IL. NUOVO CIMENTO Vor. 24 A, N. 1 1 Novembre 1974

Legendre Padé Approximants in nXN Scattering ().

J. ENGELS and J. FLEISCHER
Department of Theoretical Physics, Universily of Bielefeld - Bielefeld

(ricevuto il 20 Aprile 1974)

Summary. — Padé approximants are expected to probe the singularity
structure of scattering amplitudes. We apply Padé approximants for
Legendre series to =N’ amplitudes, which are obtained from phase shifts.
The imaginary parts were calculated from the phase-shift analysis of
Almehed and Lovelace, the real parts from fixed-¢ dispersion relations
directly and from the phase-shift analysis of Nielsen and Oades. For
all amplitudes (exeept for the isospin-odd Nielsen-Oades) the poles of
the Padé approximants are outside the region of analyticity in the Man-
delstam plane. The Padé approximants and the truncated Legendre
geries for the imaginary parts deviate from each other only up to 1% even
cloge to the boundary of the double-spectral function (exeept for BW™)).

1. — Introduction.

Padé approximants are best known through their powerful applicability
in the summation of Taylor series. In particular some progress has been made
in the summation of the power series of strong-interaction field theories (*).
While in the latter case one is summing the Taylor series in a domain of analyt-
icity of the function, Padé approximants are used in statistical mechanics to
reconstruct the singularities of the function (%), for which purpose higher-order
approximants are used, however.

(*) Work performed under the auspices of the U.S. Atomic Energy Commission and
the Deutsche Forschungsgemeinschaft.

() J. L. BASDEVANT: in Padé Approzimants, edited by P. R. Graves-Morris (London
and Bristol, 1973), p. 77.

() M. E. FisHER: in Padé Approximants and their Applications, edited by P. R.
GrAavES-Morris (London and New York, N.Y., 1973), p. 159.
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Many problems of scattering theory involve Legendre series or related series.
Padé approximants for Legendre series, however, have only been introduced
recently (>4). Their excellent convergence properties, as well as their ability
of reproducing the singularity structure of a given function have been demon-
strated by numerical examples in ref. (*). For these examples the Legendre
Padé approximants could be used to analytically continue the functions into
their regions of analyticity beyond the regions of convergence of the original
Legendre series. Moreover all poles were lying on the cuts of the functions under
consideration, thus simulating the cuts. Even the residues of the poles could
give some information about the imaginary part on the cut.

Though there exist no general proofs of these properties for certain classes
of functions, one may hope that the Legendre Padé approximants for the am-
plitudes of physical processes behave in the same way.

If this is true, it is possible to study the analytic properties which are im-
plied by a phase-shift analysis by looking at the pole distribution of the
Legendre Padé approximants to the Legendre series. This analyticity test
has advantages compared to the canonical test via dispersion relations:

i) dispersion relations test the dispersive and absorptive parts of the

amplitudes at the same time and do not allow separate tests for each part of
the amplitude,

i) as input to dispersion relations usually extra information such as
coupling constants or knowledge on high-energy behaviour is needed,

iil) from the position of the poles on the cuts important regions of the cuts
are indicated.

The most detailed phase-shift analyses exist for pion-nucleon scattering.
The aim of this paper is to study the analytic properties implied by these phase
shifts via Legendre Padé approximants. Furthermore we want to compare the
truncated Legendre series obtained from phase shifts and their Legendre Padé
approximants outside the region of convergence of the original Legendre series.
It is, however, not our intention to use the data to directly analyse n=N° scat-
tering in terms of Padé approximants, which could also be done.

The plan of the paper is as follows. In Sect. 2 we define the Legendre Padé
approximants and explain their connection to the usual Padé approximants.
In Sect. 3 we give the Legendre expansions of the =N’ amplitudes and their
analyticity domains as expected from the Mandelstam representation. Section 4
contains the pole and zero distributions of the Padé approximants to the
Legendre series, where the absorptive parts were calculated from the Lovelace-

(*) J. T. HoLpEMAN jr.: Math. Comput., 23, 275 (1969); J. FLEISCHER: Nucl. Phys.,
37 B, 59 (1972) (Erratum: Nucl. Phys., 44 B, 641 (1972)).
() J. FLBIsCHER: Jowrn. Math. Phys., 14, 246 (1973).
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Almehed phase shifts (°), the dispersive parts from a set of Nielsen-Oades
phase shifts (¢). For comparison, the dispersive parts as obtained from fixed-t
dispersion relations are also analysed.

