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CHASING ALGORITHMS FOR THE EIGENVALUE PROBLEM-*
D. S. WATKINS' AND L. ELSNER?

Abstract. A generic chasing algorithm for the matrix eigenvalue problem is introduced and
studied. This algorithm includes, as special cases, the implicit, multiple-step QR and LR algorithms
and similar bulge-chasing algorithms for the standard eigenvalue problem. The scope of the generic
chasing algorithm is quite broad; it encompasses a number of chasing algorithms that cannot be
analyzed by the traditional (e.g., implicit Q theorem) approach. These include the LR algorithm
with partial pivoting and other chasing algorithms that employ pivoting for stability, as well as hybrid
algorithms that combine elements of the LR and QR algorithms. The main result is that each step
of the generic chasing algorithm amounts to one step of the generic GR algorithm. Therefore the
convergence theorems for GR algorithms that were proven in a previous work [D. S. Watkins and L.
Elsner, Linear Algebra Appl., 143 (1991), pp. 19-47] also apply to the generic chasing algorithm.
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1. Introduction. Two of the best known algorithms for calculating eigenvalues
and eigenvectors of matrices are the QR and LR algorithms [15], [12]. There are
other, not so well known, algorithms of the same type, e.g., the SR algorithm (8], (9],
[6] and the HR algorithm [5], [7], [6], which can be useful in special situations. In
[14] we developed a general convergence theory of GR algorithms that includes the
QR, LR, SR, HR, and similar algorithms as special cases. In this paper we consider
in general terms the question of how such algorithms can be implemented.

Algorithms in this class are usually implemented implicitly, as chasing algorithms:
The matrix whose eigenvalues we would like to know is first reduced to upper Hessen-
berg form. Then the chasing algorithm is set in motion by a similarity transformation
that introduces a bulge in the Hessenberg form near the upper left-hand corner of
the matrix. A sequence of similarity transformations then chases the bulge downward
and to the right, until the Hessenberg form is restored. At this point the first chasing
step is complete. Chasing steps are repeated until (hopefully) the matrix converges
to upper triangular or block triangular form, exposing the eigenvalues. There are 3
number of types of similarity transformations that can be used to chase the bulge.
For example, certain unitary transformations can be used, in which case each step of
the chasing algorithm amounts to a step of the QR algorithm. If, on the other hand,
lower triangular transformation matrices are used, each step of the chasing algorithm
amounts to a step of the LR algorithm.

In this paper we introduce and study a generic chasing algorithm. After describing
the algorithm at the beginning of §2, we state and prove the main result, which
is th.at no matter what kind of transformations are used to chase the bulge, each
chasing step amounts to one step of the generic GR algorithm [14]. Consequently
all of the observations that we made in [14] concerning the generic GR algorithm
apply to the chasing algorithm as well. To wit, each step of the chasing algorithm
amounts to a step of nested subspace iteration combined with a change of coordinate
system. All of the convergence theorems of [14] apply. Roughly speaking, the chasing
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algorithm will converge, provided that (i) reasonable choices of shifts are made, and
(i) the condition numbers of the transforming matrices are kept under control. If the
generalized Rayleigh quotient shifting strategy is used, quadratic, and in some cases
cubic, convergence can be achieved. We close §2 with a brief discussion of some of
the types of transformation that can be used to implement the chasing algorithm.

Our approach to chasing algorithms differs from the traditional one. For pur-
poses of illustration, let us consider the standard way of justifying the implicit QR
algorithm. A QR step consists of a similarity transformation B = Q! AQ, where
the transforming matrix Q is unitary. One can show that the unitary Q is more or
less uniquely determined by its first column. (This fact is known as the implicit Q
theorem; see. for example, {12, Thm. 7.4.2].) The implicit QR (chasing) algorithm
performs a different similarity transformation B = Q-1 AQ, but Q is constructed in
such a way that its first column is proportional to the first column of Q. It follows
from the implicit Q theorem that Q and Q are essentially the same, and consequently
B and B are essentially the same.

By contrast, our generic chasing algorithm performs repeated similarity trans-
formations B = G~1AG, where the nature of G is left unspecified, except that it is
nonsingular and its first column is given. In this more general context, we cannot
assert that G is more or less uniquely determined. All we can say is that no matter
how the chasing step is carried out, it effects one step of the generic GR algorithm.
But this is all we need!

