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The braid group action
on the set of exceptional sequences
of a hereditary artin algebra

CLAUS MICHAEL RINGEL

ABSTRACT. Let A be a hereditary artin algebra with s = a(A) simple modules. The
indecomposable A-modules without self-extensions are of great importance, they may be

called exceptional modules. Certain sequences (X1 ,...,X,) consisting of exceptional modules
will be called complete exceptional sequences. Crawley-Boevey has pointed out that the
braid &roup on s—1 generators acts naturally on the set of complete exceptional sequences.
In case 4 is finite-dimensional over an algebraically closed field, he has shown that this
action is transitive, using a recent result by Schofield. We are going to present a direct proof
which is valid for arbitrary bereditary artin algebras. It follows that the endomorphism
rings of exceptional modules are just those rings which occur as endomorphism rings of
the simple modules. Also, we will exhibit the relationship between complete exceptional

sequences and tilting modules.

1. Exceptional modules

Let 4 be a hereditary artin algebra with s = s(A) simple modules. We recall
that an artip algebra is called hereditary, provided that its global dimension is at
Most 1, thus provided that we have Ext?(X,Y) = 0 for all A-modules X,Y. Note
that the center of a hereditary artin algebra is semisimple. An artin algebra 4 is
Said to be connected provided that the center of A is a field, say k, and then 4 is
actually a finite dimensional k-algebra, We usually will assume that A is connected.

The modules we consider will always be finite length modules.

An A-module M is called ezceptional provided that M is indecomposable and
Ext'(M, M ) = 0. The exceptional modules are of great importance for the repre-
Sentation theory of A. (These modules also have been called indecomposab!e Rartlal
tilting modules, Schur modules, or open bricks; the variety of such names indicates
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that these modules have been considered in various circumstances and that several
mathematicians have felt that they deserve a name. Since there does not yet exist
a unified terminology for dealing with exceptional modules, we will provide a dic-
tionary at the end of the note. The use of the word ’exceptional’ is parallel to the
analogous terminology introduced for vector bundles by Rudakov, see [Ru].)

We denote by S,,...,S, a complete set of simple A-modules (one from each
isomorphism class); clearly these modules are exceptional, and our aim is to outline
an inductive procedure for obtaining all exceptional A-modules starting from the
simple A-modules.

Note that the endomorphism ring of an exceptional A-module is a division ring
and one may ask which division rings can arise as endomorphism rings of exceptional

modules. We will see that the only ones which arise in this way are the algebras
End(S.)

Attached to the algebra A is a corresponding Kac-Moody algebra, and thus a root
system. Namely, we define a generalized Cartan matrix A(A) = (A,;);; as follows:
Given two simple modules S;, S;, we have Ext'(S;, S;) = 0 or Ext'(S;,8) = 0.
Let us assume that i # j and Ext'(S;, S;) = 0. We may consider Ext!(S;,5;) a8 8
vector space over the division ring End(5;) or over the division ring End(S;), and
we define

Ayj = —dimgag(s,) Ext'(S;, S;),
Aji = —dimgnd(sj) Ext‘(S‘-, Sj).

If we denote the k-dimension of End(S;) by d;, then we have
diAij = deji'

’[fi‘{h;? shows that A(A) is a symmetrizable generalized Cartan matrix in the sense of

Given any n X n-matrix A which is a generalized Cartan matrix, we may consider
the corresponding root system. Here, we are only interested in the real roots; in the
case of a symmetrizable generalized Cartan matrix they may be defined as follows:
We consider the n-dimensional real space R® with basis ey,...e,, and we define
a symmetric bilinear form given by (e;, e;) = d;A;;. For any vector x € R*, with
(x,x) # 0, let r, be the reflection relative to x with respect to this bilinear form;
thus, for y € R",

rx(y) =y~ -(L}—)»x.

(x,x)
For 1 < i< n, let r; = r,,. Note that any r; maps the subgroup Z" of R" into itsell.
The group generated by these reflections r; is called the Weyl group. By definition,
the real roots are those elements of Z* which belong to the orbits of the base vectors
e; under the Weyl group. The canonical generators e; of I" are called the simple

roots. For any real root x, the reflection r, is defined and belongs to W, thus it
maps the set of real roots into itself.
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We may identify Z* with the Grothendieck group K| o(A) of all A-modules modulo
exact sequences; the element of Ky(A) attached to the A-module M will be called
its dimension vector and denoted by dim M; we identify Z* and Ko(A) so that we
have dim S; = e;. We will show that the dimension vector dim X of any exceptional
module X is a real root for A(A).

