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anharmonic oscillators, the magnetic bottle and orbit-orbit or spin-orbit resonance in the Solar
system. Details are explained in the appendices.

The majority of the articles in this book is intersting to mathematicians and theoretical
physicists alike. The book can however not (and is not intended to) serve as an introduction.
It can be recommended to graduate students and researchers interested to enter deeper into
the rapidly growing fields of Dynamical Systems.

The reader of the book would definitely benefit from an index.

Leipzig U. Behn

G. LuszTiG: Introduction to Quantum Groups (Progress in Mathematics: Vol.
10). Boston et al: Birkhauser Verlag 1993; 2nd rev. ed., 346 pp.

What are quantum groups? The topic is rather popular since several years, but it seems that
there does not yet exist a generally accepted definition. Note that objects called “quantum
groups” are not groups and some of them should be quite useless in quantum physics; so the
concept may sound a little odd. Those objects called “quantum groups” are usually Hopf
algebras, in this way they are similar {(not to groups, but at least) to group algebras, and
the first examples were constructed in order to deal with the quantum Yang-Baxter equation.
There is a general feeling that symmetries in quantum physics may be related not to group
actions, but to the operations by associative algebras or better Hopf algebras - this may give
some explanation to the otherwise strange label. The first general account is Drinfeld’s famous
address to the ICM in Berkeley in 1986, and there is an increasing number of applications
in various parts of mathematics (and maybe physics). Thus it is very worthwhile to have an
exposition by one of the leading experts. There is a special class of algebras where anyone agrees
that they should belong to whatever one may call “quantum groups”, namely the Drinfeld-
Jimbo quantizations of the Kac-Moody algebras, and these are the quantum groups considered
in Lusztig’s book. Questions about possible applications inside mathematics or physics are
not touched in the book: there are no knots or 3-manifolds, the Yang-Baxter equation is not
mentioned, no quantum field theory is constructed. For a general account concerning the
different lines of development, the reader may be referred to A Guide to Quantum Groups by
V. Chari and A. Pressley, which just now has been published by Cambridge University Press;
in particular, it contains a list of references of 71 pages.

Let us recall that the Kac-Moody Lie algebras were introduced by V. Kac and R. V. Moody
in order to consider Lie algebras which are given in a way similar to the Serre presentation of a
finite-dimensional semisimple complex Lie algebra. In particular, a Kac-Moody Lie algebra g
has a triangular decomposition g*=n_ & h @ n, (for a finite-dimensional semisimple complex
Lie algebra g, we obtain such a decomposition by fixing a Cartan subalgebra h, and choosing
some positive part of the root system: n, is the direct sum of the weight spaces for the positive
roots, n_ is that for the negative roots). The universal enveloping algebra U(g) of a Kac-Moody
Lie algebra g has a corresponding triangular decomposition U(g) = U(n-) @ U(h) ® U(n4).
Now, we are going to “quantize” the algebra U(g), by introducing an additional parameter v
in the Serre presentation of U(g). Lusztig has always stressed that instead of working over the
complex numbers it will be useful to work over the integers; thus, as base field he takes the
rational function field @(v) in one variable v over the rational numbers. This is the setting of
the book: we are dealing with an associative @(v)-algebra U which is defined by a presentation
similar to the usual Serre presentation of g or of U(g), but involving in addition the parameter
v. This algebra U again has a triangular decomposition U = U~ @ U? @ U™, it is a Hopf
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:lrii:::e’zn!tm;lazuﬁl{ unsezl:'hf,:r l;:mr}:{mute:itive nor cocommut_&tive. The algebra U occurs at a
of the Lacl - 1g’s book, an the title 1:efers to it; however the main considerations
X ook are ea‘lmg with only one part of this “quantum group”, namely with Ut. The
ito,osicu:zorsltij b.e considered as a detailed study of the algebra Ut and of algebras derived from
_ Some.thing‘ rather c'urious should be mentioned: As we have said, it is the algebra U* which
is the main object studied in the book, but this algebra is exhibited in the book under various
names, such as f, t", or k, of course also as Ut, as well as fJ"‘, and at least half of the book
is devoted~ to showing that these differently defined algebras are isomorphic (an isomorphism
fror-n f to f is given in Theorem 33;1.3, to k in Theorem 13.2.11, and to Ut in Corollary 3.2.6;
an isomorphism between Ut and Ut can be found in Section 15.1.2). The reader will observe
that there is a big advantage of using disjoint notations for algebras which only later turn out
to be isomorphic: as soon as such a symbol occurs, one knows the setting one is dealing with;
the basic operations may have completely different interpretations in the various settings. Why
should it be of interest to deal with severai realizations of one particular algebra? First of all,
the mere existence of these realizations already indicates the importance of this algebra; also,
if an algebra arises in diverse contexts, then it may serve as a link connecting these subjects.
Second, specific properties may be easy to observe in one realization, but not in some other:
thus these realizations also are working tools. Even if there is a large number of realizations
of Ut in the book, it seems that further such results will be of interest in the future; already
now there are similar realizations using methods from combinatorics (a recent preprint of J. A.
Green shows that Ut is isomorphic to the so-called generic composition algebra) or from
differential geometry (P. B. Kronheimer, H. Nakajima).

