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ON RUTISHAUSER’S APPROACH TO SELF-SIMILAR FLOWS *
D. S. WATKINS { AND L. ELSNER *

Abstract. Certain variants of the Toda flow are continuous analogues of the QR algorithm
and other algorithms for calculating eigenvalues of matrices. This was a remarkable discovery of the
early eighties. Until very recently contemporary researchers studying this circle of ideas have been
unaware that continuous analogues of the quotient-difference and LR algorithms were already known
to Rutishauser in the fifties. Rutishauser’s continuous analogue of the quotient-difference algorithm
.contains the finite, nonperiodic Toda flow as a special case. A nice feature of Rutishauser’s approach
is that it leads from the (discrete) eigenvalue algorithm to the (continuous) flow by a limiting process.
tPhus the connection between the algorithm and the flow does not come as a surprise. In this paper
it is shown how Rutishauser’s approach can be generalized to yield large families of flows in a natural
manner. The flows derived include continuous analogues of the LR, @R, SR, and HR algorithms.

a Key words. Toda flow, self-similar flow, quotient-difference algorithm, LR algorithm, QR
gorithm
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1. The Toda flow and the quotient-difference algorithm. In recent years
there has been considerable interest in flows that are continuous analogues of the QR
algorithm and other algorithms for calculating the eigenvalues of a matrix [2], {16],
[18]. The present interest dates from Toda’s study [17] of & dynamical system that
came to be known as the Toda lattice. This is a system of infinitely many points
of unit mass constrained to lie on a line, such that each point exerts an exponential
tepelling force on its two nearest neighbors. If the ith point has position ¢; and
momentum Pi, then

) Gi=pi,  ps =exp(gior — &) — exp(d — Gi+1):

In addition Toda applied a periodicity condition gn+¢ = & + onl, for all 2. Here n
and [ are fixed positive numbers, n an integer. Toda’s work was published in 1970.
Subsequently many workers in dynamical system theory studied the Toda flow and
Mumerous variants and generalizations. See, for example, 3], [5], (7], (8], [15], and
th.e works cited above. (Additional works are cited in the bibliography of [19].) We
will focus on a few of these. Moser [8] studied a variant with finitely many points
z.md No periodicity condition. This finite, nonperiodic Toda lattice satisfies (1) for
' =_1» “o+,n with g = —o0o and gp41 = - We will restrict our attention to this
version of the Toda lattice. Flaschka [3] noticed that the change of variables

a; = -1p;, b; = %exp(%(qi — gi+1))

leads to the system

b= 24y, i=Lem
———
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(2) b‘i:bi(ai+l—ai)3 1= 1,“',”"1,

bO = bn =Y
which can be expressed as a matrix differential equation
(3) B = Bp(B) - p(B)B,

where B and p(B) are the tridiagonal matrices

a‘l bl i [ 0 —bl ]
b1 a2 bl 0
Qp-q bn—l 0 —bn—1
L bn—l Qy bn—l 0

Note that B is symmetric and p(B) is skew-symmetric. Given any symmetric, tridi-
agonal initial matrix B, let B(t) be the unique solution of (3) satisfying B(0) = B.
Then it is not hard to show that B(t) is orthogonally similar to B for all t. Hence we
say that the flow is self-similar. It is also called isospectral because the eigenvalues of
B(t) are invariant. Since the points of the lattice repel one another, we must eventu-
ally have ¢; ~ g1 — —oo. Thus by - 0fori=1,---,n— 1, and the a; converge t0
the eigervalues of B. In a paper published in 1982, Symes [16] made the remarkable
observation that the finite, nonperiodic Toda flow is a continuous analogue of the @R
algorithm [22] for calculating the eigenvalues of a matrix. Starting from some initial
matrix Ag, the QR algorithm produces a sequence (Ag) of matrices similar to Ao
Symes showed that the unshifted QR algorithm with initial matrix Ay = exp(B) pro-
duces the sequence (A;) = (exp(B(k))). This observation was generalized in various
directions. Deift, Nanda, and Tomei [2] considered more general flows of the form

B = Bp(f(B)) - p(f(B))B

for suitable functions f. For a fixed f, the more general flow produces B(t) such that

A

the QR algorithm with starting matrix Ag = exp(f(B)) produces the sequence
(Ak) = (exp{f(B(k))}).