The results mentioned above are known (and some are trivial) in the case when
k is an algebraically closed field; so our main interest lies in the case of an arbitrary
base field k. There are some remarks by Kac [K1,K2] concerning this general case,
but no proofs seem to be available. The inductive construction of the exceptional
modules has been shown, for k algebraically closed, by Schofield {S]. The operation
of the braid group for obtaining all exceptional modules from the simple ones was,
again for k algebraically closed, introduced by Crawley-Boevey [CB]. The direct
algorithm we present here may be new even in the case of an algebraically closed

base field.

The author is endebted to W. Crawley-Boevey, St. Konig and H. Krause for
helpful comments concerning the final presentation of the paper.

2. Preprojective and preinjective modules

We have noted above that the simple A-modules are exceptional modules. Some
other exceptional modules are always known. In case A is representation finite
(this means: there are only finitely many isomorphism classes of indecomposable
modules), then all indecomposable A-modules are exceptional; otherwise, there are
countable families of indecomposable modules which are exceptional, namely the
preprojective ones and the preinjective ones. Let us recall the corresponding con-
structions. For 1 < i < 3, we denote by P; the projective cover of S;, by @; the
injective envelope of S;. Then P,..., P, is a complete set of indecomposable pro-
Jective modules, Q,...,Q, is a complete set of indecomposable injective modules,

and all these modules P;, Q; are exceptional.

We denote by 7 = DTr the Auslander-Reiten translation; given any indecom-
posable non-projective module M, the module 7M again is indecomposable, it is
the left hand term of an almost split sequence ending in M. Similarly, we denote
by 7= = TrD its partial inverse: given any indecomposable non-injective module
M, the module 7~ M is indecomposable, it is the right hand term of an almost split
sequence starting in M, see [AR]. If M is exceptional, but not projective, then ™
is exceptional again; similarly, if M is exceptional, and not injective, then 77 M is
exceptional. (This follows from the fact that the restriction of 7 to the full subcat-
egory of modules without non-zero projektive direct summands is an equivalence
onto the full subcategory of modules without non-zero injective direct summands,

its inverse being given by 77.)

The indecomposable modules of the form 7~ P; are said to be preprojective, those
of the form 7!Q; are said to be preinjective. All these modules are exceptional. We
note the following: If A is representation finite, then all the indecomposable.A-
modules are both preprojective as well as preinjective. If A is not representation
finite (and connected), then for any ¢ € Ng and any 1 < i < 8, the modules 7P,
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and 7tQ; are indecomposable modules which are pairwise non-isomorphic, and there
are additional indecomposable modules, called the reqular ones.

In case 3(A) = 2, the exceptional modules are just the preprojective anq the
preinjective ones; this case will be considered in detail later, since the algorithm
for constructing all exceptional modules will be based on dealing with full exaf:t
subcategories which are equivalent to the module categories of hereditary a.m.n
algebras B with s(B) = 2. In case A is representation infinite and s(A) > 2 (and Ais

connected), then there do exist exceptional modules which are neither preprojective
nor preinjective, see [R4].

3. The algorithm for obtaining all exceptional modules

For any hereditary artin algebra A, a pair (X,Y) of exceptional A-modules is
called an ezceptional pair provided that we have

Hom(Y,X)=0, Ext(Y,X)=0.
An exceptional pair (X,Y) will be called orthogonal, provided that also
Hom(X,Y)=0

is satisfied. If (X,Y) is an orthogonal exceptional pair, we may consider the category
C(X,Y) of all A-modules M which have a filtration with factors isomorphic to X
and Y. This is an exact abelian subcategory with two simple objects, namely X and
Y, it is equivalent to the category of all B-modules of a hereditary artin algebra B
with s(B) = 2 (see, for example [R1], section 1). Since C(X,Y) is equivalent tq the
module category for a hereditary artin algebra B, we may consider those ob]e_Cts
in C(X,Y) which correspond under an equivalence to preprojective, or preinjective
B-modules, and we will call them preprojective or preinjective objects in C (X, Y),
respectively. Since C(X,Y) is closed under extensions inside the category of all

A-modules, we see that the preprojective and the preinjective objects in C(X,Y)
are exceptional A-modules.