We should note that the algebra Ut usually is not a Hopf algebra, not even a bialgebra
in the usual sense. But it is very similar to a bialgebra or a Hopf algebra: it has both an
associative multiplication with unit and a coassaciative comultiplication with counit, however
these two structures interrelate in an unusual way: for a bialgebra A one requires that the
comultiplication § : A — A ® A is an algebra homomorphism, where A ® A is made into an

algebra by using componentwise multiplication
(a1 ® a2)(b1 ® b2) = a1 by ® azbs,
Ut — U* @ Ut will be an algebra homomorphism only

Ut @ U*. The
foalh1, here,

whereas the comultiplication ¢ :
in case we use a (just slightly) different multiplication on the tensor product
U+ differs from the usual one by a factor of the form v
the so-called Cartan datum. As Lusztig points out, the
thus he uses it as the starting

new multiplication on
a symmetric bilinear form - appears,
Cartan datum is the essential ingredient for the whole theory,

oint of his investigation. .
P To begin with, Lusztig defines the algebra f on the first pages of t!xe book lhn :;ez
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It later will be of interest that f also carries a (non-degenerate) inner product denoted by
(—,=). With respect to the inner product, the comultiplication is adjoint to the multiplication:
thus multiplication and comultiplication determine each other. Lusztig’s introduction of f
focuses attention on this inner product: he starts with the free @(v)-algebra 'f in n generators
f1,...,0, and constructs on 'f a symmetric bilinear form depending on the given Cartan
datum. The radical Z of the form (—,—) is easily shown to be both an ideal and a coideal of
'f, and f is defined as 'f/T. Lusztig can show without difficulties that f satisfies the quantum
Serre relations (Proposition 1.4.3 on page 11), but he postpones the proof that f actually is
defined by these relations (see Theorem 33.1.3 on page 260; Lusztig denotes by f the algebra
defined by the quantum Serre relations for the positive part, thus Theorem 33.1.3 asserts that
the canonical map f — f is an isomorphism). The proof uses results from the representation
theory of (unquantized) Kac-Moody Lie algebras and he outlines the needed references to the
book of Kac. These pages 258 - 260 are independent of the previous pages, thus the interested
reader may jump from page 13 directly to that part of Lusztig’s book. The identification of
f and f will be essential for the experienced reader who knows already the algebra f and who
wants to learn more about it — it should be of less interest to the neophyte, so Lusztig shifts
his attention first to topics he considers to be more fundamental.

Besides the @(v)-algebra f, Lusztig also introduces an integral form 4f; it is an A-lattice
inside f where A = Z[v,v7!] is the ring of Laurent polynomials with integer coefficients. This
allows to specialize v, as it is done in Part V of the book.

The main considerations of the book center around the so-called canonical basis of f
(or Ut) and its positivity properties. It was a remarkable observation of Lusztig and also
Kashiwara that the algebra U™ has a basis with very desirable properties, and that such a basis
is unique, so it is called the canonical basis. The specialization v = 1 yields a corresponding
canonical basis for U(n*) and U(g) itself; even in the case of a finite-dimensional semisimple
complex Lie algebra g, the existence of a canonical basis of U(g) was not known before. One
property of the canonical basis deserves special attention: Given an integrable highest weight
module V, the canonical surjection Ut — V maps a certain subset of the canonical basis of
U™ bijectively onto a basis of V, whereas the remaining elements are mapped to zero (Theorem
14.4.11); in this way, we see that integrable highest weight modules are endowed with special
bases.

