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Summary. — An uncorrelated jet model, with randomly oriented jet

axis and parameters as determined from high-energy hadronic inter-

actions, is applied to e¢*e- annihilation. The resulting features (mmulti. )
plicities, spectra, correlations, branching ratios) are calculated both at
finite c.mn.5. energies ((3--5) GeV) and asymptotically, in order to study
: the approach to asymptotic behaviour expected for quark, parton and
similar models. It is shown that such descriptions, where the jet etrue.
] ture is the same as in hadron-hadron interactions, lead for kinematie
reasons to very late scaling of the normalized inclusive hadron distribution.
Our results are compared with cluster models for ¢'e - aunthilation and

with data.

1. — Introduction.

Two aspects of e‘e~ annihilation make this process a rather unique tool
for the investigation of hadron production: it is, within the region of validity
of the one-photon approximation, the only experimentally feasible way to pre-
pare a high-mass hadronic system of spin one, and when combined with infor-
mation from deep inelastic e-p scattering, it allows us to study photon-hadron
interactions with the photon mass varying continuonsly from large spacelike
to large timelike values. The first aspect permits us to investigate hadron
dynamies without the complications of a highly anisotropie initial state, which
are always present in hadron-hadron collisions, and the latter provides us in
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the timelike region of the photon mass with constraints from experiments in
the spacelike region (e.g. Bjorken scaling) and wvice versa.

This challenging situation has led to much theoretical speculation (1), re-
strained now, however, by the increasing flow of data on high-energy ete- an-
nihilation (). These experiments provide information on two main and priori
independent features of hadron production via a single heavy photon of mass
M = V/¢*: the ¢*-dependence of the total cross-section 0,.(€te~ — hadrons),
and the distribution of this cross-section over the allowed inelastic channels,
expressed e.g. in the form of normalized single-particle spectra

2p, L0
O A%p

with p,= V'p? +m? denoting the c.m.s. energy of the observed secondary,
m its mass. While some models (in particular those postulating hadrons made
up of pointlike constituents) discuss both features simultaneously, we shall
here restrict ourselves to a study of the relative structure of hadron production
channels, independently of the g*-behaviour of Oy, This gives us the advantage
of being able to deal with many-particle aspects in a fashion as general as pos-
sible; we must pay for it by leaving open the question of connecting our results
for timelike photons with those for the spacelike photons of deep inelastic e-p
interactions.

From a phenomenological point of view, the great variety of theoretical
descriptions proposed for multiparticle production in e*e- annihilation can
be divided into two classes (*4): Most parton (%), quark (%) and similar con-
stituent models (1) provide for the normalized distribution in the e.m.s. energy
Do of the secondary, as function of the virtual-photon mass /¢

1 d’c
(1.1) Flg® = - |qz
(4% o) - f d*22p, dip

() Cf.eg.J.D. BJORKEN: in Proceedings of the VI International Symposium on Elec-
tron and Photon Interactions at High Energies, Bonn, 1973 (Amsterdam, 1974); C. H.
LLEWELLYN-SMITH: Erice Lectures, 1974, to be published; J. ErLis: invited talk held
at the XVII International Conference on High-Energy Physics (London, 1974), Ruther-
ford Laboratory (1974).

() B. RICHTER: Proceedings of the XVII International Conference on High-Energy
Physics (London, 1974), Rutherford Laboratory (1974),

(*) J.D. BIoRKEN and S, BRoODsKY: Phys. Rev. D, 1, 1418 (1970).

(:) 1. ANDRIG, I. DADIC and H. Satz: Bielefeld preprint Bi-74/20, Nucl. Phys. (in press).
(*) 8.D. Drerr. D. J. Levy and T. M. Yav: Phys. Rev. D, 1, 1617 (1970).

(® R. Gatro and . PREPARATA: Nuel, Phys., 67 B, 362 (1973).

("} N. CapiBBO, G. PaRs and M. TESTA: Left. Nuovo Cimento, 4, 35 (1970).
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a «scaling » form when ¢*— o
(1.2) Fo(g®, py) = %(2170/\/@) .

In eq. (1.1) 2 denotes the angular orientation of the observed secondary in the
overall ¢.m.s, The result eq. (1.2) is most easily visualized in the form of a pho-
ton coupling to a constituent-anticonstituent pair, with the latter then radiating
secondaries. It should be kept in mind, however, that such a jet picture (?)
with randomly oriented axis is (as shown in ref. (%)) not the only way to realize
eq. (1.2); also, it is certainly possible (e.g. by final-state interaction) to construct
constituent-anticonstituent models which provide neither jet structure nor
scaling (*). In the second group of models the single-particle spectra contain
& dimensional parameter R: asymptotically

R2p,
(1.3) Fo(g* 2o} = 9(0*)pr (w—'—t_%m)

with 0 <»<1; such a behaviour is generally given by cluster-type descriptions,
a8 the statistical (31), statistical bootstrap (°) and hydrodynamical (') model.
Here, however, we should remember that one can also construct jet models
leading to eq. (1.3), because transverse-momentum (p,) bounds and scaling are
in general independent properties of production processes (). While eq. (1.3)
for v = 0 gives us back the scaling form eq. (1.2) it provides for » = 1 a special
case realized in the statistical bootstrap model

(1.4) F (g% po) = g1(g)) 9u(m0)

and which we ghall therefore call a fireball distribution. Scaling and fireball
Spectra are thus in a sense opposite possible extremes for single-particle distri-
butions of hadrons emitted in ete~ annihilation at high energies. In order to
investigate the consequence of these two extremes, it seems to us best to study
simple prototype models of each type. In ref. (*!*) we have carried out the first

(®) J. Encers, H. Sarz and K. ScHILLING: Nuovo Cimento, 17 A, 635 (1973).

