,1,2,.
(AA* +pul,)t = P(1)S(1),

(?Omparing these with the decompositions (9) and recalling that the QR decomposi-
tions are unique in the nonsingular case, we find that

Q ) = Qh R(
(37) (2 :

i) = R; .
g ’ =0,1,2,--.
P(i) =P, =8

o

Thus, by (6) and (26) we have
A; = PP AQ; = P(i)"BQ(:) = B(i), 1=0,1,2,-.

The same conclusion can also be obtained using (12) and (28) instead of (6) and (26):
Ai= 8;AR7! = S(4)BR()~! = B(i). O _ .
For choices of f other than log(z + u) we have the following weaker interpolation
Properties, .
THEOREM 4.2. The QR algorithm (2,3) with inttial matriz A and the QR flow
(23) have the Jollowing relationships:

0 If A‘A + ply, = exp(f(B‘B)), then AT Ai + plym = exp(f(B(i)'B(i))) for i =
1,2

) If AA" + uI, = exp(f(BB")), then A;A} + pln = exp(f(B(i)B(:)")) for i =
1,2

Yy eyt
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Proof. If A" A + puly = exp(f (B*B ), then the equations in the first line of (36)
and (37) hold. In particular, Q(?) = Q,,7=0,1,2, ---. Therefore, by (7) and (32),
AiAituly = QiA*A+ pln)Q;
= Q)" exp(f(B* B))Q(3)
exp(f(Q(:)*B* BQ(i)))
exp(f(B(2)*B(2))).

The second assertion is proved similarly. 0O

4.2. Convergence of QR flows. The flows satisfy convergence theorems anal-
ogous to Theorems 2.1 and 2.2. Let B = ULV* be the SVD of B, with U =
[ur,-+,un] € C™*" T = diag{oy,---,0,} € C™X™ o, 202 2 0 2 Urﬁ"o’
and V' = [v, -, vm] € C™*™. The cigenvalues of exp(f(B B))*afld exp(f(BB))
are \; = exp(f(62)),i=1,---,r. fr<m (or r < n), exp(f(B B)) (respectively,
exp(f (BB‘*))) has the additional eigenvalue \,4; = exp(f(0)) of multiplicity m -7
(respectively, n — 7). For convenience we will assume that f is a strictly increasing

function. This has the effect that the eigenvalues satisfy A\; > Ay > -+ > A; > Arqr-
In analogy with Theorem 2.1 we have Theorem 4.3.

THEOREM 4.3. Let B(t) be the solution of (23), where f 1is strictly increasing.
Suppose o > 0y for some k, and

(38) (v, 50} N (ehr1, - em) = {0} (in C™),

(39) (Ut ue) Nfeksr, - en) = {0} (in C™).
Partition B(t) as

Bu(t) Biaft)
BO =1 B, Bli(t)]’

with Byy(t) € C***. Then By1(t) — 0 and Bja(t) —» 0 as t — oco. The singulﬂf

values of By1(t) and Ba,(t) converge to {01, - 04} and {ok41,---}, respectively.

The convergence is linear with contraction number Agy /. .
Proof. The proof is identical to that of Theorem 2.1, except that exp(f(B B))

and exp(f (B’B')) replace A" A + I, and AA" + I,,, and the continuous variable
replaces the discrete variable 7. [J

In analogy with Theorem 2.2 we have Theorem 4.4. )

THEOREM 4.4. Let B(t) be the solution of (23), where f is strictly increas;ny-
Letr; > ... > 7; be the distinct nonzero singular values of B, and let vy = eflfgf(rk))’
k=1,---,j, be the corresponding eigenvalues of exp(f(B™ B)) and exp(f(BB)). Let
my. denote the multiplicity of 7. and Ve, k=1, 5. (Thus my + -+ m; = r.)

Suppose the subspace conditions (38) and (39) hold for every k for which ox > Ok+1-
Then B(t) converges to the block diagonal form

(W1 0 ... 0 0]
0 T2W2 0 0
(40) . . ) : ’
0 0 Tjo 0
L0 o 0 0]
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where Wy € C™X™+ 45 unitary, k = 1,---,5. Convergence of the kth main diagonal
block is linear with contraction number py = max {vjy1/Vk, Vk/Vk—1}, where vy = ©
and ;41 = exp(f(0)). (vj41 =0 Ffm=n=r)

Proof. The proof is analogous to that of Theorem 2.2. O

Remarks. (1) If B is upper triangular, then B(t) is upper triangular for all ¢
by (28). Therefore each of the main diagonal blocks in (40) must be both unitary
and upper triangular, hence diagonal. Therefore B(t) converges to diagonal form,
provided the subspace conditions (38) and (39) are satisfied.

