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«Und wir Jinglinge sangen,

Und empfanden, wie Hagedorn.»
F. G, KLOPSTOCR, 1750

Summary. — The level density and the decay of isosealar and isovector
fireballs (with input pions) are studied in the framework of the statistical !
bootstrap model. We find that different versions of this model lead to :
the same total multiplicity distribution for large firchall mass M.
Asymptotic expressions for the integrated multiplicity ecorrelation of
charged particles are derived. The correlations are caleulated numer-

ically in the range 1 GeV— M-8 GeV.

1. — Introduction.

There is increasing evidence that the production of particles in high-energy
hadron collisions proceeds via the production of clusters, i.r. subsystems of

hadronic matter that decay isotropically in their rest frames, Though the na-
ture of these clusters is not at all understood from present data (') (mainly

because of the ignorance of theoreticians about the produetion mechanizm),
it is tempting to identify them with the fireballs of Hagedorn's thermodynamical
bootstrap model (), which are mainly characterized by their limited tempers-
ture for energy going to infinity. On the other hand there is the intriguing pos-

(1) See, eqg., A. Braras: invited talk given at the IV International Symposium on

Multiparticle Hadrodynamies, Pavia, 1973. CERN preprint T'H 1745. A
(!) R. HaGEDORN: CERN preprint 71-12; Suppl. Nuovo Cimento. 3. 147 (1965).
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sibility that individual fireballs might be discovered and studied in e'e~ an-
nihilation into hadrons: it has been speculated that virtual timelike photons
behave like fireballs in their decay, and there is in fact some evidence for this
speculation from the first measurements at SPEAR.

Tt seems therefore appropriate to investigate fireball decay in some detail.
The inclusive spectra from this decay can be calculated at finite fireball mass
in Frautschi’s (*) and Yellin’s (*) version of the bootstrap (henceforth called
statistical bootstrap) once it is accepted that fireballs decay in the way they
are built up. Various versions of the statistical bootstrap (which implies energy-
momentum conservation) have been investigated previously to study the pre-
dictive power of the model at finite fireball masses. Most of these applications
neglected isospin in the bootstrap. It is suggestive to use Cerulus coefficients (°)
on the solutions of isospinless bootstrap to calculate prong cross-sections ().
ILGENFRITZ and KRIPFGANZ (*) succeeded in solving the bootstrap equations
with isospin conservation for fireballs of unrestricted isospin which would seem
somewhat unphysical. In this paper we formulate and solve the bootstrap
problem with isospin and G-parity conservation for a system of nonexotic
fireballs composed of m-mesons and investigate their decay, with particular
emphasis on nonasymptotic features (*).

2. — Build-up of fireballs: statistical bootstrap.

This Section is mainly devoted to the implication of isospin and G-parity
conservation on the statistical bootstrap of mesonic fireballs. In order to estab-
lish our notations, let us first review quickly the conventional bootstrap scheme
without quantum number conservation.

2'1. Bootstrap without quantum number conservation. — The simplest, since
explicitly solvable version of statistical bootstrap is the linear bootstrap (**°);
where a fireball is composed of another fireball plus a pion. The bootstrap
equation for the density of states of a fireball of mass M = 1/Q?, 7(Q?), reads in

) 8. Fravrscur: Phys. Rev. D, 3, 2821 (1971).
) L. YBLLIN: Nuel. Phys., 52 B, 583 (1973).
5 3 ' ;

} F. CEruLUS: Nuovo Cimento, 19, 528 (1960).

) J. ExceLs, H. Satz and K. ScuiLLiNG: Nuovo Cimento, 17 A, 535 (1973).

) E.-M. ILcENFRITZ and J. KRIPFGANZ: Nucl. Phys., 62 B, 141 (1973).

) ‘ After completion of this work we received a preprint of KriprcaNz and ILGENFRITZ
which treats some aspects of nonexoticity requirements in the linear-bootstrap case (°).
(®) J. Krirrcanz and E.-M. ILGENFRITZ: Leipzig University preprint KMU-HEP-7401,
December 1973.

(:3 R. HaGEDORN and I. MoNTVAY: Nucl, Phys., 59 B, 45 (1973).

() C. B. Curu: Nucl. Phys., 54 B, 170 (1973).



STATISTICAL BOOTSTRAP MODELS FOR BUILD-UP AND DECAY ETC. 583

this case

B1(Q?) = By(Q* — u?) + BszI Ak, T(k:) 0y (k2 —u?) 84O — % —Fs)

{=1

(2.1)

Oo(a?— ) = B(2o)8(a* — p*)

where u denotes the pion mass and B stands for a coupling constant («volumen»).
Equation (2.1) is solved by means of the covariant Laplace transform

(2.2) #(1):= Z(B) = B[d*Q (0" exp[— $,0%].

We choose §, purely timelike in the c.m.s.

(2.3) ﬁu: (8, 0,0, 0)

with > 0.
The bootstrap equation then reads very simply

(2.4) Z(p) = Up) + UB) Z(p)
with the solution
(2.5) Z2(p)= 11(2,3) = éf”‘ﬂ) .

Here t(8) stands for the Laplace transform of the pion inhomogeneity

2
26)  Hp=B f 0Q 4@ ) exp— 4,01 = 3 BE1f).

K, is a modified Hankel function. Inverse Laplace transformation of eq. (2.5)
then yields the solution to eq. (2.1)

-]

(2.7) Q%)= D B 2,(*)

N=1

in terms of invariant N-particle phase space

i=1

(2.9 0,00 = [ TTa% 405~ p2)85 (S —0).