2. — Padé approximants for Legendre series.

As Padé approximants for series in orthogonal polynomials are not yet
standard, it will be useful to explain briefly the main ideas. For completeness
we first present the definition of Padé approximants for Taylor series: given a
function f(z) in terms of its (not necessarily convergent) Taylor series

(2.1) f) = a.2",

the [N/M] Padé approximant is defined as

(2.2) [¥] M](2) = P, ()/Qu(2),

where the polynomials P,(z) and @,(2) are obtained from
(2.3) (2)Qule) — Pyle) = AX+5H .,

or equivalently

(2.4) f(2) — Py(2)]@,(2) = A'2*™ 4 ...

These approximants are well established as a powerful means for improving
the convergence of Taylor series and analytic continuation of the corresponding
functions. It seems important to extend this method on functions given in
terms of orthogonal polynomials (+7). In particular Legendre series are of special
interest in physics. Given a series in Legendre polynomials

(2.5) f2) =Y a,Py(2),

one cannot trivially re-order the series in a Taylor series and for its analytic
continuation simply apply Padé approximants for Taylor series. The reason

(®) 8. ALmMEHED and C. LoVELACE: Nuel. Phys., 40 B, 157 (1972).
(*) H. NierLseN and G. C. OapEs: Nucl. Phys., 49 B, 573 (1972).
(") J. FLEISCHER: in Padé Approzimants, edited by P. R. GRAVES-MORRIS (Londo.n
and Bristol, 1973), p. 126; see also J. FLEISCHER: in Padé Approzimants and their
Applications, edited by P. R. Graves-Morris (London and New York, N. Y., 1973),

Pp. 69.
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is that each coefficient of the obtained Taylor series could only be expressed
as a series over all (even or odd, respectively) Legendre coefficients. Therefore,
taking into account one more coefficient in the Legendre series would change
the lower coefficients in the Taylor series and hence render the corresponding
Padé approximants for Taylor series irrelevant.

One can, however, set up Padé approximants for Legendre series in complete
analogy to egs. (2.3) and (2.4). The complication in this case stems from the
fact that the product of two Legendre polynomials can only be expressed as
the following sum over Legendre polynomials:

(2.6) P(2)P(z) = ig ai PP (z) .

fo=li—k|

As a consequence of this, the definitions of Padé approximants in analogy

to eqs. (2.3) and (2.4), respectively, do not yield identical approximants. While
the « cross-multiplied » approximants ()

2.7 (4P, + a,P,+ .4 a,P)d, P, + d P, + o+ dy Py) =
=g P+ 1P+ .. + 0y Py + 0+ o+ 04 Ty gy Paprs + -

(L=2M 4 N), defined in analogy to eq. (2.3), require for the determination
of the coefficients n,, d, (:=0,.., N;k=0,.., M) only the solution of a
linear system of equations, they do not have the property that the first ex-
pansion coefficients of the fraction

(2.8) Ry(2) _ noBo(2) + mPi(2) + ...+ 1y Pyl2)
Su(2)  dyPo(2)+ di Py(2) + ...+ duPy(?)

are the same as in the originally given function. If one wants to impose this
condition in analogy to (2.4)

R
(2.9) f(z) — S:g; = Gy+r+1 Putrnl?) + ...,

one has explicitly to project the denominator to obtain its Legendre series,
which clearly yields logarithmic terms and hence results in a transcendental
system of equations for the coefficients d, (i =1, ..., M).

It has been shown (*) that these equations can be solved and, as found from
numerical experiments, the solutions seem to be unique in general. The latter
(« properly expanded » (")) approximants also have better convergence properties
than the cross-multiplied ones. In ref. (*) their complete analogy to Padé ap-
proximants for Taylor series has been shown. A simple proof of convergence
follows the same lines as for Taylor series: once the Padé approximants are
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bounded with rising order, they converge. Further theorems of convergence,
as proven e.g. for Stieltjes functions, will be more difficult to obtain in our case
because of the nonlinearlity of the equations. The numerical experience seems
to justify, however, their applicability on the same grounds as for ordinary
Padé approximants for Taylor series.