For any natural number n, we define a class £, = £,(A) of indecomposable
modules of length n inductively as follows: Let £; be the simple A-modules. Let
us asusme now that for some n > 1 the classes &,...,&,-1 already have beten
defined. Let £, be the class of indecomposable A-modules M of length 7 with

the following property: there is an orthogonal exceptional pair (X,Y) with both

modules X,Y in U?z"l‘ €; such that M is preprojective or preinjective in C(X ,Y).

Finally, let £ = |J;,, £&. We obtain in this way a class of exceptional A-modules
and we claim that all exceptional A-modules belong to this class:

THEOREM 1. The class £ is the class of all ezceptional A-modules.

The proof will be given below using the braid group operation on the set of the
socalled exceptional sequences.

COROLLARY 1. If X is an ezceptional A-module, then End(X) is isomorphic t0
End(S) for some simple A-module S.
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' P.roof: If (X, Y) is an orthogonal pair of exceptional A-modules, and M is prepro-
jective or preinjective in C = C(X,Y), then End(M) is isomorphic to End(X) or to
Enc%(Y). For example, assume that M is preprojective in C. Observe that Y is simple
projective in C. The projective cover Z of X in C is an indecomposable module with
endomorphism ring isomorphic to End(X). We denote by 7¢ the Auslander-Reiten
translation in C. Since M is preprojective in C, it is either of the form 7 ty for
some ¢ € N, and then its endomorphism ring is isomorphic to End(Y), or else it is
of the form 7;*Z for some t € Np, and then its endomorphism ring is isomorphic to
End(Z), and therefore isomorphic to End(X). In a similar way one deals with the
case when M is preinjective.

A(i())ROLLARY 2. If X is an exceptional A-module, then dim X is a real root for
Pro‘of: It is well-known that the bilinear form {—,—) on Z" = Ko(A) has the
following homological interpretation: Given A-modules M,N, let

(dim M, dim N} = dim; Hom(M, N) — dimy Ext}(M,N).
Then, according to [R1], Lemma 2.2,
(dim M, dim N) = (dim M,dim N) + (dim N, dim M).

Assume now that (X,Y) is an orthogonal pair of exceptional modules, and assume
that we know already that dimX and dimY are real roots. Let Wxy be the
subgroup of W generated by rdim x 80d dimY- Then the dimension vectors of the
preprojective and the preinjective objects in C belong to the orbits of dim X and
dim Y under the operation of Wxy, see [R1], 3.2. It follows that the dimension
vectors of the preprojective and the preinjective objects in C are real roots for A(A).

4. The exceptional pairs in the case s = 2.

Let us now assume that s = s(A) = 2, and let P, Q be the simple modules; we

may assume that Ext!(P,Q) =0.
LEMMA. If M s an ezceptional module,
unique up to isomorphism, such that (M~, M ) and
Proof: An exceptional module M is an indecomposable A-
preprojective or preinjective.
In case A is representation finite, let Py,..
with

there are exceptional modules M~ MT,
(M, M) are ezceptional pairs.

module which is either

., Pm be the indecomposable modules,

Hom(P;, P;i+1) #0, forall 1<i<m.

In particular, we have P, = P,Pn = Q. Let Pf =Py for1 <i<m, and

P =P_ forl<i<m. Let P = Pm, and P =P

(Note that in this case m = 2, 3, 4 or 6; the corresponding Cartan matrices
A(A) are labelled A; x A, Az, By and G, respectively - these are just the Cartan
matrices arising for the finite-dimensional semisimple Lie algebras of rank 2.)

In case A is representation infinite, there are countable many indecomposable

preprojective modules and countably many indecomposable preinjective modules,
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and we may label them in the following way (see again [R1]): let {Fi| i € N1} be
the indecomposable preprojective modules, and {Q;| i € N;} the indecomposable
preinjective modules with

Hom(P;, Piy1) #0, and Hom(Qi41,Q:i)#0 forall ¢2>1.

It follows that P, = P, Q, = Q. In this case, P = P4y, and Q; = Q7,,, for all
i > 1; similarly, P = P;—1,Q{ = Qi1 for alli > 2, finally, let P|” = Q.. Q7 = P

Note that all the exceptional pairs (X,Y) different from (Q, P) satisfy

Hom(X,Y) #0.

5. Exceptional sequences and the braid group

A sequence X = (X;,...,X,) is called exceptional, provided that any pair
(Xi, X;) with i < j is exceptional. Actually, we only are interested in isomorphism
classes of modules, not in the modules themselves: thus, an exceptional sequence
will be considered as a sequence of isomorphism classes. An exceptional sequence
X = (Xy,...,X,) with n = s(A) is said to be complete.