It is clear from the definition of Z(g) that the singularity of Z(f) at f,, de-
fined through

(2.9) W) =t=1,
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induces an exponential increase of 7({)?) as ¢*— co, namely
(2.10) Q%) ~ M exp [f M ].

The value of a follows immediately from the fact that the singularity of Z
as a function of ¢ is a pole, and is a = 3 (°).

In the full bootstrap scheme (>*1!) a fireball is composed of any number
of fireballs:

(211)  Br(g?)=B&Q:—u) +1§2 % ﬁ[d‘kit(kf)é‘ (gk,.—Q) .
The Laplace transform of this equation

(2.12) 2Z =1+ exp[4]—1

is solved by

(2.13) Z= %gﬂt” ,

N=1

where the g, obey the recursion formula (512)

e =1,
(2.14) —1 5
Iv1= m [NQN— 2lglkgk'gﬂ+1-k] .

The radius of convergence of expansion—eq. (2.13)—is determined through

(2.15) ?d%: 0

and follows from eq. (2.12) to be J=2In2 — 1. Z(t) has a square-root branch
point at t={, since

dz

aﬁ #0.
The equation
(2.16) iB,) = I = 0.386

is the analogue to eq. (2.9) in the linear-bootstrap case and allows one to calcu-
late B from f, and vice versa. The solution to the full bootstrap equation reads

o

(2.17) Q%) =2 g, B Q,(%),

Nl

(") E..M. Treexvritz and J. Kriercanz: Nuel. Phys., 56 B, 241 (1973).

(*) K. Fasricrvs and U. Wamsach: Nucl, Phys., 62 B, 212 (1973).
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the asymptotic behaviour of which is given in eq. (2.10) with ¢ =3 (+*).

We note that, intermediary to the full bootstrap and the linear bootstrap,
one defines any sort of bootstrap model by changing the upper limit to the
summation in N. All these versions produce a square-root branch-point sin-
gularity of Z() and thus a = 3.

2°2. Bootstrap with isospin and G-parity conservation. ~ In the following
we want to introduce isospin into the bootstrap equations, or rather their
Laplace transforms, eq. (2.4) and eq. (2.12). This will be done with the physical
idea in mind that fireballs represent the econtinuation of the observed reso-
nance spectrum towards higher masses. Therefore we will allow only nonexotie
fireballs to appear in the scheme. Megonic fireballs in particular should only
have isospin zero or one.

2'2.1. Linear bootstrap. Let us start with the introduction of isospin
and leave aside G-parity for the moment. If we denote the Laplace transforms
of the isoscalar and isovector densities Br*(Q%) and B7.(Q?) by 8(f) and Z.,.(f),
respectively, where m stands for the 3-component of isospin, the bootstrap
equations for these quantities take the form

Zrn(ﬂ) - tm+ Z 0(17 1’ l’ mU m2)2zmltm|+ Stm b

(2.18) et
8(F) =3 C(1,1,0; my, —m,)*Z, t_y .

C(f1y jay j3 my, my) are standard Clebsch-Gordan coefficients.

We have added an index to the inhomogeneous term indicating the pion
charge. Since ¢, =t,={_=1t>0, it follows directly that Z, =27 _=Z,=Z.
Thus the linear bootstrap predicts the isotriplet densities 77(Q?) to be identical
to each other, as one would require from isospin symmetry of the fire-
ball spectrum

(2.19) T3(Q%) = L") = 7(@?) .
Therefore the bootstrap equations finally look as simple as this

Z=1+(Z+ 9,

(2.20)
S =171,
and have the solution
—t
2. =
(2.21) i—t)—t)

(13) W. NanMm: Nucl. Phys., 45 B, 525 (1972).
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with two simple poles at
(2.22) tyy=—3% £ 3V5.

Consequently the convergence radius { of the series expansion

(2.23) z=3% 3% ("’) it

n=0 y=0 \V

is given by
(2.24) [=—1+1v5=0.618.

Thus, the isovector and isoscalar fireball densities from the linear bootstrap
have the form

N—
@)= 201=7@)=3 (1,7 B,
(2.25) »y<N/2
N—
2@)=3 (V) B0,
o\ ¥
yY<N/2

the asymptotic behaviour of which is given by eq. (2.10) with f§, this time
determined from

(2.26) HBy) = = 0.618 .

It is interesting to see what happens to the linear bootstrap if only isovector
fireballs are considered: one sees immediately from egs. (2.20) that this simpli-
fied Linear bootstrap amounts to the linear bootstrap without isospin as given
in eq. (2.4).

Before closing this Subsection, we want to turn to the question of G-parity
conservation. In order to include this quantum number into the scheme, we
have to assign G-parity to the fireballs and to double the number of bootstrap
equations. It is proved in Appendix A that the linear bootstrap with only
pions as input particles yields the solution, which one might have naively anti-
cipated for the even and odd G-parity fireball level densities 7, 7 namely

v

DY Y Yod 1 : 1 -
(2.27) T+( )(Q’) =5 z (13;(“‘1)” (N 1’) B¥Qy11(Q)
“ Nz1
YN/

and similarly for °C), i.¢. one just has to drop in the previous solution egs. (2.25)
the terms with the wrong (-parity!