In particular, the choice f(z) = log z yields a flow for which B(0), B(1), B(2), .is
exactly the sequence produced by the unshifted QR algorithm with starting matrix
Ao = B. In other words, this flow interpolates the QR algorithm. Chu [1] extended
the family of flows to include nonsymmetric, nontridiagonal B. We refer to this family
of flows collectively as QR flows. In [18] Watkins introduced a family of LR flows
(called LU flows in [18]) that are related to the unshifted LR algorithm [22] in exactly
the same way.
All of this work was published after 1970, and all of it was done in ignorance
of earlier work of Rutishauser [11], [14]. Tt is well known that Rutishauser invented
the LR algorithm in the fifties (13], [14]. In 1958, in one of his early papers Ol
the subject {14], he included a section entitled “A continuous analogue to the [
transformation,” in which he developed the LR analogue of the Toda flow. It turns

out that Rutishauser's flow is a member of the family of LR flows introduced by
Watkins [18] much later,
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A pleasing feature of Rutishauser’s derivation is that it proceeds from the LR
algorithm to the flow in a natural way, i.e., by taking a limit. Thus the connection
does not come as a surprise, as it did in the case of Symes’s discovery of the connection
between the Toda flow and the QR algorithm. One might well wonder what led
Rutishauser to this natural approach. The answer lies in the historical roots of the LR
algorithm. The LR algorithm evolved from the quotient-difference (q-d) algorithm,
which was also developed by Rutishauser [9], [10], [12]. The g-d algorithm started out
as a method for finding the poles of a meromorphic function. For almost all choices
of 2,y € €™, the function f(A) = yT(Al — A)~1z has the eigenvalues of A as its
poles, so the algorithm can also be used to find the eigenvalues of a matrix. As it was
originally formulated, the q-d algorithm consisted of filling out a so-called g-d table,
which resembles a table of differences, except that the rules for forming a g-d table
are more complicated. For details see the original work of Rutishauser or Henrici’s
book [6]. The zeroth column of an ordinary difference table consists of the values of
a smooth function at equally spaced points. As the spacing tends to zero, the first
and higher order differences tend to zero as well. However, if the table is modified so
that it contains divided differences instead of simple differences, the column of kth
fiiﬁerences will tend to the kth derivative as the spacing tends to zero. Notice that
if we let gx(t) denote the limit of the kth column, then g = g4 for £k =0,1,2,---.
Thus the columns are related by a simple system of differential equations. The entries
In the zeroth column of a g-d table can also be viewed as values of a certain function at
equally spaced points. It is therefore quite natural to ask what happens as the spacing
converges to zero. It turns out that the limit is not very interesting. Certain columns
(the quotients) tend to 1, while others (the differences) tend to zero. However, we
would hope to be able to modify the table in the spirit of divided differences, so
that an interesting limit is obtained. This turns out to be possible, but since the
formation rules for a g-d table are more complicated than for a simple difference
table, the columns (of the modified table) do not converge to simple derivatives of the
original function. Instead, the limit satisfies a more complicated system of differential
€quations:

Qi:Ei-E'—l$ t=1,---,m
(4) Ei = Ei(Qi+1 _ Qi)7 1= 17"'7n— 13
Eo =0=En.

Qi(t) is the limit of the #th column of (modified) quotients and E;(t) is the limit of the
ith colump of (modified) differences. This continuous analogue of the g-d algorithm
¥as published by Rutishauser [11] in 1954. The equations (4) resemble Fl?.schka’s
form (2) of the finite, nonperiodic Toda equations. In fact, the change of variables

Qi=2a, Ei=4]

transforms (4) into (2). Thus Rutishauser published a form of the Toda flow .16 years
¢fore Toda. The system (4) is actually more general than the Toda flow, since the
oda flow corresponds to the special case E; >0, i=1,--,n— 1.
The original formulation of the quotient-difference algorithm was found to be
Unstable. A better approach is to fill in the g-d table from top to bottom, rather than
"om left to right, Rutishauser quickly recognized that the top-to-bottom procedure
could be interpreted as a process of matrix factorization and recombination, al?d the
k algorithm was born. The g-d algorithm is just the LR algoritl‘lm applied to
* tridiagonal matrix with 1's on the superdiagonal. Once the algorithm assumed
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this new guise, it became easy to forget the q-d table and its infinitesimal limit.
But Rutishauser did not forget. Generalizing from the g-d algorithm, he obtained a
continuous analogue of the LR algorithm [14], which he published in 1958.