Our approach has the following advantages: (i) It covers implicit variants of the
QR, LR, SR, and HR algorithms all at once. (ii) It covers the implicit LR algorithm
with partial pivoting and other chasing algorithms that employ pivoting for stability,
none of which are covered by the traditional approach. (iii) It covers hybrid chasing
algorithms as well. For example, an algorithm that uses a mixture of unitary and
lower triangular transformations to chase the bulge is a QR-LR hybrid that cannot
be analyzed by the traditional approach. Thus our approach encompasses a much
broader class of chasing algorithms.

The theorems associated with the traditional approach (e.g., implicit @ theorem)
can be derived via our approach by considering the effect of restricting the types of
transformations that can be used to do the chasing. This is the main business of §3.
Here we restrict our attention, for clarity, to the nonsingular case. This is the generic
Case, in which none of the shifts (defined in §2) are eigenvalues of A.

In §4 we consider what happens during a singular chasing step. We show that if
v of the shifts are eigenvalues, a v x v block can, in principle, be deflated from the
matrix after the chasing step. As far as the rest of the matrix is concerneq, nor'mal
Progress is made during the chasing step. That is, a step of nested subspace iteration,
combined with a change of coordinate system, takes place. Also considered in 84 is
the connection between our approach and the traditional approach in the singular
Case. Actually the results of §4 include those of §3 as a special case. We .ha.ve_ chosen
to present the nonsingular case separately because (i) it is generic, and (ii} it is much
simpler,

Finally, we wish to emphasize that the theorems in this paper are not at zf.ll
diﬁic‘ﬂt, nor are the tools used to prove them by any means novel. This paper’s main
contribution is a new, more flexible, way of looking at chasing algorithms that allows
for greater generality than has been attained previously.

2. The generic GR and chasing algorithms. We describgd the generic GR
algorithm in [14]. For completeness, we briefly repeat the description here. Each GR
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algorithm is based on a GR decomposition, which is a rule that specifies & unique
way of decomposing any matrix C in some large class of matrices C into a product
C = GR, where G is nonsingular, and R is upper triangular. Well-known examples of
GR decompositions are the QR and LR decompositions. Corresponding to each GR
decomposition is & GR algorithm, an iterative algorithm for finding the eigenvalues
of matrices. Given a matrix 4 € €™, whose eigenvalues we would like to know, the
GR algorithm produces a sequence of similar matrices that, hopefully, converges to
upper triangular or block triangular form. A GR step on A is performed as follows.
Choose a positive integer m, the multiplicity of the step. Choose m shifts o1, 0m;
complex numbers that approximate eigenvalues of A. Let p(4) = (A—a1) - (A—0m).

Find the GR decomposition of p(4): p(A) = GR. Finally, replace A by the similar
matrix B = G~1AG.

The generic chasing algorithm. A matrix A = (a;;) € €"*" is said to be in
upper Hessenberg form if a;; = 0 for all ¢ > 5+ 1. It is in irreducible upper Hessenberg
form if it satisfies the additional condition a;; # 0 for all i = j + 1. N

Let A € €™*" be in irreducible upper Hessenberg form, let m be a positive
integer, let oy,---,0, be approximations to eigenvalues of A, and let p(4) =
(A—01):-(A—0m). A step of the generic chasing algorithm of multiplicity m
replaces A by B = G~ AG, where B is upper Hessenberg, and the first column of G
is proportional to the first column of p(A).

The algorithm begins by computing the first column of p(A). This is given by
z = p(A)ey, where e; = [1,0,---,0]7. To avoid potential problems with overflow or
underflow, we actually compute z = z/| z|| using any convenient norm. This can
be done efficiently, without actually forming p(A), by the recursion z « (4 — )2,
z « z[|z|l, i = 1,---,m, starting from z — e;. Because A is irreducible upper
Hessenberg and p has degree m, z satisfies 2,41 # 0, and z; = 0 for 1 > m +_1-
The next step is to determine a nonsingular matrix G = diag{Go, In-m-1}, with
Go € @™FVX(M+Y) " whose first column is proportional to z. Obviously Go is not
uniquely determined. Some common ways of constructing G will be discussed below.