STATISTICAL BOOTSTRAP MODELS FOR BUILD-UP AND DECAY ETC. 587

2'2.2. Full boostrap. We require from the beginning that the out-
come of the bootstrap should be isospin symmetric, i.e. we postulate

(2.28) Z. =72 for m=+4,—0.

The task is then to generalize eq. (2.12) to a coupled system of bootstrap equa-
tions for § and Z. As a first step we find

Qg) (No + Nx)
2Z=11y §5. 7%
L il W, !
(2 29) Nzl
‘ (n
Ox N+ N 1)
28 =3 —-gniy §HZ
S Zmeml
Ny=22

The binomial coefficients account for the combinatorial weight of the term
characterized through (¥,, N,) in the sum. g‘” denotes the isospin phase-space
volume, which in this case equals the number of ways that N, isovector rep-
resentations can be coupled to the total isospin I. The lower limits of the sum-
mation are readily deduced from isospin arguments.

The N,-summations can easily be performed with the result

o A1
27 = t-}—exp[S]z gx Z”

N—].

(2.30) o (0)
28=exp[S]—1+exp[8]> 3

N=2

%P

The solution to eq. (2.30) proceeds again by series expansion

(2.31) mnmg%ﬂ, Mo:i@ﬂ.

N=] Nm2

The recursion relations for the coefficients ¢,, b, are this time somewhat long
and therefore relegated to Appendix B. The numerical values for ¢, b, re-
sulting from these recursion relations—eqs. (B.3) and (B.4)—are given to-
gether with the previous coefficients g, and the isospin phase-space volumes
o9, o' in Table I.

The asymptotic behaviour of the fireball densities

Q) = i exBT10, (@),

N=1

Q2 = 3 b, B0, (9"

N=3

(2.32)

N
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is governed by the singularity of the series eqs. (2.31). In Appendix C we prove
the following

Statement. There exist solutions to the bootstrap equations, eqs. (2.30),
which are regular in |t <7, where { is a square-root branch point on the real
axis, i.e.

Z(t)= g(t) + h(t) Vi—1

with g, b regular in |t|<land t={, and similarly for 8.

Since the closest singularity to the origin with Ref>0 controls the
asymptotic behaviour of 7(¢)?), the situation corresponds very closely to the
result of the full bootstrap obtained previously without isospin.

The functions Z(?), 8(¢) are plotted in Fig. 1. The value of the convergence
radius { was caleulated on the computer and is f = 0.2265. Thus the relation
between B and f, reads now

(2.33) HB,) = F= 0.2265 ,

to be compared to eq. (2.16) in the case of no isospin. G-parity conservation,
if imposed on the bootstrap equation eq. (2.30), leads again to the most natural

0.2

01

| | z

I i 1 -

w797 01 0.2 03 0wz 04 05 S\

=0.1-

Fig. 1. — The Laplace transforms Z and S of the isovector and isoscalar fireball densi-
ties solving the full-bootstrap equations egs. (2.30).
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modification of the solution

[-+]

(2.34)  Z9=1Y(14 (—17)e,, =2 (L (= 1)7)ot".
N=1 N=2
This statement is proved in Appendix A.

We can summarize this Section by stating that isospin conservation in
conjunction with G-parity conservation and nonexoticity conditions do mnot
change the asymptotic behaviour of the bootstrap solutions. The only changes
with respect to the previous bootstrap occur in the relations between B and f,
and in the nonasymptotic behaviour of 7(Q%). We now want to investigate the

features that appear in fireball decay as a consequence of quantum number
constraints on the bootstrayp.

3. — Fireball decay.

3'1. Basic philosophy. - In order to describe fireball decay, we want to make
the very natural assumption that these objects decay as they are built up (*'*).
In other words, we set the partial decay width for the decay of a fireball into
N pions, I';, to be proportional to the N-th term in the expansion of the fire-
ball level density in terms of phase space integrals

= Z dy BN—IQN(Qz) ’
N=1
namely

(3‘1) FNNdNBN‘QN(QZ) ’

where d, is the appropriate coefficient deduced from the bootstrap chosen.
Equation (3.1) holds up to a normalization that depends on @2, but not on N.

If we introduce the (unknown) total width I" wr 4. (3.1) can be rewritten as an
equality

(3'2) FNZ%F\‘.M
Y d, B O,

n=2

Correspondingly the inclusive one-particle distribution reads

$vima. (o

d3g
(3.3) 2k, ae= ™ Otot 9
2 d.B"Q.(@?)
n=32

(M I MoNTvay: Nuel Phys., 33 B, 591 (1973).
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which is obtained by just dropping (symmetrically) the integration over one ‘ Hm
particle in the phase-space integral of eq. (3.1).

In the subsequent considerations, where we compare the predictions of
various bootstrap versions, we shall once and for all assume a limiting
temperature

= 1 =160 MeV,

Bo
which is a reasonable value from experiment. This requirement fixes the
« volume » parameter B within each of these versions through eqs. (2.9), (2.16),
(2.26), (2.33), respectively. This philosophy is not in the spirit of ref. (*), which
argues that B should equal the pion Compton wavelength.

T,

32, No charge detected: asympiotic equivalence. — We are now in a position
to extract predictions of the various bootstrap versions on all sorts of inclusive
measurements as long as the charge of the final particles is not detected. For
the integrated correlation functions f,(Q?), which are given by

fl: <N>7
(3.4) fa= (NN —1)) —(N)e,
fo= (N(N = 1)(N —2)> — 3N (N(N 1)) + 2(N)?,

and for general N through (%)

L )
(3.5) fr=DB" 2, In (Bz(Q")

we prove the following

Statement. To leading order in the fireball mass M the linear and full
bootstrap models with or without isospin predict identical correlation func-
tions, if T, is chosen universal.