3. — The =N amplitudes.

3'1. The Legendre expansions. ~ As a consequence of the nucleon spin the
7N’ partial-wave expansions are usually given in terms of the first derivatives
of Legendre polynomials and not in Legendre polynomials directly. Rewriting
these partial-wave expansions one obtains

B 1¢2 i
31 —==53 {fH-(s)En 2k + 1) Py(a)[— M + (— 1)+ E]—

= ¢S
-1
~116) 3 2+ D)~ M+ (—1p+B]],
k=0

(3.2) ;ij; (@M —1)=2W 3 [+ DIE + M) Pia) — (B— M) Pun(o)] +

+ h-@UE+ M) Piz)— (B— M) P,@)],

where f,,(8) are the s-channel partial-wave amplitudes, # = cos0,, M, E and ¢
are the nucleon mass, c¢.m., energy and momentum, W=+/3 (*). For con-
venience we have multiplied A’ by 4M?—t. The analytic properties of the
amplitude remain unchanged by this factor.

The coefficients a; of the new amplitude

(3.3) f;' (4M* —1) = S a! Py(2)

simply read
(34)  ay=2W{l+1)(E+ M), —UE—M)fi, ,+

+UE+ M)fi_— 1+ 1)(E— M)frp, ).
The Legendre coefficients of the B-amplitude

B «©
(3.5) o= 2 b Pya),

(*) We use my =#=c=1 throughout the paper.
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however, cannot be expressed by a finite number of partial-wave amplitudes:

2141

36)  h=—

(=4 3 (Mt (1B —1).

Rwl+1

This means no complieation, since the usual phase-shift analyses determine
only a finite number of partial waves. The higher ones are put equal to zero
at the outset.

3'2. The analyticity domains. — From the Mandelstam representation we
expect the absorptive parts of the amplitudes to be analytic functions in ¢
for fixed 8> (M+1) and 7i(s)< i< 7i(8) for (M 41)2< s< (M -+ 2)2
max (t1(s), 2(s)) <t < min (7}(s), 72(s)) for s>(M+2)2, where the 7’s are the
boundaries of the double-spectral function domains *)

(3.7) Tl_(8)=M’+6_8+2£2i!12i-:9—
1y M2+ 2 5
Y (g oe s[4 TE),

(38) ) =@M42—-s—72(s)),
(39)  is) =16+ }f ,

8+ 3(M2—1)

(3.10)  i(s)=4+16 [s — (M + 2)*][s — (M — 2)7]

and

B11)  g2s) = [ —(M + 12)ls — (M —1)].

The dispersive parts of the amplitudes are—according to the Mandelstam
representation—analytic functions in ¢ for fixed s> (M +1)% and

(3.12) (M—1)p—s<t<4,

where the lower bound is due to the start of the u-cut (w= (M 1)), the upper
bound is due to the start of the t-cut (t=4). Apart from the cuts, the
dispersive parts have a pole at

u= M2, e t=M|2—3s.

(] W. R. Frazer and J. R. Furco: Phys. Rev., 117, 1603 (1960).
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Inside their analyticity domains the absorptive and dispersive parts are equal
to the imaginary and real parts of the amplitudes, respectively.

The partial-wave expansions of the dispersive and absorptive parts converge
inside the smallest ellipses in the cos f,-plane, which have foei at +1 and
touch the boundaries of the analyticity domains, the transformation from the
i-plane to the cosf,-plane being

(3.13) cosf, =1+ t/2¢2.

It is clear that the usual partial-wave expansions cannot make full use of the
analytic properties of the amplitudes. The expansions for the dispersive parts e.g.
are already limited by |cosf, =1 - 4/2¢2

4. — Numerical results.

Studying the pole and zero distributions of Padé approximants for n.N°
scattering amplitudes with experimental input for the phase shifts, we observe
great similarity with what has been found in the study of Padé approximants
for Taylor series in the presence of noise (°). We want to stress the important
nontrivial numerical result, that the nonlinear equations determining the
Legendre Padé approximants have only one solution with poles outside the
physical region (see also ref. (4)).

Our Padé approximants have in general no poles in the region of analyticity
except for pole-zero pairs—the so-called « doublets » (°)—which are very un-
stable with the order of the approximant. There occur, however, stable poles
with no accompanying zeros, indicating an important region of the cut.