Given that the Toda flow is a continuous analogue of the QR algorithm, whereas
Rutishauser’s flow (4) is associated with the LR algorithm, it might seem surprising
that (4) should include the Toda flow as a special case. Actually, this need not be
such a surprise. Suppose the LR algorithm, or, equivalently, the q-d algorithm, is
applied to a symmetric, positive definite, tridiagonal matrix. The symmetry is not
preserved by the algorithm, but a trivial rescaling transforms the LR algorithm to
the Cholesky LR algorithm [22], which does preserve symmetry. The outputs of the
two algorithms differ by diagonal similarity transformations, so we can think of them
as the same, at least in principle. It is well known [22] that two steps of the Cholesky
LR algorithm are equivalent to one step of the (symmetric, unshifted) QR algorithm.
Thus, in a sense, the g-d algorithm includes as a special case the QR algorithm for
symmetric, positive definite, tridiagonal matrices. The same must be true of the
continuous analogues.

In the remainder of the paper we will show how to construct flows by Rutishauser’s
method. Our construction will be based on Rutishauser's LR flow, not the q-d
flow; the former is more general than the latter. We will present a generalization
of Rutishauser’s construction that produces QR, SR, HR, and other flows as well
We begin by introducing a generic eigenvalue algorithm, the FG algorithm. We then
derive a continuous analogue, a generic FG flow. In §3 the construction is generalized
to yield a whole family of FG flows associated with each FG algorithm. This is exactly
the family of autonomous FG flows discussed in [19]. The contribution of the present
paper is not to develop new flows, but to show how Rutishauser’s construction can be
generalized to produce known flows in a very natural manner. An additional contri-
bution is that our development is rigorous. By contrast, Rutishauser’s development
was sketchy and omitted numerous details.

The approach developed here can also be used to derive families of flows associated
with algorithms for the generalized eigenvalue problem Ax = ABz. These are exactly
the autonomous FGZ flows of [20]. The same approach can also be used to derive
the autonomous flows associated with the singular value decomposition discussed in
[21]. The constructions are straightforward, and we omit them.

2. Construction of flows by Rutishauser’s approach. In order to achieve
the desired level of generality, we will make use of some notions from elementary Li
theory. The reader who would rather not learn about Lie theory at this time should
skim the next two paragraphs lightly, then have a close look at Examples 2.1L and
2.1Q. The reader can then read the rest of the paper easily by substituting either QR
or LR for FG.

Let FF = Ror @, and let GL,(FF) denote the general linear group of nonsing“b,f
™ x n matrices over IF. Given a closed subgroup G of GL.(F), let A(G) C F "
deno{:e the Lie algebra associated with G. The basic facts about Lie algebras of
matrices are stated in [19]. For more complete information about Lie groups a0
algebras see [4], for example. The Lie algebra A(G) is most easily viewed a$ the
tangent space of the manifold G at the identity element. Thus it can be thought of a8
a subspace of F™*", Let F and G be two closed subgroups of GL, (IF) such that

(5) AF) & A(G) = F™n

and A(G) contains the identity matrix. This last assumption implies that A(g) cO%
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tains the Lie algebra of all real multiples of I, which is equivalent to the condition
that ¢ contains the Lie group of all positive multiples of I. We could equally well
require that A(F), rather than A(G), contain the identity matrix. However, as we
shall later see, neither of these assumptions is really necessary. The assumption (5)
means that every X € F™™" can be decomposed in exactly one way as

(6) X =pX)+0(X), o(X)eA(F), o(X) € AG).

This equation defines linear transformations p and ¢, which are complementary pro-
Jectors of F"*™ onto A(F) and A(G), respectively. The existence of the additive
decomposition (5) implies the existence of a multiplicative decomposition: There is a
neighborhood V of I in GL,(JF) such that every A € V has a unique FG decomposi-
tion; that is, A can be expressed uniquely as a product A = FG, where F € F and
G € G [4], [19].

Let A(¢) be an analytic function of € with A(0) = I. Then for sufficiently small
¢, A(e) has an FG decomposition A(e) = F(¢)G(e), and the factors F(e) € F and
G(e) € G are also analytic functions satisfying F (0) = G(0) = I. Expanding each in
a Taylor series we have

Fle)=T+eX + €M +0(e), Gle) =T+ €Y + 2N + O(€),

where X = F'(0) € A(F) and Y = G'(0) € A(G). We will need to use expansions of
this type to derive the FG flows.