Proof. From eq. (3.5), which we derive for the convenience of the reader
in Appendix D, and from the asymptotic form

3.6) @) 1B B exp o 1+ 3 ME) + .t

the leading term of f, is derived to be (")

N dN
(3.7) fr = MB o fu(B)

(**) A. H. MUELLER: Phys. Rev. D, 4, 150 (1971); L. S. Brow~: Phys. Rev. D, 3,
748 (1972); K. J. BignL and J. WoLr: Nuel. Phys., 44 B, 301 (1972).
Ak
ALFE
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Here f, stands for the function that solves the singularity equation of the
respective bootstrap. Since all of these relations—eqs. (2.9), (2.16), (2.26),
(2.33)—are of the type

(3.8) 1% = —%‘ Ki(upo) . = ¢(Bo)

with properly chosen convergence radius I, f,(B) has the form

1 B
69 bt =g (5) =9 (7).
and consequently
3.10) =M gl
. ~Mx¥ - - g% .
! dwr? w18y

Sinee ¢ is a universal function in all bootstrap versions and the value of x is
the same in all of them (see eq. (3.8)), the proof is completed.

33. Pion charge detected. — In order to obtain predictions on charge-
dependent quantities such as fw,n s We have to carefully keep track of the
charges of the pion inhomogeneities, i.e. we have to expand the solution to
the bootstrap equations in terms of powers of by By

(3.11) Zy= 3 ey py bt

N NN,
Ny=N_=m

We want to go in detail through this calculation of the coefficients ¢ in the

case of the linear bootstrap, which has been formulated in terms of £, , fy: 1
through eq. (2.18),

33.1. Linear bootstrap. If we diseriminate formally between the pion
charges the solution to the linear bootstrap reads

Ny
(3.12) P =
S=HZy_ + 27t + Zyty}
where
~ to

‘ a— by (]- + 5) ’
3.13) . 0
( Ao =to—3 + 131,

klzl—;gwgun-;ﬁ-guu%+%ﬂ.

Explicit expressions for the coefficients e are given in Appendix E.
N N, ¥_ g <
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From the explicit form of the solution, eq. (3.12), one can prove the following

Statement. In the linear-bootstrap scheme the natural moments of the
decay pion multiplicity distribution of a neutral fireball, (N** N*N'-), do not
depend, to leading order in M, on the individual I;, but only on their sum:

(314) <-Ni+N;°Ni’> ~ (l % Kl(‘u,@g))hﬂoﬂ_ .

3 p Ky(up)

The proof of this statement is given in Appendix D.
As a corollary to the last statement we find, not unexpectedly,

(3.15) (N =<N_={Ny.

More important are the charge correlations f, , , (for the definition see Ap-
pendix D). They have been caleulated numerically for fireball masses 1 GeV <
<M <8 GeV by using the explicit bootstrap solution and will be presented
in Sect. 4.

The asymptotic expression for the charge correlations of a decaying fire-
ball of charge m reads

dN
(3.16) fnﬁifv'f-}_: MBNdBf* B dBY Bo(B+, Byy B_) potnt’

N-N++N.+N...

which is the analogue to eq. (3.7), where the B’s, like the #'s, carry a charge
index. Note that this leading term depends neither on the charge nor on the
G-parity of the decaying fireball. In contrast to the asymptotic behaviour of f,,
€q. (3.5), the asymptotic expressions for the f, ,, depend strongly on the boot-
strap version. This is demonstrated in Appendix D,

3'3.2. Formulation of the problem for the full bootstrap.
Having solved the problem of charge correlations in the linear-bootstrap case,
we turn now to the full bootstrap, eq. (2.30).

Evidently, we lost some information, namely that on charge, by suppres-
sing the charge indices in this equation. For the purpose of the bootstrap,
this was perfectly all right and in fact enabled us to find the solution with reason-
able effort. Being now interested in charge correlations among secondaries,
however, we have to differentiate between the various Z’s, thus ending up
with rather horrible bootstrap equations. Although we are not motivated
enough to solve these equations, we want to write them down in the following
for reasons of completeness.

To formulate the problem one has to make an assumption about the branch-
ing ratios between the different charge distributions of fireballs from direct

39 — Il Nuovo Cimenlo A.

Fa
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fireball decay. In accord with the philosophy underlying eq. (2.30), we assume
conservation of isospin and charge as well as equal probability of each possible
jsospin state among the immediate daughter fireballs emerging from a fireball
decay. This corresponds to the assumptions of CERULUS (°), except that we
apply them to a state of secondary fireballs, not pions. As a consequence,
we introduce Cerulus coefficients *P® .~ (in the notation of ref. (°)) to weight

NN J_
the charge distributions and obtain the bootstrap equations (°)

1
2Zn=t,+exp[8] 3 F?*P}}lﬂ oy ALYl
NN N_ *
ZN=NZ1, N —F =m

(3.17)
28 =exp[8]—1-+exp(8] > 1 *PP . Zi By 25

t
Ny NN N!
?zv‘:zv; 2N, =N_

4. — Numerical results and discussion.