Recall that the braid group B, in n — 1 generators gy,...,0,- is the free group
with these generators and the relations 00410 = ;4103044 forall 1 <i<n—1,
and 030 = 0;0; for j > i+ 2.

Given an exceptional sequence (X),...,X,), we denote by C(Xy,...,Xn) the
closure of the full subcategory with objects X, ..., X, under kernels, images, and
extensions. Of course, this is an exact abelian subcategory (in case (X,Y") is an
orthogonal exceptional pair, this subcategory C(X,Y’) coincides with the full sub-
category of all modules with a filtration with factors isomorphic to X and V).

The main ingredients for the definition of the operation of B, on the set of

complete exceptional sequences are the following three observations due to Crawley-
Boevey:

PROPOSITION 1. Let (X),...,X,) be an ezceptional sequence. C(X1,..., Xn) 18

equivalent to the category of all B-modules for some hereditary artin algebra B with
3(B) = n.

PROPOSITION 2. Let (X1,...,Xy) be an ezceptional sequence of A-modules. If
(Y,Y') is an exceptional pair in C(X;, Xis1), then

(Xl’ s ’Xi—lr Y1 Y,a Xi+2s s 1Xn)
15 an exceptional sequence of A-modules.
PROPOSITION 3. Let (Xy,...,X;_y, Xi41,..., X s) be an exceptional sequence,

where 1 <1 < s. Then there ezists a unigue module X; such that (Xy,...,Xs) 15 8
complete exceptional sequence.
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For a proof of these assertions, we refer to [CB]; his assumption concerning the
base field is not used in this part of the paper. We should mention that these
results of Crawley-Boevey were motivated by the work mainly of Gorodentsev,
Rudakov, and Bondal, but also others, dealing with exceptional sequences of vector
bundles (see the papers [GR], [G], [B] and the collection [Ru)); in these papers, a
corresponding action of the braid group had been introduced. The natural setting of
such braid group actions seems to be in the context of triangulated categories (say
the corresponding derived categories). Actually, as Crawley-Boevey has pointed
out, one may use the arguments of [G], section 3.3, in order to obtain also the braid
group operation on the set of exceptional sequences of a hereditary artin algebra.
The proof presented in (CB] is rather straight-forward, it only uses properties of

perpendicular categories.

Let (X,Y) be an exceptional pair. Recall that C(X,Y) is equivalent to the
category of all B-modules, where B is a hereditary artin algebra with s(B) = 2.
Thus, we may consider inside C (X,Y) the exceptional module Y*; our notation will
ber(X,Y) = Y+, this module is the unique object in C(X,Y') such that (¥, r(X,Y))
i8 again an exceptional sequence. Similarly, let {(X,Y) = X~ be the unique object
in C(X,Y) such that (I(X,Y), X) is an exceptional pair.

Given an exceptional sequence X = (Xi,...,X,) of A-modules and 1 <1 < n,
we define

oi(X) = (X1, ..., Xie1, Xiv1, F(Xi, Xig1)y Xivzs -1 Xn)s

and
o7 (X) = (Xy,... Xio1, U X, Xiv1)s Xis Xivzs -3 Xn).

In this way, we obtain an action of the braid group in n—1 generators oy, ..., 0n-1

on the set of exceptional sequences: If i +2 < j, then both o;0;(X) and 0;0:(X)
will be equal to

G, Xipn, 7( Xy Xig1)s - Xjtt (X Xje1)s o)

(the positions marked are those with index i,i+1 and j,J +1). On the other hand,

let
Y= T(T(X.-,X.-+1),X,-+g) and Y'= T(’“(Xi,X-'+2),T(X.‘+1,Xi+2))-
Then
0i05410:(X) = (.. o Xipas 7(Xign, Xip2), Voo o)
whereas

(/Y) = ( . .,X,‘+2, T(X,'+1,X,'+2),Y’, e )

led). '
Xipz,r(Xivr, Xis2) ¥
it follows from Proposi

0i+10i0i+1

(only the positions 4,i+1,i+2 are label
Since (X2, r(Xiv1, Xi+2)s Y) and (
ceptional sequences in C(Xi, Xi+1, Xit2)

) are complete ex-
tion3that Y =Y.