(2) If the nonzero singular values of B are distinct, and the subspace conditions
are satisfied, B(t) — diag{6y,--,0,} € C™**™, where |6x| = ok, k = 1,---,7. The
columns of the transformation matrices Q(t) and P(t) converge to (multiples of unit
modulus of) right and left singular vectors, respectively. )

(3) Consider the important special case f(z) = log(z + x). If B is bidiagonal,
with real, strictly posxtlve entrles on both the main dlagonal a.nd the superdiagonal,
then both exp( f(B B)) = = BB+ ul,, and exp(f (BB ) = BB’ + pI,, are unreduced
tridiagonal matrices. Thus the singular values are distinct [10], the subspace condi-
tions (38) and (39) are satisfied for all k (9], [15], and convergence to diagonal form
is guaranteed.

(4) Both Theorem 4.3 and Theorem 4.4 can be extended to the case in which
[ is not monotone. In this case the ordering of the eigenvalues can differ from that
of the singular values. The order of the blocks in (40) depends on the order of the
eigenvalues, not the singular values. In particular the zero block on the main diagonal
need not be at the end; it can be sandwiched between nonzero blocks. Note that this
block is not necessarily square; it has dimensions (n—r) X (m—r). Both the statement
and the proof of Theorem 4.3 become more delicate in this case.

5. Generalized QR algorithms and flows. The practical QR algorithm uses
a different shift at each step to speed convergence. At step ¢ a shift o; is chosen.
Instead of (2) we have

(41) Al _JAi—y —oil = Q:R;, A 1A —oil = P.S;.
Then A; is defined by

(42) A; = P} A;1Q;,

as before. Equations (41) can be expressed more compactly as

(43) pi(Al 1 Aic1) = QiRi,  pi(AimAL_y) = BiS;,

where p,(z) = z — ¢;. More generally we can carry out the process (43), (42), where
P1,p2,p3, - is any sequence of functions defined on the spectra of A*A and AA*.
This is the generalized QR algorithm for the SVD problem. i
Clearly A*A; = Q*A?_,Ai—1Q; and A;A] = P A;i_1A]_, P;, showing that the
tI‘a.nsforma.tmns Al A,_l — AYA; and A;_ 1A, | — AiA] a.mount to shifted or
ﬁeﬂerahzed QR steps Equations (6) (8) continue to hold. Equations (9) are replaced
Y

(44) H PJ QtR‘H H pJ AA "'
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Notice that if p;(A?}_;Ai-1) and p;(Ai—1A]_,) are nonsingular, then both of the
QR decompositions in (43) are unique. This is typically the case. For example,
if p;(z) = z — oy, where o; # 0 is not an eigenvalue of A*A and AA*, then both
pi(A;_;A;—y) and p;(A;_1A]_,) are nonsingular.

If all of p,—(fi"fi) and pi(ﬁfi"), i = 1,2,3,--- are nonsingular, then equations
(10)—(13) all hold, and the QR decompositions in (44) are unique.

The algorithm can be shown to converge for various choices of p;,pe,ps, - . For
example, if p;(z) = T — 0y, where (0;) converges to an eigenvalue, and the subspace
conditions (38) and (39) are satisfied, the algorithm will converge. Because the shifts
approach an eigenvalue, the block in the lower right-hand corner will converge rapidly.

5.1. Generalizing the QR flow. Given a generalized QR algorithm, we would
like to find flows which interpolate the algorithm at integer times. To this end we
consider nonautonomous flows satisfying differential equations of the form

(45) B = Bp(f(t,B*B)) - p(f(t, BB*))B,  B(0)=B,

where f is piecewise continuous in t. For this type of flow the properties (24) through
(33) all continue to hold, except that f now depends on t. In particular,

2(B°B) = [B*B,o(f(t, B"B))),

d

=(BB*) = [BB", o(/(t,BB"))],

showing that B*B and BB* are nonautonomous QR flows of the type studied in §9
of [17]. Therefore by Theorem 9.1 of [17], we have

(46) exp { [ 16 B‘B)ds} = Q)R(),
(47) exp { [0 t f(s, BB")ds} = P(t)S(t),
where @, R, P, and S are the unique solutions of

(48) Q=Qn(f(t,B*'B)), Q) =1,
(49) R=o(f(t,B*B)R, R(0)=1,
(50) P=Pp(f(t,BB*)), P(0)=1I,

(51) S =oa(f(t,BB*))S, S(0)=1I
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5.2. The connection between generalized QR algorithms and QR flows.
THEOREM 5.1. Suppose

J
(52) / 1 f(s,z)ds = log(p;(z)), 5=1,2,3,---.
j—

Then the generalized QR algorithm based on pi1,ps3,p3,-- -, with initial matriz Ae
C™ ™, and the generalized QR flow based on f, with initial matriz B = A, are
related by A; = B(1),1=0,1,2,---.

Proof. Substituting A*A (=B*B) for z in (52), summing j from 1 to ¢, and taking
exponents, we find that for1 = 1,2,3, -,

exp { [0 ‘ (s, é'é)ds} =[] ri(4*A).