In order to exhibit the impact of isospin conservation on the bootstrap solu-
tion and the decay characteristics of 4 fireball at finite M, we have calculated
average multiplicities and integrated correlations in the range 1 GeV < M < 8 GeV,
using pions as stable input particles and choosing T, = 160 MeV for all boot-
strap models. The phase space integrals were calculated with a program of
KAJANTIE and KARIMAKI (V).

A characteristic sample of results is given in Fig. 2 to 6 for the decay of
neutral fireballs with the quantum numbers (I, @)= (1, +) and (0, —);
respectively (which are the quantum numbers of the photon).

In Fig. 2 we show the predictions of the full-bootstrap model (eq. (2.29))
and the linear-bootstrap model (eq. (2.18)) for the f,, if no charge is detected.
Notice, that asymptotia sets in fairly early. As was already found in ref. (%),
the average multiplicity f, is practically proportional to M for M>1 GeV.
The same is true for f, above 2 GeV and f, above 3 GeV. Comparing the W0
parts of Fig. 2, we realize that the quantum numbers (I, &) have no influence
on the correlations in the asymptotic region, i.e.

(+1) fr?=d, M+,

g

(*) There is of course no unique way of injecting isospin into the ful bootstrap.
WAMBACH (¥), e.g., uses a special ansatz for the isospin coupling, motivated by the
Chan-Paton method for the construction of dual amplitudes with isospin.

(*) U. Wamsach: University of Bielefeld preprint Bi-74/01, Jan. 1974.

(*) K. Kasantie and V. KariMigr: Computer Phys. Comm,., 2, 207 (1971).
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While d, is model independent, the intercepts ¢, are seen to differ between the
full and the linear bootstrap models.

0 1 2 3 4 5 6 7 8
M(GeV)

Fig. 2. — Correlation functions f,,f,,fs, €q. (3.4), for the decay of «photm.ﬂike »
fireballs of mass M: full lines: full-bootstrap model (eq. (2.30)); broken lines: linear-
bootstrap model (eq. (2.20)). a) G=4,I=1; b) G=—, I=0.

Turning now to the case when charges are detected, we show the results of
the linear bootstrap (eq. (2.18)) for average multiplicities and independent
charge correlations in Fig. 3 and 4. The remaining f’s can be calculated from
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_— 1 1 1
3

1 1 1 |

]
4 6 7 8
MiGeV)

Fig. 3. - The charge correlation functions f, and f, ., predicted by the linear-bootstrap
model for isoscalar and isovector fireballs (eq. (2.20)). The quantum numbers of the
decaying fireballs are G= 4, I =1, I, = 0 (full lines), ¢ = —, I =I,= 0 (broken lines).

the equations

I

fo—
(4.2) I
-
foo_

=f.,
= fou s
=f.
2f—+:f+++f+’

:i00+!

fou— = f0++ y

fore =Yoo+ foss

f++m = f+—_ = f++++ f-’f++ ’
foo= frir
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f*“*

o=

o

i | ! 1 I ! | !
1 2 3 4 5 6 7 8
M(Gev)

Fig. 4. - The charge correlation functions f, . predicted by the linear-bootstrap
model for isoscalar and isovector fireballs. Same notation as in Fig. 3.

As to the onset of asymptoties the pieture remains roughly unehanged eolm-
pared to Fig. 2; again it is found that isospin and G-parity of the decaym.g
fireball are of no importance in the asymptotic regime. In the nonasymptotic
region, however, there is a strong (I, G)-dependence, which increases with the
number of neutral particles involved in the measurement. We note that the
only positive two-particle correlation is f,_:

(4.3) fo_ ~0.28], .

The coincidence of f,, and f,, is fortuitous, as can be seen from a cor‘npar.iSOﬂ
of the linear-bootstrap result given in Fig. 3 with the prediction of the S'mphﬁe,d
linear bootstrap (eq. (2.4)) contained in Fig. 5. A comparison of th‘f asy mpt.otlﬁ
predictions is given in Fig. 6. This demonstrates that the asymptotic behaviour
of the charge correlations depends sensitively on the isospin quantum numbers

|
A .
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0 0 e i 1 A i 1 1
% \\
for
R- fet ;
_2>_
i :
| |
* .
_M_ :
4 .
| @
| L 1 i i 1 | R
0 i 2 3 5 6 7 8

Fig. 5. ~ The charge correlation functions f, and f,, predicted by the linear-

bootstrap model for isovector fireballs only, eq. (2.4). The quantum numbers of the
decaying fircball are G =+, I=1, I;=0.

which the fireballs are allowed to carry in the bootstrap. This result 18 00.1‘-
roborated by an analytical evaluation of the leading terms given I
Appendix D ().

It is remarkable that the predictions of the linear bootstrap (eq. (2.18))
coincide within one percent for E>5 GeV with the results of a calculation

e

(") TUnfortunately, we cannot recover the results of Knirreanz and ILGENFRITZ ®).

Their asymptotic expressions for f__, f_,, f,, are different from ours, eq. (D.10), and
they find positive values for these quantities.

i
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M(GeV)

Fig. 6. — Comparison of the asymptotic charge correlations from tht? linear-bootstrap
model with (eq. (2.20), full lines) and without (eq. (2.4), broken lines) isoscalar fireballs.
The quantum numbers of the decaying fireball are @= +, I=1, I;=0.

which neglects isospin in the bootstrap and uses Cerulus coefficients to obtain
the partial widths I'y, . from I's,,

*P(I)
(4.4) PIS?N.N_:#FN“Q,’ Ntot=‘N++‘N0+N"
N,

tot

This does not hold, however, for the simplified linear bootstrap.