346 CLAUS MICHAEL RINGEL

6. The reduction theorem

Let X = (X;,...,X,) be an exceptional sequence, let 1 < i < n. We say that
0i i8 a transposition for X, provided that for J = 6, X, we have Y;;; = X; (so that
Y is obtained from X by just transposing X; and X;,,). The following assertion is
easy to verify.

LEMMA. Let X = (Xy,...,X,) be an exceptional sequence, let 1 < i < n. Then
oi 18 a transposition for X if and only if Hom(X;, X;;,) = 0, and Ext!(X;, Xi+1) =
0.

LEMMA. Let X = (X,,...,X,) be an ezceptional sequence, let 1 < i < n. Then
there ezists t € Z such that Y = !X satisfies Hom(Y;,Y41) = 0.

PROOF. We apply the considerations of section 4 to C(Xs, Xiv1).

We say that of is a proper reduction for X, provided that Y = o!X satisfies
Hom(Y;, Yi+1) = 0, whereas Hom(X;, X;,1) #0.

An exceptional sequence X = (X1,.. .»X»n) is said to be orthogonal, provided
that we have Hom(X;, X;) = 0 for all i # .

THEOREM 2. Any ezceptional sequence can be shifted by the braid group action
to an orthogonal sequence using only transpositions and proper reductions.

In order to give the proof, we need some preparations. For any A-module M,
let |M| be its length. For a sequence X = (X1,...,Xn) of A-modules, let || X| =
(1 Xx)ls---, | X x(n)|), where 7 is a permutation of 1,...,nsuch that [X | > --- >
| Xx(n)|- For sequences r = (Z1,--,2n), ¥ = (Y15---,4) in Ng, we write z < y
provided that z; < y;, foralle1 <i<n,and r < Y, provided that z < y and r # y.

LEMMA. If 0; is a transposition for X, then |o;X | = |IX). Is of is a proper
reduction for X, then ||t X|| < || X

PROOF. Let o;X = (Yy,...,Y;,). Then Y; = X; for j ¢ {i,i + 1}, whereas
Y;,Yi41 are the simple objects in the category C(Xi, Xi+1). Since we assume that
o} is a proper reduction, at least one of the modules Xi, Xi+1 cannot be simple in
C(Xi, Xi+1). However, if M is an indecomposable non-simple object in € (X, Xit1),
then M has a filtration with factors of the form X; and Xi+1, and both types of
factors appear at least once.

REMARK. If 6} is a proper reduction for X, we have letX|| < || X]|, but we cannot
demand to have o} X|| < |lof72X| < - < || X ||. For example, consider a hereditary
algebra with two simple modules P, Q, where P is projective, Q injective, such that
the injective envelope of P is of length 2, and the projective cover of Q is of length
c+1, with ¢ > 3. Let X = 6}(Q, P). Then [|X|| = ¢, whereas lovX||=c2—c—1>c¢,
and flo7' X = c+1> ¢ Of course, o7 with ¢ = —2 is a proper reduction for X,
and for ¢ > 4, this is the only possible choice for ¢.

PROOF OF THEOREM 2. Let X = (X1,...,Xy) be an exceptional sequence, and
assume that X’ is not orthogonal. Choose a < b such that Hom(X,, X;) # 0, but
Hom(X;, X;) = 0 for the remaining a < i < J <b. Let ¢: X, —» X, be a non-zero
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morphism. According to HR], we know t i
et ey [HR] ow that ¢ has to be a monomorphism or an
Consider first the case where is a mono i i ism i
epitorphian %] morphism. This monomorphism induces
Ext!(Xy, X;) — Ext'(X,, X;)

for .all 1. The ﬁrst_ Ext-group is zero for b > i, thus the second Ext-group also
vainghesbforhtheae t. We see that both Hom(X,, X;) = 0, and Extl(Xa,X.-) =( for
6 <i<b, thus

Op-2.. 1Oa410,X = (Xh o aXa-h Xa+1’~ - ,Xb-lchv Xbr-- ‘9Xn))

_and always we just use transpositions. Now we apply some power of Op-1, say of_,,
In order to replace (X, Xs) by (Q, P) with Hom(Q, P) = 0, thus we use a proper
reduction.

The case when ¢ is an epimorphism, is treated similarly: The map @ induces

epimorphisms

Ext'(Xi, X,) — Ext}(X;, Xy).