(°) I.Montvay and N. CABIBBO: private communication.
(%) Mzxe Ta CHUNG: Freie Universitit Berlin, preprint FUB HEP Jan 74/2; W. 8. Lax

and E. SUHONEN: Phys. Lett., 50 B, 453 (1974).
(1) E. V. SHURYAK: Phys. Leti., 34 B, 509 (1971); E. L. FeinBERG: Phys. Kep. c,

5, 237 (1972); F. CoorEr, G. FRY and E. SCHONBERG: Phys. Rev. Leit,, 32, 862 (1974),

and references quoted therein. . o
(*) Note here that dual-resonance models do not provide a criterion to choose between

jet and cluster description, cf. ref. (*).
(%) J. ENgELs, H. 8arz and K. ScHnLING: Phys. Letl., 498, 171 (1974).

30 ~ Il Nuovo Cimenio A,
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step of this program by calculating the main predictions resulting from the
statistical bootstrap model for ete- annihilation, both at finite energies and
asymptotically. This description (for one type of secondaries) contains essen-
tially one open parameter, the ultimate temperature of hadronic matter, which
we fixed by using high-energy hadron-hadron data, specifically, the p,-distri-
bution of the secondaries.

The aim of the present paper will be to complete this program by calculating
the analogous predictions for a general model of the « scaling » type. We con-
sider for this purpose as most suitable form that given by an uncorrelated
jet model (%) with arbitrary jet axis; as in the other extreme, the statistical
bootstrap model, we shall fix the open parameters (here two, as we shall see)
by their values in hadron-hadron interactions. Again we shall calculate all
predictions both at finite energies, particularly in the region presently accessible
to experimenters, and asymptotically.

The onset of scaling is here—as in any model of scaling type—of particular
interest: for what photon mass V/¢% at a given secondary energy p,, will the
asymptotic form really be attained? This question, apparently never studied
anywhere in quantitative detail, will form a main part of our work and leads
to quite striking results (*): we shall show explicitly that for jets of « hadronie
dimensions » scaling at present energies is in fact kinematically forbidden for
all z = 2p,/v@? < 1.

We should stress here the importance of the hypothesis of « hadronic di-
mensions »: the main features of the scaling and fireball (*) type are of rather
general nature, but the point of transition between low-energy and asymp-
totic behaviour is strongly dependent on the actual value of the parameters.

Let us furthermore underline again that all results will be independent of
the behaviour of 0,+(e*é~ — hadrons); we shall only consider normalized dis-
tributions of the type eq. (1.1), so that any ¢*-dependence of the photon-hadron
{or photon-parton, photon-quark) coupling will drop out.

The remainder of the paper is organized as follows. In Sect. 2 we shall
present the uncorrelated jet model for ete- annihilation, discuss the meaning
of the parameters involved, and calculate the asymptotic behaviour of the
model, particularly for the multiplicity, spectra, integrated correlation functions
and branching ratios. In Sect. 3 we shall calculate the predictions for these
quantities at present accelerator energies and study the approach to scaling.

(**) L. vaAN HoVE: Rev. Mod. Phys., 36, 655 (1964): A . : mento
32, 1067 (1964). (1964); A, Krzywicki: Nuovo Cim

(*) It should be noted here that by more
Pprocesses in pp scattering with those in e+e-
came to similar conclusions.

(M) R. GATTO and G. PREPARATA: Phys. Lett., 50 B, 479 (1974).

qualitative arguments relating inclusive
annihilation Garro and PrEpaRrATA ()
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2. — The jet model and its asymptotic behaviour.

The fully exclusive decay distribution of a virtnal photon (we shall always
agsume that the photon decay is independent of its polarization) into N sec-
ondaries of momentum p,, for simplicity chargeless pions, is in our model
given by

nﬂ N d&pi N Y N .
2, ~— T[] == 6@ — 2 —2 .
(2.1) Te~% i mea (z-lf’f Q)f“.llexp[ pixl]

¢ is a unit vector specifying the jet axis of each event. According to the assump-
tion made above, this axis is randomly oriented. In terms of the transversely

cut-off phase-space volume

L ¥ I3y x
(2.2) Q=Y l—v"f,fn @p, exp[——zlp‘xél]é‘”(ip:—q),
=3 .