Ezample 2.1L. Rutishauser considered the special case in which the FG decom-
Position is the LR decomposition. In this case F is the group of unit lower triangular
matrices, and G is the group of nonsingular upper triangular matrices. (' can be
either R or ¢ .) Thus A(F) and A(G) are the Lie algebras of strictly lower triangular
and upper triangular matrices, respectively. Clearly (5) holds, and A(G) contains 1.
Given X ¢ F™ " we obtain o(X) by setting the lower triangular entries of X to
zero. Then p(X) =X -0o(X).

Ezample 2.1Q. Let JF = €. If we take F to be the unitary group and G the group
of upper triangular matrices with real, positive, main diagonal entries, then the F'G
fiecomposition is just the QR decomposition. The Lie algebras A(F) and A(G) are
Just the skew-Hermitian matrices and the upper triangular matrices with real main
diagonal entries, respectively. Obviously A(G) contains I. It is easy to show that (5)
holds. Every X € F™ ™ can be expressed uniquely as asum X =L+ D, + D; + U,
}Nhere L is strictly lower triangular, D, is diagonal and real, D; is diagonal and
'maginary, and U is strictly upper triangular. We have p(X) = L + D; — L and
o(X) = D, + U + L*. There is also a real QR decomposition, which we obtain by
ta'king F to be the group of real, orthogonal matrices and G the group of real, upper
triangular matrices with positive entries on the main diagonal.

Two other examples, the SR and HR decompositions, are discussed in [19].

Associated with each F'G decomposition is an F'G algorithm for calculating eigen-
values of matrices. The shifted FG algorithm associated with F and G begins with
% Matrix B € GL,(FF) and produces a sequence (By) by setting By = B, and then
deﬁ“ing By, for k= 1,2,3, -, by the equations

™) Bi_y — axl = F,Gk, GrFi + ol = By,

Where F ¢ F, Gx € G, and the shift oy is chosen so that Bx_ — ox] has an FG
decOmposition. The meaning of (7) is that a shift is subtracted from Bix_1, an F'G

e
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decomposition of the shifted matrix is performed, the factors of the decomposition are
multiplied back together in reverse order, then the shift is added back on, giving B.
It is easy to show that the By so produced are all similar to B, so they have the same
eigenvalues. Under certain conditions on B, F, G, and (ok), the sequence (By) can be
shown to converge to triangular or quasi-triangular form, yielding the eigenvalues of B.
The shifts are generally chosen with an eye to accelerating convergence. Rutishauser
used shifts for a different purpose, namely, to pass to a continuous limit. Following
Rutishauser we consider a constant shift o), = —u, where p is positive and large. (We
plan to take a limit in which g — 0c.) Then the sequence (By) is generated by

(8) By_y+ pl = Fi(uGi),  (uGy)Fy — ul = B.

We have factored the scalar 4 out of Gj, for convenience. Because of the assumption
that G contains all positive multiples of the identity matrix, we have Gx € G if and
only if uGy € G.

Notice that this choice of shifts actually slows convergence. This is so because the
rate of convergence (when it occurs at all) is determined, at least in part, by ratios
of eigenvalues of B + pI. As # is made larger, the ratios of the eigenvalues approach
one, indicating progressively slower convergence.

It is easy to show that

By = F, 7 'By_\Fy = GrBe-1Gy .

Letting

Fe=FF-F, Gp=Gip GGy,
we have
(9) By = F, 'BF, = G, BG, 1.

We can also show easily by induction that
(10) (B + ul)f = ukF.G.

We prefer to work with a small parameter rather than the large parameter y, so let
¢ = 1/u. Then (8) and (10) can be rewritten as

(11) I+eBy_, = F‘kék, Gka = I + ¢Bg.

(12) (I + eB)* = F,G,.

We used the assumption that A(G) contains the identity matrix to write the
shifted FG algorithm in the form (8), which we then rewrote in the equivalent form
(11). This assumption will not be used anywhere else. If we use (11) as our point of
departure instead of the shifted FQ algorithm,

It is useful to view the FG algorithm (11)
governed by the difference equation

we can drop the assumption.
as a discrete-time dynamical system

1 - .
(13) By =By, + ;(Gka ~ FrGy).
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We will view each step forward as a time step of length ¢. Thus the elapsed time
after k steps is ke. If we let ¢ — 0 and k — oo, holding t = ke fixed, the difference
equation (13) is transformed into a differential equation, a continuous analogue of the
FG algorithm.