The easiest way of presenting the canonical basis of f (at least up to sign) is given in
Theorem 14.2.3: We have mentioned above the inner product on f. This inner product is
normalized in Part (a) of Proposition 1.2.3 in a way which may look strange at first sight, but
it turns out that with respect to this normalization, the elements of the canonical basis can be
described up to sign rather easily: an element z € Af or its negative belongs to the canonical
basis if and only if, first, z is invariant under the automorphism of f which sends any generator
9: to itself and v to v, and second, the inner product (z,z) belongs to 1 + v 1 Z[[v"1]).

Positivity results are known only in the case of a generalized Cartan matrix which is sym-
metric (and not just symmetrizable): If we write down the multiplication table with respect to
the canonical basis, it turns out that all the coefficients are Laurent polynomials in the variable
v With non-negative coefficients; similarly, also the coefficients of the comultiplication and the
inner product are Laurent polynomials with non-negative coefficients (Theorem 14.4.13). The
reason for the positivity of the coefficients is the fact that these numbers are the dimensions
of certain vector spaces.

There are several different approaches concerning the existence of the canonical basis,
but at present only Lusztig’s approach using perverse sheaves yields the positivity assertions.
Lusztig gives an outline of perverse sheaf theory in Chapter 8. He writes: “The theory of
perverse sheaves ... will be reviewed but not explained. Readers who are not comfortable with
the theory of perverse sheaves are advised to skip Chapters 8-13, and accept the theorems in
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Chapter 14 without proof (the statement of those theorems do not involve perverse sheaves
only their proofs do).” ,

In order to explain the use of perverse sheaves, let us start with a symmetric generalized
Cartan matrix of size n. As usual, one may consider a corresponding graph. Choosing an
arbitrary orientation for the edges of the graph, we deal with what is calied a quiver. Let
v = (v)i=: be an n-tuple of non-negative integers, choose complex vector spaces V; of dimension
vi, and consider V = §V;. By definition, the quiver variety is the set of all representations
of the quiver using these vector spaces V;; it is an affine space, and there is an obvious action
of the group G = [IGI(V;) on Ev. The perverse sheaves of interest are certain semisimple
G-equivariant perverse sheaves on Ev. The main target is to define the algebra k. In order to
obtain k, one starts with the direct sum of some Grothendieck groups of perverse sheaves on
Ev, one for each possible dimension vector v, and defines a product and a coproduct using a
kind of induction and restriction, respectively.

Lusztig’s book is divided into six parts. Part I starts with the definition of f and then
introduces the Drinfeld-Jimbo algebra U = U~ @U°@U*, with U* (and also U~) isomorphic
to f; in order to define U one needs in addition to a Cartan datum a corresponding root datum,
this makes the consideration of U less comfortable. Further, integrable U-modules as well as
highest weight U-modules are considered. The use of the quantum Casimir operator allows
to show that non-zero integrable highest weight modules are simple (Lemma 6.2.1), thus one
obtains results concerning complete irreducibility.

One of the reasons for the introduction of the quantum groups U was the need for construct-
ing so-called R-matrices; these are quadratic matrices which satisfy a certain cubic equation,
the quantum Yang-Baxter equation. Universal R-matrices are obtained in the following way:
recall that U has a comultiplication which usually is non-commutative. Now, one can show that
the comultiplication and its opposite are related to each other, and the universal R-matrix for
U appears as an intertwiner. Instead of presenting the R-matrices, Lusztig prefers to exhibit
so-called quasi- R-matrices: they differ from the usual R-matrices only on the diagonal.

Part II comprizes the Chapters 8 - 14 mentioned above: here, the perverse sheaf approach
is outlined, the algebra k is constructed and it is shown that k is isomorphic to f.