The ﬁ;st Ext-group is zero for i > a, thus also the second Ext-group vanishes for

:ll:ese i. We see that both Hom(X;, Xp) = 0, and Extl(X.-,Xb) =0foralla <i<b,
us

Oa41...0p1 X = (Xl»-- -7Xa—~l:XaaszXG+-17--"Xb—-erb-f—l)-‘- )Xﬂ))

always using just transpositions. We now apply some power o} of o, in order to
replace (X,, X,) by (Q, P) with Hom(Q, P) = 0; thus we use a proper reduction.

Since a proper reduction always decreases || X]], this process has to stop after a
finite number of steps, and we obtain some orthogonal exceptional sequence.

7. The orthogonal complete exceptional sequences

THEOREM 3. The orthogonal complete exceptional sequences are just those ez-
ceptional sequences which consist of the simple modules.

PROOF. Let X be an exceptional sequence. Let C(X) be be the smallest subcat-
€gory containing X and being closed under extensions, kernels of epimorphisms and
cokernels of monomorphisms. If A is complete, then C(X) = A-mod, as Crawley-
Boevey [CB] has shown (again without using any assumption on the base ﬁeld)..

Since X,,..., X, are orthogonal modules with division rings as endomorphism
rings, C(X) is just the set of A-modules which have a filtration by modules of the
form X;, see [R1] (the process of simplification). This shows that any simple A-

module S; has a filtration by modules of the form X;, thus for any Sj, there is some

7(j) with Sj = Xy(;)- Since the length of the sequence X is s = s(A), it follows

that any X; is simple.
COROLLARY. Any complete exceptional sequence can be shifted by the bmfd groz;p
action to an ezceptional sequence consisting only of simple modules by using only

transpositions and proper reductions.

LT My
“ B
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LEMMA. The complete exceptional sequences which consist of simple modules can
be obtained from each other by the braid group action using only transpositions.

This can be verified without difficulties.

COROLLARY. The braid group acts transitively on the set of complete exceptional
sequences.

As mentioned in the introduction, this assertion, for A finite-dimensional over
some algebraically closed field, is the main result of the paper [CB] by Crawley-
Boevey. His proof relies on investigations by Schofield [S] dealing with semi-
invariants of quivers, and this is the only part of the paper which uses the as-
sumption on the base field. Actually, the decisive Lemma 7 in [CB] may also be
shown directly, using considerations similar to the ones above.

8. Endomorphism rings of exceptional modules

Given an artinian ring B, let J(B) be its radical, thus J(B) is the maximal
nilpotent ideal of B.

THEOREM 4. Let X = (X1,...,X,) be a complete ezceptional sequence, let

B = B(X) be the endomorphism ring of ; Xi. Then B/J(B) is Morita equivalent
to A/J(A).

PROO-F. Let. p(.«\:’ ) = B/J(B). Let D; be the endomorphism ring of Xj, and note
.that D; is a division ring, thus D = I1; Di. We claim that D(X) and D(oX) are
1somorphic, for any braid group element 0. Of course, it is sufficient to consider

a generator o, and we may assume that 8 = 2. But in this case the assertion is
obvious.

9. Tilting sequences

An exceptional sequence X = (X1,...,X,) is said to be strongly exceptional,

pro.vidt-ad that we have Ext!(X; X i)=0foralli,j. A strongly exceptional sequence
which is complete may be called » tilting sequence.

We say that o; is a p-eztension for X, provided that Hom(X;, X;+;) =0 (the

] a.te that p-extensions are the usual procedure to construct inde-
composable projective modules starting with simple modules; also in the general

case considered here, we use the p-extensions in order to construct relative projec-

ttiive ol))ge():ts inside the subcategory of modules having a filtration with factors of the
orm A;.

THEOREM 5. Any ezceptional 5
to a strongly ezceptional sequence

PROOF. Let ¥ = (Xl,...,X,,)
:v,trongly exceptional. Choose g <
18 minimal. We choose ¢ witha <
Hom(X,, X;) = 0, we even have

equence can be shifted by the braid group action
usmng only transpositions and p-extensions.

be an exceptional sequence, and suppose it is not
b such that Ext!(X,, Xs) # 0, and such that b—¢
t < b maximal such that Hom(X,, X;) # 0. Since
@<t <b Let o Xa — X; be a non-zero map
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We claim that ¢ is an epimorphism. Since Ext*(X;, X,) = 0, ¢ is a monomorphism
or an epimorphism. Let us assume that a < ¢ and that ¢ is a monomorphism; the
map ¢ induces a surjective map

Ext!(X;, Xs) = Ext!}(X,, Xp),

but the latter group is non-zero, whereas the first one is zero, by the minimality
assumption on b—a. Thus, we obtain a contradiction. As a consequence, we see that
Hom(Xy, X;) = 0 for t < i < b. For, a non-zero map v: X; — X; can be composed
with ¢ and will give a non-zero map X, — X;, contrary to the maximality of .