In order to carry out the limiting process rigorously, we need to know that certain
limits exist. The matrices By, Fi, Gk, Fi, and Gy are all functions of € as well as k,
and we will write By, = B(k,¢), for example, when we want to emphasize this fact.
From (12) it is clear that F(k,e) and G(k,¢) are well defined for all complex k and
sufficiently small complex €, and they are analytic in both variables. From (9) and (11)
we see that the same is true of B(k,¢€), F(k,¢), and G(k,¢) as well. Since we intend
to hold ¢ = ke fixed as we pass to the limit, it is useful to write F(k,¢) = F(t/e,¢),
for example. With this notation we can rewrite (12) as

(14) (I + £(tB))Y/< = F(t/e,€)G(t/e,€).

The limit of the left-hand side as ¢ — 0 is exp(tB). Suppose exp(tB) has an FG
decomposition. (This will certainly be the case if t is sufficiently small.) Define
Ft) e F and G(t) € G to be the FG factors of exp(tB); that is,

(15) exp(tB) = F(t)G(2).

Since the FG decomposition is analytic, it is certainly continuous. Thus (14) and
(15) imply that

lEI(I)F(t/E, €) = F(t), eli_r’%G(t/e,e) = G(t).

For fixed ¢ the left-hand side of (14) is an analytic function of ¢ in a deleted neighbor-
hood of zero, with a removable singularity at ¢ = 0. Therefore F(t/e,¢) and G(t/e, f)
are also analytic functions of e with removable singularities at zero, provided exp(tB)
has an FG decomposition. Define another analytic function B(t) by

(16) B(t) = F(t)"'BF(t) = G(t)BG(t)"".
The equations (9) can be rewritten as
Blt/e,€) = F(t/e,e) ' BF(t/e,e) = G(t/e,e)BG(t/e,€) .

'I.'h?refore B(t/e,€) is an analytic function of ¢ in a neighborhood of zero. Taking the
limit as € — 0, we find that

!i_r'% B(t/e,€) = B(t).

The function B(t) is, in fact, our continuous analogue of the sequence (By).
We now have in hand the tools to prove the following interpolation result: Let (A)
b; the output of the FG algorithm with zero shifts, starting with Ap = A = exp(B).
en

Ay =exp(B(k)), k=0,1,2,3, .

The ma; - its di i* = FG, which
€ main tools for proving this are (15) and its discrete analogue A" = FxG, w
holds for the unshifted FG algorithm. See [19] for a proof. Rutishauser stated the
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LR case of (15), but he did not arrive at it in the same manner as we have here. He
may have been unaware of the interpolation result, as he did not mention it in [14].

We will now derive the continuous analogue of the FG algorithm, i.e., the dif-
ferential equation that B(t) satisfies. The usual approach is just to differentiate (15)
and (16). This yields differential equations for F (t) and G(t), as well as B(t). Now let
us see how Rutishauser obtained them by passing to a limit. For this we need Taylor
expansions of the quantities Fy = F(t/¢,€) and Gy = G(t/e, ¢), which appear in (13).
The first equation in (11) can be written as

(1m) I+ eB((t—¢€)/e,€) = F(t/e, )G(t/e,e).

Letting A(e) = T + €B((t — €)/e,€) we see that A(e) is analytic, and lim._o A(e) = I.
Thus F'(t/e,€) and G(t/e, €) have Taylor expansions

F(tfe,e) =T+ eX(t) + 2M(t) + O(e?),
(18)

G(t/e,e) =T+ €Y (t) + 2N(t) + O(é%),

where X(t) € A(F) and Y (t) € A(G). Substituting the expansions (18) into (17), we
find that

B((t—e€)/e,e) = X(t) + Y(t) + O(e).
Letting ¢ — 0, we obtain
B(t)=X(t) +Y(t).
Since X (t) € A(F) and Y(t) € A(G), it follows that
X(t)=p(B(t)) and Y(t) = o(B(t)),
where p and ¢ are defined by (6). We are finally ready to pass to the limit. Following

Rutishauser we substitute the expansions (18) into (13), which can then be rewritten
as

B(t/e,e) — B((t - €)/¢€,€)

6 = [Y(6), X(0)] + 0(e),
where [Y, X] =Y X - XVY. Taking the limit as € — 0, we obtain
(19) B(t) = [o(B(t)), o(B(1))].