Concerning the doublets, it is interesting to note that the distance between
the pole and zero in a doublet becomes smaller, the smaller the doublet’s distance
from the physical region is. So it may happen that a doublet is migrating
(as a function of s) from one region of the double-spectral funetion (#<0)
through the analyticity domain to the other (1> 0). It looks as if the zero is
catching the pole in a region where the pole should not be and lets it free
where the amplitude is not analytic any more (see, e.g., Fig. 3, 105 < 8 < 110).

We have used the Lovelace-Almehed phase shifts (°) except for very low
energies (s < 64). In this low-energy region the phase shifts are not well known.
Furthermore, to caleulate the amplitudes for a negative-t value outside the
physical region, one has to analytically continue to much higher cos 6, values.

4'1. The imaginary parts. In Fig. 1-4 we present our results for the pole-
zero distributions of the Padé approximants for the imaginary parts of the

(*) J. L. BASDEVANT: in Methods in Subnuclear Physics, Vol. 4, part 2 (Herceg-Novi,
1968), p. 129.
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TABLE 1. — 8[my] ranges for the Padé approvimants shown in Fig. 1-4.

[1/1] [2/1] (1/2] {2/2] [3/23 [3/3]
Im A+ 60.5-76.4 77.0-=- 91.9 92.5=-117.3 117.8 -220.3
Im A') 60.5-76.4 77.0= 91.9 92.5 -117.3 117.8=161.1
Im Bt+) 67.4-75.8 76.4--91.9 92.5=-117.3 117.8=-218.6
Im BG-) 75.2=-75.8 76.4--91.9 925=-117.3 117.8=185.9
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Fig. 1. - Pole-zero distribution in the Mandelstam plane for Im A‘+). For all energies

approximants of highest possible order have been calculated. o
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real part of complex pole and real part of complex zero, respectively.
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Fig. 2. ~ Pole-zero distribution for Im 4'), same notation as in Fig. 1.

various amplitudes (4", B® (*)). Part of the poles and zeros may of course
be out of the range of the Figures. In general we calculated the highest pos-
gible order. As the number of available partial waves increases With energy,
the highest possible order does so toco. Table 1 specifies the orders of Padé
approximants, caleulated for various energies. At the highest energies (< 8 = 250)

(*) (¥ means isospin even or odd.

6 — Il Nuovo Cimenio A.



82 J. ENGELS and J. FLEISCHER

1504
100+
4
|
!
50 !
o
-804
..100._
'/ b, s A coses=—l |
. . & % i
° e . ﬁ : %’ i
o o * o % ] ? .
1504 . f& ¢ . [
. . : -2 4 . |
g: .: R D”o' S:,IDIstssn6 F1' R, Fy E
ey
L ll * 1" n ] .t -{ I I
60 80 100 120 %0 160 180 200

Fig. 3. ~ Pole-zero distribution for Im B™+), same notation as in Fig. 1.

there are seven coefficients available in expansion (3.3) for A’ and six in ex-
pansion (3.5) for B, i.e. [3/3] and [3/2] approximants are possible, re-
spectively. If, however, the number of zeros in the physical amplitude becomes
too large and/or the amplitude becomes too bumpy, it may be impossible for
the Padé approximant of a definite order to reproduce all zeros, ag a con-
sequence of which poles migrate into the physical region—or, in other words,
the Padé approximant does not exist. We observe this behaviour for all ampli-
tudes, though it begins at different energies for all four, depending on their
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Fig. 4. — Pole-zero distribution for Im B(-), same notation as in Fig. 1.

smoothness. In order to account for the physical zeros of the amplitudes as
well as possible, we chose [N-+1/N] approximants in the ease that nondiagonal
approximants are the highest possible ones.

Discussing now the amplitudes in detail, we observe that Im 4'® (Fig. 1)
has at higher energies one real and one complex zero in the physical region,
the [3/3] Padé approximant existing up to s~ 220. It is interesting to note
that the complex zero starts exactly at the position of the P,,(1470)-resonance.
Figure 1 shows that there are no real poles in the region of analyticity. For
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1< 0 the absence of poles in the shown region of the double-spectral function
indicates that the double-spectral function in this region can be assumed to
be small. For ¢>>0 we have real and complex poles and doublets.