=1 2P0 i=1

we then have for the normalized inclusive single-particle spectrum in the photon
rest system

(2.3) %f—f -g;;—; = {fdzé‘x exp [— A|p x é]] 2(¢, qmp)}/ 2, 9=y p),s

which is connected to the secondary energy distribution

1 deo 2 1 do

= 2 _ =
(2.4) o= e )=

with &= 2p,/+/@. In this model the sum rules

1 dO’__A—f
(2.5) p do =4,

1 do
(2.6) ;’—; dwwa—-w-—2,

are automatically satisfied. . . . .
The physical significance of the two parameters x and A is quite evident:

A-! determines the jet width and x essentially characterizes the' multiplicity
an increase in x giving a higher weight to larger particle numbt.ars.

The values of these parameters will be fixed ﬁ'on.l th'e average particle
number N and the transverse-momentum distribution in hlgh-energ had:;n;
hadron collisions by using asymptotic expressions of the uncorrelated jet mode

distribution,
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(with the jet axis now fixed to the hadron beam direction)

- ~ - 1 4.4
(2.7) Nm”lﬂqz, x='ﬁ
| and
P 91,=0,pp small

From 90° pion spectra at the ISR one has 1= 6.2 (GeV)~* (1*). Moreover, this
value appears universally valid for the various particle yields when plotted in
the variable u), = v'p:+ m?. The energy dependence of the average charged
multiplicities measured up to ISR energies is compatible with an asymptotic
logarithmic behaviour and suggests % = ax/i*~ 3 (). Being well aware that
the precise values for 4 and » depend on the details of the fitting (}7), we never-
, theless consider these numbers as charaeteristic for hadronic dimensions.
With 4 and » thus determined from pp data, we now come back to ete~
annihilation in order to discuss the asymptotic expansions for the most relevant
inclusive quantities predicted by the jet model. This will give us some feeling
how fast an approach to asymptotia can be expected.
| The evaluation of the asymptotic expansions was performed by the methods
‘ of ref. (**) and is described In some detail in the Appendix.
‘ The deviations from the leading behaviour for N(¢?) and the integrated
correlation f,= N(N—1)— N? can be written in the form of a series in
|
|

(Ing*)*
(2.9) N(g)=*% (lnz%;;)
G Cy Oy
[1 +ln (g*/4m*) t (In(g?/4m?))? T (In(g*/4m?))? +] ’
d, d,

(2.10) fulg*) =d [1 + +

In (¢*f4m?) * (In (¢*/4m?))* +] '

With % = 36 (GeV)~? and 1= 6.2 (GeV)~1, the actual values of the constants

(**) See e.g. B. ALrER, H. Bocemp, P. Boorn, F. Buros, L. J. CARROLL, G. JARLSKOG,
L. JoNssoN, A. KLOVNING, L. LE1sTaM, E. LILLETHUN, G. LYNCH, S. OLGAARD-NIELSEN,
M. PRrENTICE, D. QUARRIE and J. M. WEIss: Phys. Lett., 47 B, 75 (1973).

(**) E. L. BERGER: Erice Lectures, 1973, to be published.

(") See e.g. M. ANrtiNuccr, A. BErTIN, P. Carruppi, M. D’AcosTiNo-BrUNO, A. M.
Ross1, G. VANNINI, G. GIACOMELLI and A. Busstire: Lett. Nuovo Cimento, 6, 121 (1973).
(**) A. Basserro, M. TOoLLER and L. SERTORIO: Nuel. Phys., 34 B, 1 (1971).

| dio
(2.8) 2Po'dT ~exp[— Alpel] -
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are (*)

% =2.942, 6=—356, =062, =348,

(2.11)
d=—6.05, =027, dy=115.

Obviously, the expansions eqgs. (2.9) and (2.10) converge very slowly and the
size of the coefficients indicates that these expressions provide meaningful
approximations only at energies V@ 2 (15-=20) GeV.

To complete the discussion on the multiplicity distribution, we quote the
leading energy behaviour of the normalized N-particle cross-section predicted
by the jet model (%) (for the interesting case of N <In (¢*/4m?)

2y . 95(0°) ovon % In (g*/4m?) P No _
(#12) RN(Q)EG 9 =(7) (Nil)! :(N—l)!eXP['—N]’

which decreases essentially like exp [— N(q?)] with increasing energy.
The asymptotic behaviour of the inclusive z-distribution, (1/s,,)(do/dz),

can be discussed from eqs. (2.3) and (2.4): first, we note that, for a given ¢,
Q(é, g— p) is a function of p,= |pxé| and the longitudinal missing mass

m? +Pr)

(2.13) M= ((vB—p.)*~ (ép) )*—«/QB(I o+

with the asymptotic behaviour

M!n—z .
s o =y
(2.14) Qb q-0)_ 2 ST (1 +0(ln= My)) .