This is our continuous analogue of the F'G algorithm. Since [e(B), p(B)] = [B,p (B)]
= [¢(B), B], (19) also has the forms

(20) B=[B,p(B)] and B =[s(B), B).

This sh0w§ that this flow is a member of the family of FG fiows introduced in {19]-
The differential equations for F and G are also easily obtained.
F, - F k- F. -7
1 _ Fk—l( k= 1)
€ €
Taking the limit, we have

(21)

= Fr_1{p(B(t)) + O(¢)}.

F=FpB) = Fp(F1BF).
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Similarly,
(22) G = o(B)G = s(GBG™)G.

These equations are familiar from [19]. They were also stated by Rutishauser [14] for
the LR case.
A second way to obtain the differential equation for B(t) is to use the equation

(23) By = F, 'Bi_{F..
From the first expansion in (18) it is obvious that
E'= F(t/e,©)" =T —eX(t) + O(é?).
Substituting this expansion and the first expansion of (18) into (23), we find that
(24) By = Bx_1 + €[Bi_1, X(t)] + O(€?).
Thus
ey HUEIZBCI0I _ iy e, x(0)+ 0l

€

Taking the limit as ¢ — 0 we obtain

B(t) = [B(t), o(B(1))),
the first equation of (20). We could equally well have started with the equation

(26) By = GiBi_1Gi .
This gives

Bk = Bk—l + G[Y(t)a Bk—l] + 0(62))

which leads to B = [6(B), B], the second equation of (20). The nicest feature of this
approach is that it can be generalized. We will carry out the generalization in the
hext section.

In order to carry out the construction, we have had to assume that ¢ is such that
exp(tB) has an FG decomposition. We have already shown in [19] that the points at
which exp(tﬁ) does not have an F'G decomposition are exactly the points at which
the flow hag singularities.

3. Carrying the generalization further. So far we have derived F'G flows of
the form B = [B, p(B)]. This is a special case of a more general family of autonomous
FG flows of the form B = [B, p(f(B))], which we studied in [19]. Here f is any locally
analytic function defined on the spectrum of B. In the present section we will show

OW to derive this entire family of flows by taking limits.

We will make use of the following generalization of the F'G algorithm. Inst.ead

of choosing 5 sequence of shifts (o), we choose a sequence (pi) of analytic functions

~

‘lieﬁﬂed on the spectrum of B. Then, starting with By = B, we define, for k =
12,3, ..

- 1 ~ ~ = -1
= F; By F - G Bk— Gk 3
(2n) By k  Br-1Fy kBik-1

where Pk{Bik-1) = F.Gr, FoeF, Gy €G.




310 D. S. WATKINS AND L. ELSNER

If we choose pi(z) = z — oy, (27) reduces to the shifted FG algorithm introduced
in the previous section. The choice px(z) = (z — ox)(z — %) gives tl}e doubl.e-step
FG algorithm. In actual implementations the Pk would be chosen with the intent
of accelerating convergence, but for our purposes we will choose pr(z) = 1 +¢f (z),

k=1,2,3, -, where f is a fixed analytic function defined on the spectrum of B.
Then

(28) I+ €f(Bg-1) = FiG.
Defining Fy = Fy --- Fy and Gy, = Gy - - - G, we have
By = F,"'BFy, = G, BG;™*
and
(29) (I +€f(B))F = FiGy.
In the case f(z) = z, (28) and (29) reduce to (11, first equation) and (12), respectively.

Letting t = ke and using the same notational conventions as before, we can rewrite
(29) as

I+ §(tF(B))Ye = F(t/e,e)G(t/e,),

which is analogous to (14). Obviously the limit of the left-hand side as €= 0 is
exp(tf(B)). The entire development of the previous section can be generahzt’:'d. Ina
straightforward manner. Now F(t) and G(t) are defined by the F'G decomposition

exp(tf(B)) = F($)G(t).

The Taylor expansions

Ft/e,e)=1 + eX(t) + O(e?),

G(t/e,€) = I + €Y (t) + O(e?)
continue to be valid, but now
X()+Y(t) = f(B()),
50
Xt =p(f(B1)) and Y(t)= a(£(B(t))).