Once we have Gy, we use it to transform A to Ao =Gy 1AG,. 1t is a simple matter
to check that Ap has the form

1

0
That is, it is almost in upper Hessenberg form, except that it has a triangular bulge
with height m rows, base m columns, and vertex at position (m + 2,1). The rest
of the algorithm consists of returning Ag to upper Hessenberg form. The first s?ep
in this direction is to transform A4g to A; = GIIAOGl, where G has the follogvlﬂg
form: G, = diag{1,G,In_pm—2}, G1 € @ m+Ux(m+1) 50 the first column of Gl.is
proportional to the vector y; € €™ consisting of the (2, 1) through (mm+2,1) entries
of Ag. It is clear that Gy is not uniquely determined and that any of the techniques
for constructing Gy can also be used to construct ¢ 1. Since Gflm = ce; for some
nonzero constant ¢, left multiplication of 4y by Gl‘1 will create zeros in the first
column of the product, below the (2,1) entry. The subsequent right multiplication'of
G7'Ag by G, leaves the first column unaltered, but it does create new nonzero entries
in row m + 3, in positions (m + 3,2) through (m + 3,m + 1). Thus A; has the form
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The bulge has been “chased” one position down and to the right, so that its vertex
now lies at position (m + 3, 22. The next step produces A, = Gy 14,G,, where
G = diag{1,1,Gy,I,_m-3}, G, being defined analogously to G;. A; has a bulge
that is down and to the right one position from that of A;. After n — m — 2 such
steps, the bulge will have been chased to the lower right-hand corner of the matrix. An
additional m steps shrink the bulge until it disappears completely. Another viewpoint
is that the bulge is pushed off of the edge of the matrix. The similarity transformations
used in this phase have the form Gy = diag{Ik,Gk}, where G € @P—F)x(n=k)
k=n—(m+1),---,n—2. After a total of n — 2 steps we are done; we let B =
An-3 = G71AG, where G = GyG1G3 -+ Gn—3. Each of the matrices Gy, -+, Gn2
has e; as its first column, so the first column of G is the same as the first column of
Go, which is proportional to the first column of p(A).

In the past it has been customary to take m to be a small number, say one or two.
The advantage of taking larger values of m is that it improves the vectorizability of
the code. The main operations can be expressed as matrix-vector products, and level
2 BLAS [11] can be used. It is also possible to organize the algorithm so that several
columns are chased at a time, using tools such as the WY representation of reflectors
[4]. This allows the main operations to be expressed as matrix-matrix products, and
the algorithm can be coded using level 3 BLAS [10]. This increases the scope for
parallelization and efficient use of hierarchical memory. Bai and Demmel [3] have
implemented such a version of the QR algorithm and have experimented with values
of m as high as 20.

The main point of this paper is that the chasing algorithm effectively performs a
step of the generic GR algorithm. The proof follows from three lemmas, whose proofs
are easy exercises. We begin with some terminology. Given z € €™ and 4 € €™*",
the Kryloy matriz K(A,z) € €™ is defined by K(A,z) = [z, Az, A%z, -, A" 1z].
Clearly K (A, Bz) = BK (A, z) for every scalar 3.

LEMMA 2.1. Ifz = p(A)ey, then K(A,x) = p(A)K(A, e1).

LEMMA 2.2. For every nonsingular G € €"*", G~'K(A,z) = K(G™'AG,G ).

Lemmas 2.1 and 2.2 are closely related. In fact, Lemma 2.1 for nonsingular p(A)
is a special case of Lemma 2.2. However, Lemma 2.1 is valid regardless of whether or
not p(A) has an inverse, the key point being that p(4) commutes with A.

LEMMA 2.3. If A is upper Hessenberg, then K(A,e) s upper triangula.r. Fur-
thermore A is an irreducible upper Hessenberg matriz if and only if K(A,e1) is upper
triangular and nonsingular.

We are now set to prove the main result.

THEOREM 2.4. Let A € @™ ™ be an irreducible upper Hessenberg matriz, anﬁd let
D be a polynomial. Let G be a nonsingular matriz whose first column is pmpoﬂzonal
oz = p(A)e;, such that B = G-1AG is upper Hessenbery. Then there exists an
upper triangular matriz R such that p(4) = GR.