Im A" is a much bumpier function (Fig. 2). At higher energies (s = 130)
there are three zeros in the physical region and finally the [3/3] Padé approxi-
mant is unable to represent the amplitude. At s /~150 real and complex
poles start migrating into the physical region. If one insists on caleulating
only diagonal or [N +1/N] approximants, only higher-order approximants
could fit an amplitude like that. As such higher-order approximants (like
a [4/4] e.g.) will be very sensitive to the higher partial waves, the Padé ansatz
might be a very powerful tool in performing partial-wave analyses in this energy
range. In particular one will obtain a smooth extrapolation to the higher par-
tial waves.

At lower energies we observe doublets in the [3/2] approximant at s a 100.
If we calculate the [2/3] approximant, these disappear completely. A real pole
appears at ¢ < —240 and a complex pole with real part >120. This shows
that doublets are just instabilities, disappearing with a change of order. It also
shows that the double-spectral function in the shown region of ¢ < 0 can again
be assumed to be small. The complex poles of the [3/3] approximant in the region
at 8 ~125 have an imaginary part of modulus > 220. In spite of the fact
that their real parts are partially in the region of analyticity, their large imag-
inary parts show that these complex poles must not be considered as disturbing
the analyticity properties of the amplitude geriously.

Im B and ImB“ are again smooth functions (Fig. 3 and 4). The only
new thing we learn from Im B™ is that at { ~ — 100 there are poles without
accompanying zeros in the region of the double-spectral function at s ~ 90--100,
which are also stable with the order. Figure 3 shows that the pole trajectories
of the [1/2] and [2/2] approximants are reasonably well connected. From this
we conclude that the double-spectral function 0..(B") should not be small in
this region,

The results for the imaginary parts show that—except for the doublets and
the difficulties at higher energies—the poles of the Padé approximants do not
occur in the region of analyticity. Thus the Padé approximants for Legendre
series seem to probe the singularity structure of functions just as Padé approxi-
mants for Taylor series do (see also ref. (*)). The Padé approximants and the
original Legendre series deviate from each other only up to 1% even close to
the boundary of the double-spectral function. There is only one exception:
for Im B™ one has stable poles near the boundary of the double-spectral func-
tion 0,, for 90 <3< 100 and of course then deviations occur.

4'2. The real parts. — The boundaries of the analyticity domains of the
dispersive parts are much closer to the physical region than those for the
absorptive parts. Therefore one expects a different pole distribution for the
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Padé approximants. Moreover, the dispersive parts contain the u-channel
nucleon pole. The natural thing to do is to subtract the u-pole term from the
real part before the calculation of the Padé approximants. The contributions
of the u-pole term to the Legendre coefficients ;" and b are

(4.1) =+ @+ 1) 2 6 aqu2)
M 2
(4.2) ﬁii»—i(ﬂ-]-l)z o,

where f* is the pion-nucleon coupling constant,

8§ —M*—2
(4.3) z:l——T,

and Q,(z) is the Legendre function of the second kind. For amplitudes which
are calculated from the Lovelace-Almehed phase-shift analysis it is, however,
not clear which value of f* one should choose to subtract the u-pole term.

Instead of those amplitudes we have investigated two sets of amplitudes
with known f:

i) Amplitudes obtained from fixed-{ dispersion relations

1 1
(4.4) Re XH(y, 1) = X5&(», t)+ f dy' Im X (v, 1) [”’—" + vt Js

1+tlll
S —U
(4.5) y= W )
(4.8) Re Xy, 1) = Re XD (3, 1) — Xt hpore® 1)

where X jg one of the amplitudes A'), B¥, and X% the nucleon pole term.
The relation for 4’ has to be subtracted or to be changed in a finite-contour
dispersion relation. Both methods yield the same Re A'™ (see ref. (*)). For
the numerical evaluation of eq. (4.4) we used the phase-shift analysis (°) as far
a8 possible; at higher energies the imaginary parts were calculated from the
Regge model of BARGER and PHILLIPS (11). Of course, the amplitudes obtained
from eq. (4.4) are a priori analytic functions of ¢ in the range given by (3.12).
Digspersion relations are in this respect analyticity laboratories.