For 1 —az > (m®+ p2)/g* and large ¢?, this amounts to scaling of

QU q—p) _ 4 5
(2.15) m——(l z)

in the photon rest system. .
The remaining step is the summation over the direction é, according to

eqs. (2.3) and (2.4):
nI2

1de . (1-— m)"" \ f
2. — A2 ;' d6 sin 6 exp [—rsind]
(2.16) Gyt AT (@*— /

(*) These values for A and » are used in all numerical caleulations presented in this

paper.
(**) See e.g. E. H. bE GroOT: Nucl. Phys., 48 B, 295 (1972).
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with

A 4mr\¥
r=yvel-g)

If r is large (but & not too close to 1!), this leads to the scaling limit (°)

1 do 2% - 6
. —_——~ (1 - "’1m_ 1— 3.
(2.17) P P (1—2) w( )

The approach to scaling is discussed in detail in the Appendix.

An estimate of the actual numerical behaviour of (1/s,,)(do/dz) can be
made from the asymptotic expansion, eq. (A.20): as a result, we would expect
the deviations from the secaling curve, eq. (2.17), at 20 GeV to be of the order
of 109, or less only in the region 0.1 < 2 < 0.45, with the minimal deviation around
o~ 0.2.

Summarizing, within the jet model we expect scaling for (1/o,,)(do/dx)
first to occur for # values away from one and zero. The reason for a slow ap-
proach to scaling in the vicinity of # =1 is that here the unobserved system
has a low missing mass (cf. eq. (2.13)) and hence (¢, ¢ — p) is not asymptotic.

On the other hand, near # =0 (but above threshold =z, — 2m/v'¢?) the
transverse momentum of the observed secondary has to be taken into account
and induces additional scaling violations of the order O(1/A*z2g?) (%))

Here it must be emphasized again, however, that these methods yield
reasonable approximations (with » and 4 a8 given) only for v¢% < (15--20) GeV/c.
At lower energies, exclusive channels with nonasymptotic behaviour provide
significant contributions to inclusive quantities; here we are still in the transition
region between three-dimensional threshold behaviour and the one-dimensional
agymptotic regime (**). Thus an explicit calculation of all exclusive terms is
a much more suitable approach. In the next Section we shall therefore inves-

tigate the finite-energy behaviour of the jet model through numerical evaluation
of the longitudinal phase-space integrals.

(*) It should be noted that the jet model with hadronic jet dimensions yields a qua-
dratic dependence in 1—& in accord with the Drell-Yan-West relation from e-p
scattering (), We thank M. CHAICHIAN for pointing this out.

(*) S. D. DRELL and T. M. Yax: Phys. Bev. Lett., 24, 181 (1970); G. WEsT: Phys.
Rev. Lett., 24, 1206 (1970).

(*) T. F. Warsn and P. ZERwaS: Nucl. Phys., 77 B, 494 (1974); J. ErLis: invited
talk held at the XVII International Conference on High-Energy Physice (London, 1974),
Rutherford Laboratory (1974).

(**) E. L. BERGER and A, KrzYWickr: Phys. Leit., 36 B, 380 {1971); H. Sarz: CERN

Th-1905 (1974), to be published in Proceedings of the IX Balaion Symposium, Balaton-
fired, Hungary, June 1974.
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3. — Finite-energy behaviour and the approach to scaling.

To study finite-energy behaviour and the approach to sealing in our model
and to obtain distributions which can be compared to data, we have carried
out numerical calculations at vz = /gi = 1,3,3.8, 4.8, 20 GeV, using a Monte
Carlo program with appropriate importance sampling (2).

38 48 10 20

Vs (GeV)

Fig. 1. ~ The mean particle multiplicity ¥ predicted by the jet model for x=36 (GeV)~
and 1= 6.2 (GeV)~! (broken line), by phase space for x= 36 (GeV)~? (solid line) and
the asymptotic form N =xIns+ ¢ of the jet model (dash-dotted line).

Lo
—
NN

CaF -

The calculations of N and f, confirm the expectations expressed in the pre-
vious Section: with the given hadronic parameters the model reaches asymp-
totia not before v/ ~ 20 GeV. This is evident in Fig. 1, which shows how
the jet model result for N, starting from pure phase space, approaches its agynp-

A H ~—
5 5 10 15 N

Fig. 2. — The correlation function f, predicted by the jet n}odel (broken line), b.‘;‘fi I;hm
space (solid line) and the asymptotic form f,=const of the jet model (dash-dotte ine).

() W. Errter, L. vax Hove and W. Woscis: Computer Phys. Comm., 1, 425 (1970).
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totic form N = % In s + ¢; here the phase-space curve is obtained from eq. (2.2)
with % = 36 (GeV)~? and A= 0 (**). In Fig. 2, the integrated correlation func-
tion f, behaves in a similar way. In particular we note that the jet model pre-
dicts a constant asymptotic value for f,, whereas cluster models lead to con-
gtant fo/N (125).

Fig. 3. — The inclusive one-particle spectra (1/g,,)(do/dx), == 2E,/y/s in the jet
model at 4/ =3 (dash-dotted line), 3.8 (broken line), 4.8 GeV (solid line) and the
gealing curve eq. (2.17) (solid line).