=1

Then by (46) and (44), Q(1)R(5) = Q;Ri, 1 = 0,1,2,---. By uniqueness of the QR
decomposition, Q(i) = Q; and R(¢) = R;, i = 0,1,2,---. Performing the same steps
with AA* in place of A*A, we find that P(i) = P, and S(3) = Si, ¢ = 0,1,2,---.
Therefore by (6) and (26),

A; = PPAQ, = P(3)' BQ(:) = B(1)

for:=0,1,2,---. O
Remark. We could have drawn the same conclusion using R and S instead of @
and P. o
Provided that py, p2, p3, - - - are chosen so that log(p;(A*A)) and log(p:(AA*)) are
always meaningful, there are many ways to choose f so that the equations (52) are
satisfied. Some examples are given in [17, Examples 9.4-9.7]. There is no need to
repeat them here.

6. Preservation of band structure. A matrix C = (c;;) € C"™™ is said to be
lower k-banded if ci; = 0 whenever ¢ — j > k. For example, upper triangular matrices
are lower O-banded. It is easy to show that the product of a lower k-banded matrix
with an upper triangular matrix, in either order, is lower k-banded. A matrix is upper
k-banded if its transpose is lower k-banded. A matrix that is both lower 0-banded
and upper 1-banded is bidiagonal.

THEOREM 6.1. Let B(t) be a flow which satisfies an initial value prob{em of the
form (45). If B is lower k-banded, then B(t) is lower k-banded for allt. If B is upper
j-banded, then B(t) is upper j-banded for allt. In particular, if B is bidiagonal, then
B(t) is bidiagonal for all t. .

Proof. Suppose B is lower k-banded. By (28) B(t) = S(¢t)BR(t)~!, where both
S(t) and R(t)~? are upper triangular. Thus B(t) is lower k-banded.

Now suppose B is upper j-banded. Then B* is lower j-banded. By (29) B(t)* =
R(t)B*S(t)~1, where R(t) and S(t)~! are both upper triangular. Therefore B(t)" is
lower j-banded for all ¢; that is, B(t) is upper j-banded for all ¢. 0

REFERENCES

(1 M. Cru, The generalized Toda flow, the QR algorithm, and the centre manifold theory, SIAM .
Algebraic Discrete Meth., 5 (1984), pp. 187-201.

- T

L iy




258 . S. WATKINS AND L. ELSNER

[2] M. Cuv. A differentwd equation approach to the singular value decomposition of bidwagonad matrices,
Linear Algebra Appl 80, (1986), pp. 71-80.
(3] . A continuous appronmation to the generazed Schur decomposition, Linear Algebra Appl., 78
(1988), pp. 119-132.
{4] P. DEIFT. T. NANDA, AND ('. TOMEL Differential equations Jar the symmetric esgenvalue problem,
STAM J. Numer. Anal.. 20 (1983), pp. 1-22. :
(5] J. J. DONGARRA. J. R. BUNCH. C. B. MOLER. AND ;. W. STEWART. Linpack Users' Guide,
Society for Industrial and Applied Mathernatics, Philadelphia, PA, 1979.
[6] G. GoLus AND C. VAN LOAN. Matniz Computations, The Johns Hopkins University Press,
Baltimore, MD, 1983,
[7] T. NANDA. Isospectral fiows or band matrices, Ph.D. thesis, Courant Institute of Mathematical
Sciences, New York University, New York, NY, 1982.
i8] » Drfferential equations and the Q R aigorithm, SIAM J. Numer. Anal., 22 (1985), pp. 310-321.
[9] B. N. PARLETT, Global convergence of the basic QR algorithm on Hessenberg matrices, Math. Comp.,
22 (1968), pp. 803-817.
[10] . The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, NJ, 1980.
[11] B. N. PARLETT AND W. G. POOLE. JR.. A geometric theory for the QR. LU, and power iterations,
SIAM J. Numer. Anal., 8 (1973), pp. 380-412.
(12] H. RUTISHAUSER. Ein infinitesimales Analogon zum Quotienten Differenzen Algorithmaus, Arch. Math.
{Basel}, 5 {1954). pp. 132-137.
» Solution of Eigenvalue Problems with the L R- Transformation, National Bureau of Standards
Applied Mathematics Series 49, 1958, pp. 47-81.
[14] W. W. SYMES, The QR algorithm and scattering for the finite nonperiodic Toda lattice, Physica D. 4
{1982), pp. 275-280.
{15] D. S. WATKINS, Understanding the QR algorsithm, SIAM Rev., 24 (1982), pp. 427-440.
[16] « Isospectral flows, STAM Rev., 26 (1984), pp. 379-391.
17 D. 8. WATKINS AND L. ELSNER, Self simdar flows, Linear Algebra Appl.. 110 (1988), pp.
213-242.
. Self equivalent flows associated uath the generalized egenvalue problemn, Linear Algebra Appl.,
to appear.
(19] J. H. WILKINSON. The Algebraic Ewgenvalue Problem, Clarendon Press, Oxford, 1965.

[13]

(18]




	Seite 1 
	Seite 2 
	Seite 3 
	Seite 4 
	Seite 5 
	Seite 6 
	Seite 7 
	Seite 8 
	Seite 9 
	Seite 10 
	Seite 11 
	Seite 12 
	Seite 13 
	Seite 14 
	Seite 15 