R e

g%fﬂ!

N
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5. — Summary and conclusions,

Our results can be summarized in short:

1) We formulated bootstrap equations for isoscalar and isovector me-
sonic fireballs with strangeness zero and solved them explicitly. It was shown
that conservation of G-parity and isospin does not alter the asymptotic be-
haviour of the fireball densities.

2) The leading terms of the correlation functions of fireball decay fy
are predicted to have the same value within all bootstrap models considered.

3) Charge correlations of secondary pions depend sensitively on the
isospin of the fireballs admitted in the bootstrap.

4) In our case of pion secondaries only, the onset of asymptotics, character-
ized through straight-line behaviour in M, occurs at M =2 GeV for the
average multiplicities, at M = 3 GeV for two-particle charge correlations and
at 4 GeV for three-particle charge correlations. The quantity f,_ is the only
positive two-particle correlation.

5) For not too small energies we have found numerically that imposing
charge weight d la CERULUS to the final states obtained from the isospin-iree
linear bootstrap leads to the same results as given by the linear bootstrap that

includes isospin. This might be useful for practical caleulations. We expect the
same to hold for the full-bootstrap case,

6) The most relevant test for the validity of the statistical bootstrap
model applied to fireball decay is the linear dependence of all correlation func-

tions on the fireball mass M for large M. This linear dependence does not hold
for other statistical models ().

7) We remind the reader that the numerical results depend on the value

of T,, which is not too well determined. Moreover, inclusion of kaons and
baryons leads to modifications,

APPENDIX A

G-parity in the bootstrap.

In this Appendix we want to prove egs. (2.27) and (2.34). Denote the
even ((odd) G-parity tnplgt contributions by Z© (Z©) and the singlet terms
by 8@ (8¢). If we bear in mind that pions carry odd G-parity, eq. (2.20) i8

(tﬂ) A. Jars: University of Kaiserslautern preprint, Sept. 1972; S. J. ORFANIDI® and
V. RitteNBERG: Nuel. Phys., 59 B, 570 (1973)
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Zor— ¢ + (Z(e) + S(e))t y
Ze — (Z(o) + S(o))t ,
(A.1)
Sty — Z¢ ,

Ste) — Zw@i

These equations can be written more symmetrically
(A.2)

{ Bt= 4t 443+ E2),

&+ = 8#(L1),
with the abbreviations

(A.3)

8:}; = Z® -+ Z(o),
{ @:I: = Sfe i Stoy |

We observe that 3%, G* obey the previous bootstrap equations, eqs. (2.20), if
the sign of the pion inhomogeneity ¢ is properly chosen to be -1, respee-
tively. Therefore, we finally arrive at

T-li-(e) + i) = Z (N—‘V) Br(—1)r10..,(@%,
=0\ ¥
(A4)

r< N2

700e) |- o) — E (N—‘l’) BN+1(_1)N_Q,+2(Q2) '
>0\ Y
P N/2

from which eq. (2.27) follows immediately.

The introduction of G-parity into the full bootstrap scheme,‘ eq. (2.30),
Proceeds very similarly. In terms of 3%, &%, the bootstrap equation reads

o A
28+ = 4 t+ exp[GE] D %’%8*”,
(A.5)

N=1

o .0
2&* = exp [&*]—1 + exp [C?'Di]ﬂz_2 %1!;1 3.
Again the problem is diagonal and has the same form ag previously, with proper
sign of ¢. This proves eq. (2.34).

APPENDIX B
Recursion relations.

Near t= 0 the bootstrap equations (3.1)
(B.1 2Z=t+ exp[S]A(2),
1) 28 = exp[8]A(2)—1
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with
@ ZN
1(2):14'292)——,
N=3 N'

have solutions that allow a power series expansion

(B.2) 8=Dbat", Z=e.t.
n=0

n=0

The physical solutions are distinguished by the conditions
=0 and  by=0b,=0,
which are equivalent to
H@)=0 i Q<p,
WQY=0 i Qi< due.

By inserting the ansatz (B.2) into the equation (B.1) one derives the fol-
lowing recursion formulae for the coefficients b, and ¢,:

n—2
(B3) bnzAn +En+2(bk+Ek)An—k5
k=2
n-3
(B4) Ca = Ln + En—x + bn—l +k§ (bk + Ek)(cn—k + Ln—k) ’
with
(3'5) E,= i z M ,
Mm=2 lgsaln_y lz e l,, -1!
nil Ly
=1
nz-:x ftymn
j=2
B.6 _ & o ch... clry
(B.6) 4, gem > ARNARL
m=2 boalpg Y1 ven by
”il lj‘m
Jml
ﬂil ly=n
Jm1
(B.7) L=3,0 o O
,,Z;’ H ,E, AN
nil tyom
j=1
”ﬁ* Jly=n
Jml
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APPENDIX C

Analytic properties.

Here we study the analytic properties of the physical solution of the boot-
strap equations

(C.1a) 27 =1+ exp[8]1'(Z),
(C.1b) 28 = exp [S]M{Z)—1
with

(0

Mo)=1+Y % 7.

nug 100

Statement C. The physical solutions (*) Z(t) and S(t) of the systen} (C.1)
are analytic functions regular in a circle J¢|<?,: Z(t) and 8(t) are both singular
at t=:1, on the positive real axis. The singularity is of square-root type.