The inclusive one-particle spectra (1/0,,)(do/dx) at 3, 3.8 and 4.8 GeV are
compared with their scaling limit, eq. (2.17), in Fig. 3. Evidently, there is no
gign of scaling for the normalized z-distribution at present SPEAR energies.
If one did not know, however, the scaling limit, one might misinterpret the slow
energy variation for 3 GeV<4/2<4.8 GeV and > 0.6 as early scaling. We have
therefore displayed this part of the distribution with an enlarged scale. We
observe that the small shoulders near # = 1 are due to the low-multiplicity con-

(*) We bave used a computer program developed by K. KAJANTIE and V. KARIMAKI:
Computer Phys. Comm., 2, 207 (1971).

(*) J. Exerrs, K. Fasricius and K. ScHILLING: Nuove Ci
’ ) : s , 681 (1974);
Phys. Lett., 53 B, 65 (1974). o Cimento, 23 A, 681 (1974)
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tributions (¥ = 3, 4,5). The dramatic increase of the small-z region with
energy is, of course, connected to the rise in V » a8 follows from the sum rule
eq. (2.5).

" x/0, . (do/dx)

Fig. 4. - The inclusive one-particle spectra multiplied by #; the point_s are the. result
of a 20 GeV Monte Carlo calculation, the notation for the other curves is as in Fig. 3.

To discuss the relation of the finite-energy curves to the scaling limit, it is
convenient to plot (z/o,,)(do/dx), which obeys eq. (2.6). Sin.ce, l?y .phafse space,
the finite-energy curves for small # have to be below the scaling limit, they.m.usb
be above the scaling curve at larger z in order to compensate ifor the « mxss%ng
area » in the sum rule, eq. (2.6). This is visualized in Fig. 4, which also contaps
the results of a 20 GeV Monte Carlo ealculation that has been pe.x'fc)'rmed with
less statistics because of limited computer time. Within the stam'stlcal err.ors,
this computation confirms the estimate resulting from the a,s.ymptotlc expa,n:l:;;
eq. (A.20), according to which the deviations from the scaling curve tailre ;I i
order of 109, or less at V¢* = 20 GeV ?:;d 1g).l ST &42. M(())I:OVBI', e

i ests that this holds true up = 0.8. . '
O&ri:t ff?‘é::;";:gige made a comparison of the normalized .in?rana;nt iu;gle-
particle distributions following from the jet model, t'he statistical 300 lzn r.f;.p
mode] (full bootstrap (51?) with T, =160 MeV. and pions on.l;?, a:;] ! § ﬂll);;
invariant phase space as shown in Fig. 5: the jet model predicts a shape
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clearly deviates from phase space and results in a particle yield which is about
one order of magnitude above phase space for large E_, thus revealing the dy-
namics of jet formation. It is certainly more difficult to discriminate at this
energy between a fireball model and phase space.

@£, Jo, Mol [Gev) 7]

1
E, GeV)

Fig. 5. — The normalized invariant one-particle cross-sections at 4.8 GeV following

from the jet model (solid line), phase space (dash-dotted line) and the statistical
full bootstrap model (T, = 160 MeV, pions only; broken line),

_
o
I
|

10-

i i L i
1 2 3 38 48 10 20
Vs{GeV)

T 1
i
|

!

Fig. 6. — The mean particle multip

_ licity N for the jet model (solid line) and the statis-
tical full bootstrap model (7,

=160 MeV, pions only; broken line).
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Figures 6 and 7 show the different energy behaviour of & and f, predicted
by the jet model and the statistical bootstrap model. Since the N predictions
differ significantly already in the region (5-+10) GeV, fairly good multiplicity
data could provide a critical test.

~N
~
~N
\'\
-10- \\
. I t A
0 5 0 N B

Fig. 7. - The oorrelation function f,; same notation as in Fig. 6.

We want to remind the reader, however, that our present calculations are
intended to show only the qualitative features. For a quantitative comparison
with data one certainly has to refine the jet model presented here {e.g. by in-
cluding different kinds of particles, by allowing a reasonable variation of the
parameters, introducing isospin etc., as was done in ref, (>1%%) for the boot-
strap case).

The different behaviour of NV also enters decisively in the energy dependence
of the branching ratio ,/o,,,. Both in a jet and in a fireball picture, the high-

energy behaviour is essentially (cf. eq. (2.12))

ax{q*) ~  exp [ const Mgl

By= ou(q?) 7"

which implies a power law decrease ((g2)"%) in the jet picture, an expor{ential
fall-off (exp[— 6.2 v/¢]) in the fireball case. This striking difference is ex-
hibited clearly also in the finite-energy calculation for ¥ =4 (Fig. 8).

0

\\ {
|
|
l

.—5”- \
10 .
3 \
g N\
b\f
© \
167" !» \
\
\ i
\L \
~15 ! 1 L . g
075 2 3 a8 48 10 20
VsGeV)

Fig. 8. — The ratio R, = 0,/0,,; same notation as in Fig. 6.
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It is not really clear, however, whether the statistical bootstrap model
is (%) or is not (*7) applicable to exclusive reactions.