For t > a, we have both Hom(X}, X;) = 0, and Ext!(X,, X;)=0,forallt <1< b;
thus the consecutive application of first gy, then Ot+1, and so on, finally a4—; yields
Just transpositions, and reduces b — a by 1. The assertion follows by induction.

Thus, it remains to consider the case ¢ = a. Since Hom(X,,X;) = 0, and
Extl(X,,,X;) = (, for all @ < ¢ < b, the application of first o4, then 0,41, and
80 on, finally o,_; yields transpositions, and we obtain in this way an exceptional
sequence ) with Hom(Y;-;,Y;) = 0, and Ext!(Yy-1,Y:) # 0 (here, i1 = X,).
Obviously, o5 is a p-extension for ).

In order to see that the process stops, let us introduce a set E(X) as follows:
For any pair (u,v) with 1 € u < v < n, let E(X;u,v) be the factor group of
Ext!(X,, Xy) modulo the subgroup generated by the images of the induced maps
Extl(X,,,() where (: X; — X, is a map with j < v. By definition, a pair (u,v)
belongs to E(X) if and only if there exists a sequence u = up < %3 < ... Uy =V
with m > 1 such that E(X; u;_1,u;) # 0 forall 1 < ¢ < m. If 0; is a transposition for
X, then the sets E(X) and E(0;X’) clearly will have the same number of elements.

Thus, let o; be a p-extension for X; and let Y = o;X. We claim that in this
case the number of elements of F()) decreases by (at least) one. Let u < i, and
i+1 < v. We note the following: We have E(Y;u,v) = E(X;u,v). Since Y; = X;41,
it is easy to see that E(Y;u,i) = E(X;u,i+ 1) and E(Y;4,v) = E(X;i + 1’”?'
There is an epimorphism Yi;; — X; (with kernel a direct sum of copies of ¥;); it
induces an isomorphism between E(Y;u,i+1) and E(X;u,1). Finally, assume that
E(Y;i+1,v) # 0. Then we have E(X;i,v) # 0 or E(X;1+1,v) # 0. In both cases,
it follows that the pair (i, v) belongs to E(X). Altogether we see that (u,v) belongs
to E(Y) if and only if it belongs to E(X); that (u,4) or (¢,v) belongs to E(y), if
and only if (u,i+1), or (i+1,v) belongs to £(X’), respectively, and that (u, z+'1) or
(i+1,v) belongs to E(Y), if and only if (u, ) or (i,v) belongs to E(X), respectively.
Of course, (i,i + 1) belongs to E(X), but not to E(Y). This completes the proof.

Given an exceptional sequence X, we denote by F(X) the set of A-modules which
have a filtration with factors of the form X;.

THEOREM 6. Let X be an ezceptional sequence. Assume that T is ¢ strongly
exceptional sequence such that X can be shifted by the braid group action to T

using only transpositions and p-extensions. Then thf modules T; are jus't those
indecomposable modules M in F(X) which satisfy Ext™ (M, X;) =0 for all 1.

PROOF. Let X = (X1, ..., Xn). Let P(X) be the set of A-modules M in f.'(.X)
which satisfy Ext}(M, X;) = 0 for all i. If JV is obtained from X by a transposition
or a p-extension, then on the one hand, all the modules Y; belong to F(X), thus

e

5
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F(Y) C F(X) (and actually F(Y) C F(X) in the case of a p-extension), whereas,
on the other hand, we have P(X) C F(Y), thus P(X) C P(Y). The latter implies
that P(X) C P(T). Of course, P(T) = F(T) is just the additive subcategory add 7
generated by the modules T;. It is known (see [DR], Theorem 2) that P(X) has
precisely n isomorphism classes of indecomposable objects, thus P(X) = add 7.

THEOREM 7. Let T = (T1,...,T,) be a strongly exceptional sequence. The
number of exceptional sequences which can be shifted by the braid group action to
T using only transpositions and p-ectensions is at most n!.