Proof. By hypothesis, Ge; = az for some nonzero a. Applying Lemmas 2.1 and
2.2 we find that G-1p(A)K(A,e,) = G 'K(A,z) = a”'K(B,e1). By Ler-nma 2.3,
K(4, €1) is both nonsingular and upper triangular, and K(B, e1) is upper tnfmgular.
Therefore P(A) = Ga~ 'K (B, e;)K(A, e1)"! = GR, where R is the upper triangular
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matrix a 'K (B,e;)K(A,e;)"t. O

Theorem 2.4 shows that the generic chasing algorithm performs a generic GR
step implicitly. In this case the rule for calculating the GR decomposition (i.e., con-
structing G from p(A)) is given by the chasing algorithm itself.
. There are numerous ways of constructing the G; in the chasing algorithm. Each
G satisfies Ge; = By, or equivalently G~'y = 8~ 'e,, for some y. One way to do this,
which works if y; # 0, is to define G to be a Gauss transformation:

fl

1
(1) G=|
£m+1 1
where ¢; = y;/y;. If this choice is used, the chasing algorithm amounts to the LR
algorithm without pivoting (cf. Example L below). We can eliminate the requirement
that y; # 0 by defining G = PL, where P is either the identity matrix or a per-
mutation matrix, and L has the form (1). If |y| = max{|y1], -, |ym+1|}, we define
P to be the identity matrix. Otherwise we take P to be the transposition matrix
whose action on a column vector is to interchange its first and ith entries, where ¢
is the first index for which |y;| = max{|s], -, |ym+1|}. Defining a new vector z by
Py = z, we then take L to have the form (1), where £; = 2 /z1. This choice yields the
LR algorithm with partial pivoting. It is also possible to take the G to be unitary
matrices, for example, reflectors (Householder transformations) [12]. In this case the
chasing algorithm amounts to the QR algorithm (cf. Example Q below).

For some problems the choice of transformation type is dictated by the structure
of the matrix. For example, if Ay is normal, and we wish to preserve that property,
we should use only unitary transformations. If Ay is Hamiltonian, and we wish to
preserve that property, we should use symplectic transformations [6]. This gives the
SR algorithm (cf. Example S below).

Other problems have no special structure to exploit. For these problems the
transformation type is chosen on the basis of efficiency and stability. From [14] we
know that no matter how we choose the G;, we are doing subspace iteration. The
theory developed in [14] suggests that our only consideration is to make the trans-
forming matrices as well conditioned as possible. We might then conclude that we
should use only unitary transformations, which are optimally conditioned; that is,
we should use the QR algorithm. This conclusion ignores the question of cost. A
chasing step using reflectors has about double the flop count of a chasing step using
Gauss transformations. Thus LR steps are about half as expensive as QR steps. Of
course, the use of Gauss transformations without pivoting is risky; matrices of the
form (1) can be made arbitrarily ill conditioned by making the multipliers ¢; large.
On the other hand, Gauss transformations with partial pivoting, G = PL, tend to
be well conditioned, as the multipliers never exceed one in modulus. Furthermore,
as the iterates approach triangular or block triangular form, the multipliers in the
transformations that are generated tend toward zero. As the multipliers approach
zero, the condition numbers approach one. Of course, this does not guarantee that
the condition numbers of products of many such transformations will remain small.
Another possibility, which we already mentioned in the Introduction, is to mix Gauss

transformations with unitary transformations. Qur theory allows us to do this. All

that matters is t.hat the condition numbers of the transforming matrices be kept under
control. A hybrid algorithm of this t

ype might well pos i mbination of
speed and robustness, g possess a superior co
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3. Connection with the traditional approach. In this section we show how
our approach can be used to establish the implicit

Q theorem and other results associated with the traditional approach to chasing
algorithms. For clarity we restrict our attention to the nonsingular case. That is, we
assume that p(A) is nonsingular. which is the same as to say that none of the shifts
01, -, 0m are eigenvalues of A. We begin by noting that in this case, the matrix B
produced by the chasing algorithm is in irreducible upper Hessenberg form.

THEOREM 3.1. Let A € ™" be an irreducible upper Hessenberg matriz, and
let p be a polynomial for which p(A) is nonsingular. Let G be a nonsingular matriz
whose first column is proportional to x = p(A)e;, such that B = G~YAG is upper
Hessenberg. Then B has irreducible upper Hessenberg form.