A decisive comparison of our results to data is at present unfortunately not
yet possible; measurements of N, , full particle identification and the cor-
responding spectra would be needed. Nevertheless it is instructive to compare

QE, ja, ) a/’p [Gev)T]

107 \ )

\ A\
\ A
G 1 1 ; ]
10 B 1
£, GeV)

Fig. 9. - The shape of the one

-particle spectrum ; the curves are the same as in Fig. 5,
the data for the charged-particl

e gpectrum are from ref. (2) and are arbitrarily normalized.

the shape of the charged-particle spectrum with the meagsured energy spectrum
of the observed secondaries (?). This is done in Fig. 9; in view of the undeter-
mined neutral-particle yield, we have arbitrarily normalized the data. While
for low secondary energies little distinction ig possible, the data seem to favour
the jet picture at higher E. On the other hand, a comparison with identified
secondaries (*) gives good agreement with the bootstrap picture using
Ty =164 MeV; we conclude from this that the experimental situation at present

Forthcoming data at somewhat higher energies could suffice to exclude the

statistical bootstrap model with the mentioned Ty. As discussed in ref. (®),

(%) H J. MOFRING, J. Kr1pFGanz, E. M. ILGENFRITZ and J. Ranrr: Karl Marx Uni-
versitét Leipzig preprint KMU/HEP/7405.

{(*) R. HaGEDORN and J. Raxrr: Suppl. Nuovo Cimento, 6, 169 (1968).
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however, it is not possible to obtain definite conclusions about a jet picture
from single-particle inclusive distributions. For this, two-particle correlations
or exclusive measurements would be needed.

* ¥k X

We thank P. LAURIKAINEN for valuable computational help in the early
stages of this work and E. H. pE Groor for discussions.

APPENDIX

Third-order asymptotic expansion of (¢, ¢) ete.

In order to obtain the asymptotic expansion of the phase-space Yolume
(¢, q) eq. (2.2) for large g%, we follow the method of ref. (**), which will first

be sketched briefly.
Consider the Fourier transform

(A.1) Z(é, f) =fd‘q exp [fg] £2(¢, g) = exp (%2(é, f)1—1 — x2(é, ),

where

(A2) o, B) = f g—}:exp [iBp— 2px3].

i 1 é iables ¢, =
Because of Lorentz invariance £2(¢, ¢) depends on the two variables
= (g3~ (é-q)*)F and ¢r=|gq x¢[; if v:re introduce the corresponding variables

B =toy, oz >0, and B, egs. (A.1) and (A.2) can be written as

(A.3) Z(6, B) = 4m[dge grTo(Bre) | 8 €: Bo(2:0:) 206, )

and

(A4) 2(é, p) = 2m f dp pdo(Bep) Ko(oz VP* + m?) exp [— Ap].

The inverse of the transformation eq. (A.3) is then given by

e4i g

@5 Q0= | twmlen) f 4By fed o Brte) 26, B)

g—4o0
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The asymptotic limit of £2(¢, q) for large ¢, is determined by the behaviour
of the function Z(é, f) for small a;,: if we expand the Bessel function K,(z)=
= —In (exp[y]-2/2) + O(2*-Inz), y being the Euler constant, the &,-integration
of eq. (A.5) can be performed:

, 1 exp [— 2g(fy)] { ¢ \™¢* 4y, O
(A.6) (6,9 = o fdﬂ!'ﬂﬂ] ol Brir) TR Bn) (—) (l +0(sz 1n§~m—));

with the funetions
(A) Mo = x5 4p Tupep) exp - 1 =T (1 + 1)
0

and

(-]

g(Br) = nx | dp pJo(frp) In (exP vl Vl + ﬁ—;—,) exp [— Ap].

2

A further analytic evaluation of eq. (A.6) in closed form is not possible; there-
fore one expands the integrand around f,= 0, since for large ¢; the power
term in eq. (A.6) becomes strongly peaked around fS,=0.

In the following we present the calculation of two additional terms to the
asymptotic series of (¢, ¢) with respect to large g, as given in ref. (). For

that purpose one has to take the following terms of the frexpansion of
eq. (A.6):

@

(A8) Q@ q= _%_)”?”l exp [— 24y,

dmm? (2m I'*(%) B frds(frAge)-

" 15,
-exp [- 3%B, In 2%] {1 +AF 4 g (Fm + 15" In 2—41{;) +

o{py_ Y165 @ 115\ (. @\ }
—i—ﬂ,(F() 6) i xln2m+ﬂ;§(-zx) (m2m) SN N

The dilgensionless constant %= zx/A* and the following short-hand notations
are used:

Fo— 35y +2),
(A.9)

1o 1. 9. 9 g 5
PO = 3Regi— 5 %0, — R p0(E) + Ry (R + 5 Fp(R) (gl— 5%)

(3#) .All sta.nda:rd mathematical funetions used here can be found in Handbook of Mathe-
matical Functions, edited by M. ABRaMowITz and I. A. STEGUN (New York, N. Y.).
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and
9= (2k +1)'1n ﬁ{%ﬁﬁ -+ ;)1- (ml)’”’ft‘“l In(1 4-1*) exp [— mit] dt =