() J. BaackEk and J. ExGELs: Nucl. Phys., 51 B, 434 (1973).
(*y V. BareEr and R. J, N. PHrLLips: Phys. Rev., 187, 2210 (1969).
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ii) Amplitudes calculated from phase shifts given by NIELSEN and
OADES (*) in the low-energy region (pion laboratory kinetic energy T <
<270 MeV). Their work is based on finite-contour dispersion relations but
not identical to our way i) of obtaining real parts of amplitudes. We have
used the phase shifts from their Table 2, i.e. with f2— 0.081, Coulomb cor-
rections and Lovelace-Almehed phase shifts above T,.=270 MeV as input.

40

20

-100

60 ' 70 ' 80 30
s(mi)

Fig. 5. — Distribution of poles (o) and zeros (-) of the [2/1] approximants for Re B+
obtained from eq. (3.4).
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Both methods are limited to the low-energy region, because the fixed-¢
dispersion relations may only be used for #>— 26, if one uses a Legendre
series to calculate Tm X*®. To demonstrate the influence of the u-pole term
we have calculated the [2/1] Padé approximants of Re B. The location of
the poles in the Mandelstam plane along the line u = M?* (see Fig. 5) shows

“0 LY YYYYYY)

.56556556555553‘;. C0595=—1
A'

An

_50 e

t(mé)
AN
8

—150 ¢

—200

60 ’ 70 ' 80 ' 30

s(m;).
Fig. 6. — Pole-zero distribution of [2/2] approximants for Re A'*), obtained from
eqs. (4.4) and (4.6). We use the following symbols: o, -, x and e for the isospin-even

amplitudes and o, a, = and a for the isospin-odd amplitudes for real pole, real zero,
real part of complex pole and real part of complex zero, respectively.
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that this amplitude is dominated by the u-pole term. If we do not subtract
this known effect in an amplitude, the poles will in general show up in the
region of analyticity. For the amplitudes Re X, 1), however, we find the
expected picture (see Fig. 6 and 7): there are no poles in the region of analyticity.
One can even identify the remarkably constant string of poles around ¢ s 23 —24
for Re B ag an effective p-pole (Fig. 7). Remember m; = 30, It is clear

4

20+

)

2
™

tim

cos 98=~1

60 70 ' 80 ' 3
s(m?)

Fig. 7. - Pole-zero distribution for the [2/1] approximants of Re B(#), obtained from
6qs. (4.4) and (4.6), same notation as in Fig. 6.
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why we have this effect. The Regge contribution to Re B™ in eq. (4.4) con-
tains the p trajectory and though this contribution is only about 109, of the
whole amplitude the Padé approximant recognizes its pole structure. We do
not have the same effect in Re A’'™ (Fig. 6), because there the p-Regge con-
tribution is only about 19, of the amplitude in the low-energy region. Near

)

e
-100

mZ

t(

—150 -

~200

50

Fig. 8. — Pole-zero distribution of the [2/2] approximants for Re 4'%), eq. (4.6), where
the real part was calculated from the phase ghifts of NIELSEN and OADES, same nota-

tion as in Fig. 6.
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the position of the P-resonance all real parts show rapid movements of the
zeros, a behaviour which was of course not found for the imaginary parts.

Finally we show in Fig. 8 and 9 the pole-zero distributions of the set ii)
of amplitudes. Whereas the isospin-even amplitudes have—as expected—no
poles in the region of analyticity, their isospin-odd counterparts seem not to
have the right analytic Properties. This effect is extremely strong in Re B¢,

50 ' 70 ' 80 ' 3
s(m?)
Fig. 9. - Pole-zero distribution of the [2/1] approximants for Re Bi*), eq. (4.6), where

t!le real part was calculated from the phase shifts of NIeLsEN and OADES, same nota-
tion as in Fig. 6.
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5. — Conclusion,

We have applied Padé approximants for Legendre series to =N’ scattering.
The Padé approximants are expected to probe the singularity structure of the
scattering amplitudes.

We find in general that

i) there are no poles of Padé approximants in the region of analyticity
of an amplitude, except for pole-zero pairs, which are unstable with the order
of Padé approximants;

ii) poles without accompanying zeros on the cuts are approximately
gtable and thus seem to indicate important regions of the cuts.