Proof. The hypotheses are the same as in Theorem 2.4, except that now we
are assuming that p(A) is nonsingular. As in the proof of Theorem 2.4, we have
K(B,e1) = aG'p(A)K(A,e;). Since G~1, p(A) and K(A,e;) are all nonsingular,
K(B,e;) must also be nonsingular, in addition to being upper triangular. Therefore,
by Lemma 2.3, B has irreducible upper Hessenberg form. {1

As we have already mentioned in the Introduction, the transforming matrix G is
not uniquely determined by its first column. However, G does have some structure
that is specified uniquely, namely, its flag. This useful concept comes from geometry
(1, 2. A flag in €™ is just a nested sequence of subspaces of dimensions 1,2,---,n.
Given a nonsingular matrix § € €"*" with columns sy, - - -, 8, we define the flag of
S, denoted flag($), to be the sequence {(s1), (s1,92),(s1,82,83), -, (81,82, -, 3n)}
determined by the columns of S. It is a simple matter to prove the following lemma.

LEMMA 3.2. Two nonsingular matrices S,G € €™" have the same flag if and
only if there is a nonsingular upper triangular matriz R such that S = GR.

Theorem 2.4 shows that p(4) = GR for some upper triangular R. Since we
are now assuming that p(A) is nonsingular, R must also be nonsingular. Therefore
fag(G) = flag(p(A)). This holds regardless of the type of transformations that are
used to build G. We did not use the term “flag” in [14]. However, the nested subspace
iterations that are effected by G R steps can be seen to be a consequence of this equality
of flags.

From Lemma 2.3 we know that K(A,e;) is upper triangular and nonsingular.
Therefore, by Lemma 2.1, flag(p(4)) = flag(K(A,z)). Consequently flag(G) =
Hag(K (A,z)). This is actually a special case of a known result that characterizes
transformations that reduce a matrix to upper Hessenberg form: Let 4 € €™*", and
Suppose there is a vector ¢ € @™ for which K (4, z) is nonsingular. Let G be a non-
Singular matrix whose first column is proportional to z. Then B = G~ AG is upper
Hessenberg if and only if flag(G) = flag(K (4, z)). If B is upper Hessenberg, then it
is irreducible. See especially [6, Satz 4.4.1], but also {12, Thm. 7.4.3]. The case of
singular K (A, z) is also covered in [6], but we will give a more general formulatmg of
that case in §4. For now we will state a portion of this result as a lemma for immediate
use.

LEMMA 3.3. Let A € €™*" and let G be a nonsingular matriz such that B =
G™LAG is in irreducible upper Hessenberg form. Let z € €™ be a vector proportional
to the first column of G. Then K(A,z) is nonsingular, and flag(G) = flag(K (4, z)).

Proof By Lemma 2.2, K(A,z) = Ga 'K (B,e;). Since B is irreducible up-
per Hessenberg, K(B,e;) is upper triangular and nonsingular. Thus flag(G) =
Hag(K(4,2)). @ o

The transforming matrices G utilized by GR algorithms always lie in GLn(C),
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the group of nonsingular matrices in ¢"*". Nothing more than that is said, in gen-
eral. However, certain GR algorithms (e.g., the QR algorithm) use only transforming
matrices that lie in some proper subgroup G (e.g., the unitary group). Similarly, one
may be able to implement the chasing algorithm in such a way that the transfonnil}g
matrices all lie in G (e.g., implicit QR algorithm). The next theorem shows that in
such cases the transforming matrices produced by the two algorithms are the same
up to right multiplication by a matrix in a certain subgroup 7, which we call the
trivial group. If G is not too large, then T really is trivial, and we can conclude

that the chasing algorithm and the GR algorithm produce essentially the same result.
Examples are given below.

THEOREM 3.4. Let G be a subgroup of GL,(€). Define the trivial group T
associated with G by T = G NU, where U denotes the subgroup of GL, (@) consisting
of upper triangular matrices. Let A € T ", let G,G € G have proportional first
columns, let B = G~ AG and B = G-1AG, and suppose B and B are both irreducible
upper Hessenberg. Then there ezists T € T such that G = GT and B = T-'BT.