=(2k+1)11n P I¥] -—(ml)’m(__ 0 )"“ [fh‘(ml)eos(m2)+si(mz)sin<mz>}
2 d(mi) ma ’

where p and p™ are the digamma-function and its n-th derivative, respec-

tively, and Ci and si are cosine and sine integrals (2¢).
The remaining Bessel transform can now be calculated, resulting finally in

' ) 1) n -2 —1’;
(A10) Q4 g) = — 2 €XP [~ 2%4,](q,/2m) » [1 g J

24mam* (%) (% + 1) In (g,/2m) 2% In (g;/2m)
t W] ; -2 A%
~[1 +a..(ln Z%i—’) + (8,— a, Aq}) (ln 4—%;) + 0((11141"—};) )}

with the coefficients

2 5
“=3% (F“’ +§) ’
15
(A.11) 6, = 5_;_2 (gpm +.§_Fm +10) ,
&y 5
5=z T

In the c.m. system, q =0, the dependence on thg (}irection é firops out and
therefore the integration with respect to ¢ can trivially be written as

(A.12) f %8’ Q&' ) = Donr (a?) -

For the values of » and 1 chosen in the model a slow approach of 2,,.(¢%
to the leading term can be observed (*)

2 fAm? -1
(A.13)  9Q,..(¢") ~0.975 (GeV)~* %'

2 \-1 2 \-3
-{1 —}—5.02(1114—3’;;) +24.2O(1n;%1—,) +}

(") We want to mention that eq. (A.13) leads to a higher value (by =30%) for
2, 0.0 (4?) 8 4/g8= 20 GeV than the Monte Carlo calculation.
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The average multiplicity N and the correlation parameter f, can be obtained
by differentiations of £,.,(¢*) with respect to x:

A18)  F=xg 0 () =Fin L —ok(g, + () —1+

2 \ -1 - - 5 3 \-2
o) -3 i)

55 1 2. ~
: [~ o5 — 2 + o (I’ - 1091) + 5 Rg,p () +

~ ~ 10 ~ 10 2\-3
+ 4Rp(R) 0 (R) +§w“’(”)—§-ev(")] +0((1n 437) )

and

(A18)  fy= o In 0,0 (g) = 1 — 29 )

2 \-1 - - 10 2 \ -2
(i) o)

55 . . ~ e . ~ -
55— 2o + g 1 oy +

0, o0 20 20 _ 9.
T3 MR — 3900+ p(E) 3Ry E)g +

it (51

The corresponding numerical values can be found in egs. (2.9)-(2.11).

The normalized N-particle cross-sections eq. (2.12) are obtained from
LQ.n.(g) by
|
%=0

(A16)  Ry(g")= w _1m § 4t &P [t1n (g?/4m*@?) — 2 In I'(t +1)]
(g*/4m* @) 2 ~

o 1 AY .
Bt = 5= s T [(2) Qemnter)

to leading order in ¢* one has (%)

With ¢, =Ing,. For In(g?/4m?)>> N the integral i i i
; gral is dominated by a stationary
pomnt at ¢ ~ N/In (¢*/4m’Gs) ~0, yielding for large i

(A17)  Ry(q®) e %+ 1) [2%1n (v/gexp [)/2mg,) ]!
N 9.' )m(c‘l&m‘))ﬂ (q2/4m2g:)-;¢ (N-—l)! .

For the study

of the normalized inclusive single-parti 2,
defined in eq. ( inclusive single-particle spectrum F(g*; p)

2.3), we first observe that in the frame q =0 £(¢, ¢—p) i8 3
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function of the longitudinal missing mass M, = ((\/ﬁ-— o)t (€ -p)?* and of
Pr= |pxé|. The expansion eq. (A.10) can be used for large M, (with the

substitutions g, - M, and ¢r— ps):

For a fixed jet axis 4, and for M,»p,, the limiting form, eq. (2.14)
follows immediately.

In order to obtain (1/0,,)(do/dx) eq. (2.4) one has to sum over the orien-
tation é.

Approximating M, given in eq. (2.13), by M, ~V¢*(1—x) and intro-
ducing the angle § through p,= psind, and with r= (1/2) V¥ V' —dm?/g,
one finds
o (1—a2f*  In(g4my)

(A.18) P 2% @ — 4mz/qz)§ m((q2/4mz)(1 _ a,))

qg -1 qz -2 -~1.
'[1 + @, (IBI');;) +a, (IDM) +]
r . r2gin?0 } .
'f’fdﬂ 8inf exp [—rs8in 6]-exp [“‘ 6% In ((q=/4m”)(1 — @))

[}
: ] -1 ] qﬁ e
-{1 +a, (ln (‘i—flﬂﬁ(l——w))) + (&, —a, 73 sin® 6) (ln(‘—gn—2 (1—m))) + ] .