To prove this statement we shall use repeatedly a theorem on the inver-
sion of analytic functions (¥): A power series

W(Z) =Y 0,2 — 2,

n=0

has an inversion

P(W)= S bo(W — T,

n=0

with W,= W(Z,) and P(W(Z)) =Z, if and only if a,+0.

Proof of statement C. We divide the proof into a number of steps:
1) Equation (C.1d)
AMZ)= (28 +1) exp[— 8]

may be inverted for §< 1, because A[§] is regular and dA/dS=0 for §< 1.
So 8[A] defined by eq. (C.13) is regular near 4=1.

2) As o< 3", A(Z) is an entire analytic function of Z. Therefore
8[A(Z)]1= 8(2Z)

is a regular function of Z in the cirele |2]< Z, (Z, is defined by S[A( =1

*) See Appendix B. . inderlichen,
:19)) H. BEEI};KE and F. SoMMER: Theorie der Funktionen einer komplexzen Verdnder

IV. Kapitel (Berlin, 1955).
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3) The result of step 2) shows that

t=27 —exp[S]A'(Z) (eq. (C.1a))
is Tegular in the circle |Z| < Z,.
Moreover
@y
iV/ 'z=o_

So Z(t) is regular near ¢= 0.

4) The bootstrap equations, eqs. (C.1a) and (C.13), show that the coef-
ficients of the power series

Z{t)= ic,,t"

n=1

are all positive (as they have to be in a physical model). This implies that
the singularity of Z(t) neighbouring =0 lies on the positive real axis.

5) Now we show that there is a singularity of Z(f) on the positive real
axis.

First we note that S(Z) increases monotonically from 0 to } and 8'(Z)
increases monotonically from 0 to oo, if Z goes from 0 to Z,.
This is an obvious consequence of eq. (C.1b). Therefore

dt 19 4
=2 — expS)(8' 2+ 1)

decreases monotonically from 1 to — oo in the interval 0< Z < Z,.

So there is a zero of dt/dZ on the positive real axis at Z=Z, with 0<
< Z,< Z,.

From
%
a7 = —ORISISPA L 2N+ A+ AN <0 i 0<Z<2y,
we find that
L[
az,,” "

So the function Z(t) is regular in the circle lt| <1, and has a square-root
branch point at t=t, (f,=real positive)

.

6) 8(Z) is regular for Z < Z,.

As Z(to)z—.. Z,<Z, (see step 5)) the singularity of Z(t) at t=1, generates
the lowest singularity of S(Z(t)).

This completes the proof of Statement (.
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APPENDIX D

Asymptotic expressions for higher moments and correlations of the multiplicity
distribution.

The definition of the higher moments
(N3 N*-Ngo) (0 = integers)

leads directly to the relation

o \ % 0 \2- a ®q
(D.1) $(<N:+N3-Ng->B,.r,.(Q2)):(t+5a) (t‘aT_) (t"gt;) z.’ y

i
ity=t_=ty

where .# denotes the Laplace transform.
In order to calculate the leading term for @2— oo of the moments we
have to separate the strongest singularity of the rh.s. of eq. (D.1). Using

Z;= /A, we find
(D.2)  L((NuN*N=)B,7,(Q") =
. n,n!tn./f/; aA)a+ 94 a_(—a—d_)m
== \s) ) \=m

With #n= o, + - + .
It is important to note that

+ less singular terms

t=t wt_mty=F

24 _ 04 _a4 ot ==l

A o ol
This is true for the model defined in Subsect. 3'3.1 and also for the linear

bootstrap model for isovector fireballs only. .
The (?onsequence is that the moments (N*+N*-N%) are charge independent.

Inverse Laplace transformation of eq. (D.2) leads to the result

K (ubo)\"
(D.3) (N5 Ne-Fony n (% %[ E%)
with
"=+ T 0%,
or
(D.4) (Nypy=<N_>= Ny,
and

(NuN*=-Nop={(Np"

valid for the leading terms.

1N
‘ L
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A more detailed description of the multiplicity distribution is given by the
correlations fy, which follow from a generating function

(D.5) In ¥(Q? 2) E l’(Q’) -

Nl

For bootstrap models the generating function is

D) W@, 2) = ¢ Y dy(zB) 2uQ")

So we find

o.1) =2 Q) =B 1 (Begy)
. e dzN l-l_ dBN ‘

If the observed particles carry charge 0, 41, a slight generalization leads to

N

d z
(1,m} .
D8) I3 =B e g g (Bamn@).

B,=B_=By=B
N-N++N-+N.. m-ﬂ.,,-ﬂ..

If we introduce the agymptotic form of
Tn(@%)~ ¢ M~* exp [Bs(B+y B, By) M]
in eq. (D.8), the leading terms of the correlations follow:

dN

(rm
(D.9) oy~ MB¥ TB7 A5 . Bo(Bs,

|

'B - B 0) .
‘By=B_=By=B
m—N.,.—lV

In (11;h1e following we apply the general relation (D. 9) to the linear-bootstrap
models.