The imaginary parts of the amplitudes A’ and B® were calculated from
the Almehed-Lovelace phase shifts (°). We observe that

jii) for negative ¢, between the boundaries of the physical region and the
region of the double-spectral functions, the Padé approximants and the original
Legendre sums deviate only up to 19, from each other. This is not true for
ImB® at s ~ 90--100.

For the real parts without the u-pole terms from fixed-¢ dispersion relations
we arrive at the following results:

iv) as expected, the poles are closer to the physical region but still
on the cut,

v) the p-Regge trajectory, which is inserted via the fixed-i dispersion
relation into the isospin-odd amplitudes, is rediscovered for Re B as an
effective p-pole of the Padé approximant at ¢~ 24. For Re A’ the Regge
contribution is too small to have this effect.

The real parts without the u-pole terms as calculated from the phase shifts
of NIELSEN and OADES (°) behave similarly in the case of the (-)-amplitudes,
but for the (—)-amplitudes one obtains poles in the analyticity region.

As a consequence of our result iii) one may use in applications the Legendre
sums for the imaginary parts to lower values than — 26. This might espec-
ially be useful for the calculation of the {-channel partial waves (see, e.g., ref. (12)).
Padé approximants might be helpful during phase-shift analyses, since they
diseriminate between more or less analytic solutions. If we start, however,
directly with a Padé ansatz in phase-shift analyses, it seems to be difficult to

build in unitarity.

() G. HoHLER, R. STRAUSS and H. WUNDER: Karlsruhe preprint (1968), unpublished;
W. R. Frazer and J. R. FuLco: Phys. Rev., 117, 1609 (1960).
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® RIASSUNTO ()

Ci si attende che gli approssimanti di Padé sondino la struttura della singolarita delle
ampiezze di scattering. Si applicano gli apvrossimanti di Padé delle serie di Legendre
alle ampiezze m.N’, che si ottengono dagli spostamenti di fase. Si sono calcolate le parti
immaginarie dall’analisi degli spostamenti di fase di Almehed e Lovelace, ¢ le parti
reali direttamente dalle relazioni di dispersione a ¢ fisso o dall’analisi degli spostamenti
di fase di Nielsen e Oades. Per tutte le ampiezze (eccetto quelle di isospin dispari di
Nielsen-Oades) i poli degli approssimanti di Padé giacciono fuori della regione di ana-
licita nel piano di Mandelstam. Gli approssimanti di Padé e le serie di Legendre troncate
per le parti immaginarie deviano fra loro solo sino all’'19, anche presso il contorno della
funzione spettrale doppia (salvo per B(+),

(*) Tradusione a cura della Redaziome.

Iany ampoxcamamud nas puna Jexanapa B =N paccepsHss.

Pesrome (*). — IIpemmonaraercs, wro Ilag? ammpoOKCHMAIHH NO3BONAT MCCIEXOBATH
CTPYKTYPY CHETYJIADHOCTCH aMImMTyR paccesmmsd. Mel npmmersieM Ilag> ammpokca-
Maupn g panga Jlexagapa 11a # N aMIUIATYA, KOTOPHE NONYYeHE! A3 aHAMK3a Ga30BBIX
CHBATOB. BRMACIMIOTCA MHAMBLIE 9aCTH H3 aHANMM3a $a30BHX COBHrOB AsMexela H
Jlasnefica. DOpMyNbI O/ BEINECTBEHHLIX YacTedl MOJYyYalOTCHA HENOCPEACTBEHHO H3
JHUCTCPCHOHHBIX COOTHOMICHWHM Npm (MXCHPOBAHHOM ¢ M M3 aHANE3A (HA30BBHIX CABHIOB
Hwmcena 1 Oanca. [lng peex aMmimTyn (32 HCKIIOYCHHEM H30CHHHOBBIX HEYETHBIX
Hummcera-Oanca) momoca Ilaz3 anmpoxcEMamudi pacmosioXeHH BHE OONAacTH aHAJIHA-
THYHOCTH B IUTOCKOCTH Manpencrama. Ilags ammpoxcamanmd u o6pe3annsiit pan Jlexan-
Ipa 71 MEHMBIX JacTel OTIH9aI0TCA APYT OT APYTa TObKO Ha 1% naxe BONH3H rpaHHUIbI
IBofiumit coexTpanbHOlt dynxmmm (32 mckmouenmeM BM)),

(*) Iepesedeno pedaxyueii.
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