Expanding the second exponential function as well one arrives at integrals
of the type

nis b

3\ .
(A19) F.r= f d6(sin 0)" exp [—r sinO]= (—- 5;) f d0 exp [—r sinf]=

0
0

_ g(_ é..ar)"[z.,(r) — LN,

where L,(r) is a Struve function (*). One thus obtains

S 1de . (1—af  In(gfm)
(A.20) T dn 2% (@2 — dm?[g*)} In ((¢*/4m*) (1 — @)

2 wl q? -2 —1'
. [1 + a, (Ini%ﬁ) +a, (IDW) +]

: - U GIPRIRN | R PPy N p
{(1 -}—au(ln(i%ﬁ(lv-—w))) +a1(ln(4m2(1 w))) + )

~ [1 + (2% 4+ 5%)(111 (ﬁ—é (1-—91;)))—1 +J

. r‘Fd';) + raFi(:) In ._q_a_g (1— 53’)))-"2 —[—} .
6% In ((¢*/4m*)(1—)) = 72% 4m

31 - 11 Nuovoe Cimenfo A.
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Finally, we discuss the approach to scaling of (1/oy.)(do/d») resulting from
eq. (A.20):
First of all there is a trivial violation of scaling due to threshold behav-
iour near # ~ &, = 2m/[+/P
.___N_’? 3 3‘/ 3_4_711? 1
(A.21) T o)z e a+..).
With increasing 2, yet large M, ~ vV ¢*(1 — x), eq. (A.20) can be approxi-
mated by
1 do _(1— &) In(g*/dm?)
(A.22) O dz B i ((¢/Aam?*)(1 — )
1 +by(In ((g*/4m*)(1 — 2)))-! + by(In ((g/4m*)(1 — z)))
1 +a,(In (g*/4m?))~* +a,(In (¢*/4m?))~* +...

with b, = a,— 1/% = 4.68 and b, = a,— 2a,[% == 20.76.

Thus the approach to scaling is governed by a twofold expansion in the
variables (A2z2¢®)! and (1n((q’/4m’)(1—w)))—1, which imply late scaling for
small # and for large z, respectively.

ek (1 + 0((}.’&0’@’)_1))

® RIASSUNTO ()

8i applica all’annichilazione ete~ un modello a getto non correlato, con asse del getto
orientato casualmente e parametri determinati dalle interazioni adroniche di alta
energia. B8i calcolano le caratteristiche risultanti (molteplicitd, spettri, correlazioni,
rapporti di diramazione) sia ad energie nel sistema del centro di massa finite ((3 +5) GeV)
sia asintoticamente, per studiare ’approccio al comportamento asintotico previsto per
quark, partoni e modelli analoghi. 8i mostra che queste descrizioni, in cui la struttura
del getto & uguale a quella delle interazioni adrone-adrone, portano per ragioni cinema-
tiche ad una variazione di scala molto ritardata della distribuzione adronica inclusiva
normalizzata. 8i confrontano i nostri risultati con i modelli ad ammassi per 1'annichi-
lazione ete~ e con i dati.

(") Traduzione a cura della Redazione.

Crpyiinag CTPYKTYPA H CkelliEmr NpA c*c~ AHHMIH/TSIVEH.

Penome (*). — Mozens HeKOppempPOBaHHLIX CTPYH, B KOTOPOH OCH CTPY# OPHEHTHPOBAHBI
cnyyaliEbiM 006pa3oM B mApaMeTpHl ONPENENIsIOTCS H3 aJPOHHBIX B3aEMOACHCTBUM NpH
BBICOKHX JHCPTHSNX, NIPHMEHACTCA K €Y¢™ AHHHTHWISIIMH. BHIMHCNAIOTCS OCHOBHEBIE Xapakx-
TEPHCTAKY (MHOKECTBEHHOCTH, CTIEKTPbI, KOPPEJIAIAHN, OTHOIIEHHs BeTBelt) IS KOHEYHBIX
SHCPTHH B cAcTeMe NeHTpa Mace ((3 +-5)I'3B) u acHMITOTHYECKH, 9TOOR! HCCTIEIOBATH ACHM-
OTOTHYECKOC MOBENICHHE, OXHAACMOE Il Mozenell KBapkoB, ITAPTOHOB H AHAJIOTHYHBIX
Mozeneft. IloxaspBaeTcs, 4TO Takue OMMCAHEA, THE CTPYHHAA CTPYKTYPA ABNIACTCA TaKoH
XC, KaKk B Ciy4ae aJpOH-afipOHHBIX B3aHMOAEHCTBHYU, H3-33 KHHEMATHYECKHX IPHYHH
LPHBOOMT K OYCHb 3aOO3JANIOMY CKEHNHHTY OJIf HOPMAJH30BaHHOIO HHKIIO3HBHOIO
aapoHHOro pacupenene¢Hus. [lonyyeHHBie Pe3yNBLTATEL CPABHHBAIOTCA C KIIACTEPHBIMHE
MOJENAMHA /il e'e™ aHHATHIALEE M C MMEIOLIEMHACH JKCIEPMMEHTANBHEIME JaHHBIMH.

() Hepesedeno pedaxyueii,
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