Proof. By Lemma 3.3, flag(G) = flag(K(A,z)) = flag(G), where z is a vector

proportional to the first columns of G and G. Therefore there exists T € I such that
G=GT. But T = G~1G, s0T€G ThusTeGNU=T. 0

. Ezample Q. The m-step QR algorithm performs a similarity transformation B =
Q™ 1AQ, where Q is unitary and p(4) = QR. Similarly, if the chasing algorithm is
carried out using unitary transformations exclusively, it performs a similarity trans-
formation B = Q-1 AQ, where Q is unitary and p(4) = QR. Since Q and Q must
have proportional first columns, Theorem 3.4 can be applied, with the role of G played
by the unitary group. The group T associated with this choice of § is the group of
diagonal matrices whose main diagonal entries have unit modulus. Thus Q = @D,
where D is diagonal with |dis| = 1 for i = 1,--- n. This is the complex versiofl of
the implicit Q theorem. Thus the chasing algorithm using unitary transformations
produces essentially the same result as the @R algorithm.

Ezample L. The m-step LR algorithm without pivoting performs a similarity
transformation B = LA, where I is unit lower triangular, and p(A) = LA.
Similarly, if the chasing algorithm is carried out using Gauss transformations (1.)
exclusively, it performs a similarity transformation B = L~YAL, where L is unit
lower triangular, and p(A) = LR. Thus Theorem 3.4 applies with G taken to be the
group of unit lower triangular matrices, Then T = {I},s0 G = G and B = B. We
conclude that the chasing algorithm using Gauss transformations without pivoting
produces exactly the same result as the LR algorithm without pivoting.

Ezample S. Let n and m be even, The m-step SR algorithm performs a similarif'?)’
transformation by a symplectic matrix, Taking G to be the symplectic group (in
shuffled form (cf. [14])), we find that T is the group of all block diagonal matrices
T = diag{T1, -, Tk} (where k = n/2), for which each block has the form

_ | a b
ne ]
T.hus the chasing algorithm using symplectic transformations produces a result that
differs from the output of the SR algorithm only by a similarity transformation of
this simple form.
Remark. In the case G

= GLn(C), Theorem 3.4 reduces to part (iii) of [6;
Satz 4.4.1].
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4. The singular case. Before considering the singular case, we introduce some
new terminology and present some preliminary results. Given B € €"*" and j €
{1,---,n — 1}, we will say that B is j-Hessenberg if its first j columns are in upper
Hessenberg form; that is, if B has the form

_ | Bu B
B_{le 322}’

where B, € @7*7 is upper Hessenberg, and By, € @ "~9)%J consists entirely of zeros,
with the possible exception of the single entry bj,1; in the upper right-hand corner.
We will call B j-reducible j-Hessenberg if it is j-Hessenberg, B1y is irreducible upper
Hessenberg, and By; = 0. For the sake of completeness we also include the case
i = n; the term n-reducible n-Hessenberg will be a synonym for irreducible upper
Hessenberg. The first lemma generalizes Lemma 2.3. Again, we leave the proof as an
exercise.

LEMMA 4.1. Let B € @™" and suppose K(B,e1) has rank j. Then the following
four conditions are equivalent:

(i) K(B,e;) is upper triangular.

(i) K(B,ey1) has the form

@) K(B,e)) = [ Su S ] ,

where 81, € @77 is upper triangular and nonsingular.

(iii) B ts j-Hessenbery.

(iv) B is j-reducible j-Hessenbery.

Extending the definition of the Krylov matrix K (A z), we define the n x j
Krylov matriz K(A,z,j) by K(A,z,j) = [z, Az, A%z, - , A¥~1z]. We also need to
extend the definition of the flag of a matrix. Let § € €™ have linearly inde-
pendent columns sy,---,s;. We define the flag of S to be the nested seqence of j
subspaces {(s1), {1, 82), (81,82, 83),**, (81,82, ", 8;) }- Generalizing Lemma 3.2, we
have Lemma 4.2. ‘

LEMMA 4.2. Two full-rank matrices S,G € @™ have the same flag if and only
if there is a nonsingular upper triangular matriz R € ¢’ *J such that S = GR.