PRrooF. Let X be an exceptional sequence which can be shifted by the braid
group action to 7 using only transpositions and p-extensions. Consider T). There
is a surjective map T} — X; for some (uniquely defined) i such that the kernel,
as well as all the other modules Ty,...T, have filtrations with factors X; where
j # 1. Let X’ be obtained from X by deleting X;. Clearly T' = (T3,...,T,) is itself
strongly exceptional, and X’ can be shifted by the braid group action to 7’ using
only transpositions and p-extensions. By induction, we know that there are at most
(n — 1)! possibilities for &'. Since X; is uniquely determined by &’ and the index
i (see [CB], Lemma 2), there are at most n possibilities for X;, when &” is fixed.
This completes the proof.

10. Perpendicular categories

We have mentioned above that Crawley-Boevey’s definition of the braid group
operation relies on properties of perpendicular categories. Perpendicular categories
have been studied by Geigle-Lenzing [GL] and Schofield [S]; they are defined as

follows: Given a collection C of A-modules, then C is the full subcategory of all
A-modules Y which satisfy both

Hom(C,Y) = 0 = Ext'(C,Y) forall Ce€C;
similarly, +C is the full sub - i '
4 subcategory of all A-modules X which satisfy both
Hom(X,C) =0 = Ext!(X,C) forall CeC.

Since A is hereditary, both subcategories C* and C are exact (this means: they
are abelian, and the inclusion functors are exact).

If X is an exceptional A-module, then it is known that C1 is equivalent to the
category of all B-modules, similarly, 1C is equivalent to the category of all B
modules; where B, B’ are artin algebras with s(B) = s(B') = s(4)—1, see [S]. Note
that the procedures above yield an effective way of computing B and B’, as soon
as a complete exceptional sequence containing X is given:

Indeed, let (X1,...,X,) be a complete exceptional sequence with X = X; for
some 7. We may shift X to the end of the sequence, thus, without loss of generality,
we may assume that X = X,. But in this case, we know from [CB] that X is just
C(Xy,...,X,~1). Now, using permutations and proper reductions to the sequence
(X1y...,Xs-1), we may transform it to an orthogonal sequence (Y3,...,Y,-1). But
then the modules Y3,...,Y,_; are just the simple objects of X1. Finally, using
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transpositions i

sequence (2. 't.lfxdzp»ex;:ensnons, we may transform the sequence (¥3,...,Y, 1)t

The Iatter means’ t };.; ) ;uch that we have Ext'(Z;,Y;) = 0 for all 1’ <.i, '.21 01a

b X%; and the secfe e .modfxles Z; are the indecomposable projec—tix:: m ‘:1; ‘

o morphism ring of @, Z; is the artin algebra B we are I:oki:;
Of course, in i

e may alresdy Si?)se :;3 deal with algebras over an algebraically closed field &

B Vo e :»th en we h.ave obtained the orthogonal exceptional sequence’

quiver of B )8 e e dimension of the various k-spaces Ext'(Y;,Y;) yields th
Similacly, e 818013 just the corresponding path algebra. " )

) can construct the artin algebra B’.

Dictionary

The terminol ‘
and his schog] [;;gy fzcephonal and strongly ezceptional was introduced by Rudakov
u] in the analogous situation of vector bundles.

Exceptional
Modules by Un;fd nl;les have also been called stones by Kerner (Ke] and Schur
]. Modules with endomorphism ring a division ring have been

lamed bricks in [R3).

A sequ .
X,. _siqxen‘i:: (f Lr--ey Xn) 18 exceptional if and only if, first, the set of modules
n i8 standardizable in the sense of [DR] and, second, the order of the

mOdul% . . e
refines the intrinsic partial ordering of this standardizable set.

A pair o .
orthogonal fi;ﬂoﬂ(illdes M, N with Hom(M, N) = 0, Hom(N, M) = 0 has been called
having diviscn o ]. A set of modules consisting of pairwise orthogonal modules
de Ia Peiig [GPr ings as endomorphism rings has been called discreie by Gabrie] and
]. The p-extensions have been used in a decisive way in [R1,R2].

A
8um osfe?l::ae:fsd(fh oy Xn) is :‘itrongly exceptional if and only if, first, the direct
by Happel-UJ ules X;, ..., X,, is a multiplicity-free partial tilting module as defined
ordering g; nger [HU]J, fi-nd, second, the order of the modules refines the partial
given by the existence of non-zero maps. Of course, the tilting sequences

corres :
pond in the same way to (multiplicity—free) tilting modules.
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