The derivatives of 8, are calculated from

2rp* Ky (pfs)

,uﬁo = ¢(By, B_, By)

and

Aty t-y 1) = A(B1p, B_p, Bug) =
The results are

M
far= 3—“; (G“-l—;g?-—c;o) ,

0

M ot 1
(D.10) fro =3 ;(03-{—”—0—}—4(3-——@) 0),

M
for = 3‘”* (0“ + ,uf_o + (2¢,—1) or)
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with

¢ :1 :Kl()uﬁﬂ) —_ <_N~+>uymnt .
3 Ky(upo) Mip

Equations (D.10) are valid for

a) the linear-bootstrap model for isovector fireballs only:

10

cv*‘:ﬁ;

b) the linear-bootstrap model for isovector and isoscalar fireballs:

19+/3 —25
T S

The numerical results for f.., fy, f+o are different in the two models.
Whereas all hootstrap models lead to the same agymptotic form of f, (no
charge observed), this is not true for the correlations fy y »_ (see Fig. 6).

APPENDIX E

Expausion coefficients of Z,(t,;t,,¢_) in the linear-bootstrap model.

To obtain the expansion coefficients of the Laplace transforms Z,,_ in
eq. (3.12) we start by expanding 4-! (4 is given in eq. (3.13))

2 (1 7 1 2 1.\7

Fao \2

and = t4i_. With

1 7 1 2 1.,\¥
E. AT ST P -]
(E.2) (2to‘|‘6$+3to+3mto 6to)

N! 1\ (T \™(1 ,\™/2 rf 1 3)"5
== — - - - S
n,..z.n. 710, 1ns!n, ! ng! (2 to) (6 m) (3 to) (3 mto) ( 6"

Ing=N

we get

Q—t1—nytn—ng Try J—na—ns—n—tiy

E3) A1= 3 !
( ) NEON nlgn‘ ’l’blf’n,!na!n‘!ns!
Eu;"ﬂ

(—— 1)“l$"l+"4t"1+2"a+"4+3”t .
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It is convenient to rewrite this in the form

© n/2

(E.4) A-1=73 Yil(g, n—2q)wty .

n=0 ¢=0

The ¢(q, n —2q) are obtained by eliminating n,, n, and n; with

13
EB5) Sm=N, g=n+n,, n—2¢=n+2n,+n,+3ns.

i=1

As a result we find

(B.6)  tlg,n—29)= (—1yse2ee 3 Nz(é)” » _1_(__:”’.)"‘-

AISN<n 3 W—nEn, S(BF—n)/2 ’"/1! 4
.y (—7/8)m
i Mg (BN — 20— e — ) (g — 1) 1 (h — g — 2N + 1y 4 1y) !
and
(E.7) Il =max (0, 2N + ¢—mn,—n),
%= min (¢, 3N —2n,—n) .

For the ¢y 4,5 of eq. (3.11) one finds then (m= N;—N_)

eN_, N+ 4e(N_, Ny—1) for m=1,
(E.8)  eymy. =1 CN4, No) + $00v 4, No—1) for m=—1,

(N4 Ny—1)—}e(Ny, N,—2)+E(N—1, N,) for m=0,

and all ?(q, n—2q) .With one or two negative arguments are understood to be
zero. Finally we give the expansion coefficients of S

(E.9) 8= 3 by yu tFetletf-
No.N_.5,
-N+-N_

(E.10) by =

= Ho(N+—1, N,) + 28(N 1 —1, Ny—1) + (N4, N,—2) — 16(N+, No—3)}-

Note added in proofs.

The linear-bootstrap problem for I — 1, 6=—1, §=0 mesons (ground state and

excited pions) and I=1, §=0 baryons (ground state and excited nucleons) was solved
recently by CSIKOR et al. (20)

.

I g

{*) F. Csixor, I. FArkas, Z. KaToNa and L. Moxtvay: Nuel. Phys., 74 B, 343 (1974)-
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® RIASSUNTO ()

Servendosi del modello statistico a bootstrap si studiano la densitd dei livelli e il deca-
dimento di fireball isoscalari e isovettoriali (con pioni di entrata). Si trova che per
valori elevati della massa M dei fireball versioni diverse di questo modello danno la
stessa distribuzione totale di molteplicita. Sideducono espressioni asintotiche per la cor-
relazione di molteplicith integrata delle particelle cariche. Nell'intervallo 1 GeV< M
< 8 GeV si calcolano numericamente le correlazioni.

(" Traduzione a cura della Redazione.

CraTcTHveckne MoZesH OyTeTpana 1 o0pa3osaHusi H pacnana
H30CKA/IAPHLIX H H30BEKTOPHBIX (aiipboioB,

Pesiome (*). — B paMKax CTarucTHYeCKOH MofienM OyTcTpama HCCIELYIOTCSH IOTHOCTR
YpOBHe#l W pachaj M30CKANAPHBX M HM30BEKTOPHBIX dafipbonos. Mel momyuaeM, 4TO
Pa3THYHbIC BADHAHTH! 3TOH MOJE/H NPHBONAT K OJMHAKOBOMY HOJHOMY PacnpeC/icHHIO
MHOXECTBEHHOCTH 11 Gonbmmx Macc daiipbonos M. Bemozarcs aCHMNTOTHYMECKHE
BbIpaXCHHS VI KOPPENALMH HHTErPalbHON MHOXECTBCHHOCTH 3APSDKCHHBIX HaCTHI. B
o6macte 1 MB< M < 8 I'3B 4YHCIEHHO BBINHCIAIOTCA YKa33HHBIE KOPPC/LAUNH.

(") Hepesedeno pedaryueil.

an T AT il Y lmanda A
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