The next theorem extends parts (i) and (ii) of 6, Satz 4.4.1]

THEOREM 4.3. Let A€ @™*" andz € C", x # 0, with rank(K(A,z)) = j. Let
G € ™" be a nonsingular matriz whose first column is pm{vortional to z, and let
B = G-1AG. Define submatrices Gy € €™ and G2 € @3 by G = [G1,Ga)
Then the following three conditions are equivalent:

() B is j-Hessenbery.

(i) B is j-reducible j-Hessenbery.

(ili) flag(K(A,z,j5)) = flag(G1).

Proof. Since r = aGe; for some nonzero a, we have

(3) K(A,z) = aGK(B,e1)

by Lemma 2.2. Thus the hypothesis of Lemma 4.1, rank(K (B, e1)} = J, h°lfls' The'r.e-
fore (i) and (ii) are equivalent. We now show that (iii) is equivalent to (i) and (1_1)-
Suppose B is j-Hessenberg. Then K(B,e1) is upper triangular and has the special
form (2). Writing (3) in block form, we find that it implies K (A,-T,J_) = G1(aSu),
where Sy, is upper triangular and nonsingular. Thus flag(K(4,2,j)) = flag(G1).

&
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Conversely, suppose flag(K(A4,z,j)) = flag(G1). Then K(‘A,x, i) = G1S, where
S is upper triangular and nonsingular. We find by inspection that AK(A,z,j) =
K(A,z,5)C, where C € €7 is a companion matrix:

0 0 =*
1 0 =%

C =
1 *

In particular, C is irreducible upper Hessenberg. Combining the equations AK (A, z, 7
= K(A,r,7)C and K(A,z,j) = G185, we find that AG,S = G15C, or AG1 = Glf{q
where H = SCS~! is irreducible upper Hessenberg. Define F € ¢"*" by F* = G,
and make the partition F = [F}, F3), where F; € €"*7. Then F;G1 =1€ ¢ and
F:Gy=0¢ ¢ "3, Also

— Bll Bl2 — F‘AG1 F‘AGQ
B= { Ba1 Bg ] = [ F§AG1 F‘;‘AGg :

Thus Bn = FfAG1 = FfGlH = H and Bgl = F;AGl = F;GlH = (. Therefore B
has j-reducible j-Hessenberg form. 0O

We are now ready to consider a step of the chasing algorithm for which p(A) is
singular. Write p(A) in the factored form

p(A)=(A-o)(A-02)--- (A= 0m).

p(A) is singular if and only if at least one of the shifts o; is an eigenvalue of A. Let
v denote the number of shifts that are equal to eigenvalues of A. Here we count a
repeated shift according to its multiplicity as a zero of p, except that the number

of times we count it must not exceed its multiplicity as a zero of the characteristic
polynomial of A {algebraic multiplicity).

LEMMA 4.4. The rank of p(A) isn —v.

Proof. Since A has irreducible upper Hessenberg form, its eigenspaces are one-
dimensional. Thus A has just one Jordan block [13] associated with each eigenvalue;
that is, A is nonderogatory. Let J = diag{Jy, --,Jx} be the Jordan canonical form
of A. Since the Jordan blocks correspond to distinct eigenvalues, each shift can be
an eigenvalue of at most one block. For i = 1,---,k, let A; be the eigenvalue &
sociated with the block J;, and let n; be the dimension of the block. Let 7 be the
number of shifts that are equal to \;, and let »; = min{#;, n;}. Thenv = di=1 Vie For
each i, consider the factored form p(J;) = (J; — 1) --(J; — om). The factor
Ji — o7 is nonsingular if and only if oy # A;. If oy = A;, then Ji —01 = N,
where N is the nilpotent matrix with ones on the superdiagonal and zeros elsewheff'
Since #; of the factors are equal to N, p(J;) has the form p(J;) = MN % = MN",
where M is nonsingular. The nullity of N, hence also of p(J;), is ;. The nullity of
p(J) is the sum of the nullities of the blocks, which is . Thus rank(p(4)) = rank(p(J)
=n-v. 0

THEOREM 4.5. Let B = G~1AG be the outcome of one step of the generic chasing

algorithm in which rank(p(A)) =n —v = j. Then p(A) = GR, where R is an upper
triangular matriz of the form

_ | Ri1 Ry
ne| B
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with Ry1 € @77 upper triangular and nonsingular. Furthermore B has j-reducible
j-Hessenberg form:

B B
B= [ 0 By ] -
The eigenvalues of Byy € €¥*" are just the v shifts o; that are eigenvalues of A.