Equations (23), (24), and (25) continue to hold, except that now X(t) = p(f (B®)):
Taking the limit as € — 0 in (25), we obtain

B = (B, p(f(B))],
as desired. Alternatively we can start from (26) and obtain the form B = [o(f(B)); Bl
Finally, in analogy with (21) and (22) we find that
F=Fp(Ff(B)F), (= o(Gf(B)G)G.

This flow has the interpolation property exp{f(B(k))} = Ay, where (Aj) i tlIle
output of the F@G algorithm with zero shifts, starting with 4, = exp{f (B)_}- n
particular, the choice f(r) = log z yields a flow that interpolates the FG algorithm-



SELF-SIMILAR FLOWS 311

REFERENCES

(1] M. CHU, The generalized Toda flow, the QR algorithm, and the centre manifold theory, SIAM
J. Algebraic Discrete Methods, 5 (1984), pp. 187-201.

[2] P. DEIFT, T. NANDA, AND C. TOMEI, Differential equations for the symmetric eigenvalue
problem, SIAM J. Numer. Anal., 20 (1983), pp. 1-22.

[3] H. FLASCHKA, The Toda lattice, 11, ezistence of integrals, Phys. Rev. B, 9 (1974), pp. 1924~
1925,

(4] 8. HELGASON, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press,
New York, 1978.

(5] M. HENON, Integrals of the Toda lattice, Phys. Rev. B, 9 (1974), pp. 1921-1923.

[6] P. HENRICI, Applied and Computational Complex Analysis, Vol. 1, John Wiley, New York,
1974.

(7] J. MOSER, Dynamical Systems, Theory and Applications, Springer-Verlag, Berlin, New York,
1975.

» Finitely many mass points on the line under the influence of an ezponential potential—
An integrable system, in Dynamical Systems, Theory and Applications, Springer-Verlag,
Berlin, New York, 1975, pp. 467497 in [7).

(9] H. RUTISHAUSER, Der Quotienten-Differenzen- Algorithmus, Z. Angew. Math. Phys., 5 (1954),
pp. 233-251.

(8]

[10] , Anwendungen des Quotienten-Differenzen-Algorithmus, Z. Angew. Math. Phys., 5
(1954), pp. 496-508.
[11] , Bin infinitesimales Analogon 2um Quotienten-Differenzen-Algorithmus, Arch. Math.,

5 (1954), pp. 132-137.

(12 —_ Der Quotienten- Differenzen-Algorithmus, Mitt. Inst. Angew. Math., No. 7, ETH,
Ziirich, 1957. MR 19-686. (This report gathers the material of [9], [10], [11], and parts
of [14] into a single volume.)

(13] ————, Une méthode pour la détermination des valeurs propres d'une matrice, Comptes Ren-
dus Acad. Sci. Paris, 240 (1955), pp. 34-36.

[14] ———, Solution of eigenvalue problems with the L R-transformation, National Bureau of Stan-
dards Applied Mathematics Series, 49 (1958), pp. 47-81.

[15] M. SHUB AND A.T. VASQUEZ, Some linearly induced Morse-Smale systems, the QR algorithm
and the Toda lattice, Contemp. Math., 64 (1987), pp. 181-194.

(16] wW. w. SYMES, The QR algorithm and scattering for the finite nonperiodic Toda lattice, Phys-
ica, 4D (1982), pp. 275-280.

[17] M. TODA, Waves in nonlinear lattice, Prog. Theoret. Phys. (Supp.), 45 (1970}, pp. 174-200.

18] D. S. WATKINS, Isospectral flows, SIAM Rev., 26 (1984), pp. 379-391.

(19] D. 8. WATKINS AND L. ELSNER, Self-similar flows, Linear Algebra Appl., 110 (1988), pp.
213-242.

[20] ~———, Self-equivalent flows associated with the generalized eigenvalue problem, Linear Algebra
Appl., 118 (1989), pp. 107-127.

[21] ~———, Self-equivalent flows associated with the singular value decomposition, SIAM J. Matrix
Anal. Appl., 10 (1989), pp. 244-258.

(22 J. 1. WILKINSON, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.




	Seite 1 
	Seite 2 
	Seite 3 
	Seite 4 
	Seite 5 
	Seite 6 
	Seite 7 
	Seite 8 
	Seite 9 
	Seite 10 
	Seite 11 