We have mentioned above that Theorem 14.2.3 describes the canonical basis up to sign.
The distiction between the elements of the canonical basis and their negatives is stated in
Theorem 14.4.3. For a symmetric generalized Cartan matrix, this separation follows directly
from the identification of k with f, here the simple perverse sheaves correspond to the elements
of the canonical basis. In order to transfer results from symmetric to non-symmetric, but
symmetrizable generalized Cartan matrices, Lusztig outlines a procedure to attach to a non-
symmetric situation a pair consisting of a symmetrizable generalized Cartan matrix and an
automorphism of the underlying graph (Proposition 14.1.2); for the affine cases, he presents
these pairs case-by-case in Section 14.1.5. Such kind of reduction seems to be folklore, but
there may be no other complete reference.

Part III uses Kashiwara's operators. They were introduced by M. Kashiwara in order to
construct the canonical basis from scratch; in Lusztig’s treatment, they are needed in order
to complete (in Section 19.2.3.) the proof of Theorem 14.2.3 in the non-symmetric case. In
addition, Lusatig also considers the canonical basis at co, these “crystal” bases where the main
impetus for the work of Kashiwara. _

Part IV consists of the Chapters 23 - 30, they are devoted again to the representation
theory of the Drinfeld-Jimbo algebras. Lusztig replaces in U the Cartan part U°® by the direct
sum of infinitely many one-dimensional algebras, one for each element of the weight lattice. The
algebra obtained in this way is denoted by U, it is an algebra without 1, but with sufficiently
many idempotents. Note that the (unital) U-modules are just those U-modules which have a

weight space decomposition.
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Part V deals with specializations of v, or, more generally, with base ring changes: suppose
that R is a commutative ring with 1, and that v is some fixed invertible element of R. We may
consider R as an A-algebra via the ring homomorphism A — R which sends v to v: the tensor
product of R and 4f over .A will be denoted by gf. Nothing surprising will happen in case v
has infinite multiplicative order in R. Otherwise, one should distinguish the cases whether v is,
or is not, equal to +1. The case v = 1 furnishes the relationship between the Drinfeld-Jimbo
algebras and the Kac-Moody Lie algebras. This is the place where the isomorphism between f
and f is shown.

Chapters 34 - 36 investigate the case when v is a proper root of unit. As one may expect,
the structure theory in case v is a proper root of unity is more involved. The main difference
stems from the fact that the elements 8; @ 1 no longer will generate grf, even if R is a field.
As Lusztig has shown in previous papers, starting with a generalized Cartan matrix of finite
type, the elements 8; ® 1 generate a finite-dimensional Hopf algebra. The book now presents
corresponding results in the general case.

In the final Part VI (Chapters 37 -~ 42), braid group operations on U are considered.
Given a generalized Cartan matrix of size n, there is a corresponding braid group B, say with
generators s1,...,3q; adding the relations s? = 1, we obtain the appropriate Weyl group W.
Note that W operates on the root system. Even for a finite-dimensional semisimple complex
Lie algebra g, this action cannot always be lifted to an action of W on g; but it can be lifted
to an action of B on g. In general, there are several such operations of B on U, and many
papers investigating the Drinfeld-Jimbo algebras have dealt with these braid group operations.

It is well-known that there are two kinds of irreducible generalized Cartan matrices, which
behave rather special: those of finite, and those of affine type (the finite type ones are those
which give rise to the finite-dimensional semisimple Lie algebras). There is a special study of
the finite type cases at the end of Parts III and V1. But the reader should be aware that Lusztig
did not incorporate into his book his more detailed investigations dealing with the affine type,
see Affine quivers and canonical bases (Publ. Math., THES, n° 76 (1992)). Also his examples
of “tight” monomials (monomials in the generators #; which belong to the canonical basis) are
missing. In this way, Lusztig’s book is really an “Introduction”: it presents the general frame
work which is necessary for further more specialized studies.

The considerations presented in the book, the results as well as the methods, are purely
algebraic, even power series are used only reluctantly. Of course, the central parts rely on
the use of perverse sheaf theory, but again, this may be considered as a quite algebraic part
of analysis or topology. On the other hand, algebraists have to be careful when reading the
book, since some standard conventions used in ring and module theory are not followed. For
example, 4f does not mean that f is considered as an .A-module (which also could be done),
but it denotes a certain A-lattice inside f.

Lusztig’s book is very well written and seems to be flawless, the only misprint the referee
found was one missing (but inessential) bracket. Obviously, this will be the standard reference
book for the material presented and anyone interested in the Drinfeld-Jimbo algebras will have
to study it very carefully.

Bielefeld C. M. Ringel
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