Proof. From the proof of Theorem 2.4 we know that p(4) = GR, where R =
a~'K(B,e,)K(A,ey)"!. Since R must have rank j, so must K(B, e;). Therefore, by
Lemma 4.1, K(B, ;) must have the form (2). It follows immediately that R has the
same form. The form of B also follows from Lemma 4.1.

It would appear to be an easy result that the eigenvalues of By are exactly the
shifts that are eigenvalues of A. Consider first the case in which the eigenvalues of A
are distinct. The eigenvalues of By are just those of A|g(p(a))- The range of p(A)
is exactly the invariant subspace of A associated with the eigenvalues that are not
among the shifts. The eigenvalues of By are the remaining eigenvalues of A, namely,
those that are shifts. If A has multiple eigenvalues, this argument is clouded by
the multiplicity question: it is possible that By and Bj; have common eigenvalues.
However, a careful inspection of p(J), where J is the (nonderogatory) Jordan form
of A, reveals that the argument can be extended to the general situation: If A; is an
eigenvalue of J of multiplicity n; and is used as a shift of multiplicity v;, with v; < n;,
then ); is an eigenvalue of J|p(p(s)) (hence of By1) with multiplicity n; —v;. Therefore
A must be an eigenvalue of Bz, of multiplicity »;. O

Theorem 4.5 shows that singular p(A) are desirable, as they allow the problem
to be deflated after one step. Of course this result ignores the effect of roundoff
errors, which will cause bj1,; to be nonzero in practice. Experience suggests that the
computed b1 ; will usually be large enough to prevent deflation.

Our final task is to extend Theorem 3.4 and its corollaries (Examples Q, R, and
S). Let G be a subgroup of GL,(C), and for j = 1,---,n, let G; dgnote _the subset
of GL;(€) consisting of all G € €7/ for which there exist X € ¢3*"=1 and Y €
@ "=9*(n=1) gych that [f); {f] € G. It is easy to show that G is a subgroup of GL;i(T).
Let U, denote the upper triangular subgroup of GL;(C), and let T; = G; NU;.

Ezample Q'. If G is the unitary group, then G; is the unitary group in GL;(C),
so T; is the group of j x j diagonal matrices with main diagonal elements of unit
modulus.

Ezample L'. If G is the group of unit lower triangular matrices in GLa(C), then
G; is the group of unit lower triangular matrices in GLj(C),s0 T} is the subgroup of
GL;(C) consisting of the single element 1. _

Erample S’. If G is the symplectic group, and j is even, then G; is the syglplectlc
group in GL;(€), so T is the group of block diagonal matrices in GL;(') with 2 x 2
blocks of the form given in Example S.

THEOREM 4.6. Let z € @™ and A € €™, with rank(K(4,2)) = j. Let ¢
be a subgroup of GLn(T), and let G,G € G be matrices whose first Folumns are
proportional to z. Suppose B = G~'AG and B = G™"AG both have J-HCSfCﬂbCTg
form. Then both are j-reducible, and there ezists T € T, such that Byy = T-'BuT.

Proof. By Theorem 4.3 we know that B and B are both j-reducible. Furthermore,
flag(G,) = flag(K(4,z,j)) = flag(G,), where G is defined as in Theorem 4.3, ar}d
G1 is defined analogously. Thus there is a T € U; such that Gy = GiT. We wfnll
show that T € G; also, so that in fact T € T;. Obviously G~'G € G. Defining
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F = [Fy,F3) by F* = G™}, as in Theorem 4.3, we have F:G, = F{G,T = T and
F;Gy =F;GT=0,s0

e | FiG FG ) _[T FiG |
F:G, F;C, 0 F;G,

This proves that T € G;, whence T € 7;. The equation B = G™'AG implies
AG = GB. Since B is j-reducible, this implies in turn that AG, = G1By;. Similarly
AGy = G1Byy. Thus Gy By = AG, = AG\T = G\ BT = G (T~ BnT). Since Gy
has full rank, we can conclude that By, = T™'B;;T. O
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