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Summary, — The statistical model and the thermodynamic (statisticsl
bootstrap) model are formulated for multibadron production in e‘e
annihilation. Asymptotic results are derived for both approaches, with
particular attention to critical features subject to experimental test,
Quantitative predictions of multiplicities, average secondary energies
and inclusive single-particle distributions are presented for storage ring
centre.of-mass energies from 2 to 8GeV.

l--lﬂm

Forthcoming experiments at e“e” storage rings are expected to provide us
with data on hadronic production rather different from those observed until
now: within the validity of the one-photon approximation, we can hope o
study hadronic systems of large mass (¥ < 6GeV) but with a total spin
one—to be cnmra.st«l with an average spin of around twenty for s similar
system of this mass when produced in hadron-hadron interactions.

Thin novel and experimentally open situation has led to a considerable
amount of theoretical speculation ('), covering almost the entire range of

("} On leave from the Department of Theoretical Physios, University of Bielefeld,

Bielefeld. ' )
() Cf.,egq., J. D. BjorxEN: in Proceedings of the 1971 Internationsl Rympovism on

Electron and Photon Interactions (Ithacs, X. T, 1971
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models consistent with energy conservation, thus predictions for the asymptotic
multiplicity ¥ of produced hadrons vary from N constant (*) to N increasing
linearly with the centre-of-mass energy M of the ete~ system (?).

The aim of the present paper is to develop and study in some detail a
model which forms one of the two extremes (it yields N~ M): the thermo-
dynamic model for high-energy ete~ annihilation into hadrons. On the one
hand, we want to investigate particularly the theoretical foundation of such
a description in the framework of the statistical bootstrap formalism, in order
to see which of the resulting features are critical for the approach; on the other
hand, we want to present quantitative predictions for physical secondaries at
the expected (finite) machine energies.

As a preliminary study to our main problem, we shall derive the predictions
one obtains by applying to e*e” annihilation the traditional statistical model
of FErMI (). This approach assumed an equidistribution over all final states
compatible with initial-state kinematics—a hadronic ideal gas. As is well
known, however, hadron-hadron collision experiments soon indicated a strong
jet structure in particle production (transverse momentum bound). Hence the
statistical model in an unmodified form is certainly not in accord with hadronic
production data. As it is even today not clear whether the unbounded lon-
gitudinal or the bounded transverse momentum distributions of secondaries
reflect the essence of hadron dynamics, a comparison of simple phase space
with e*e- annihilation data will certainly be of interest. Moreover, the Fermi
model, as the simplest possible approach, proves quite useful in discussing
novel features intreduced by the statistical bootstrap condition.

The application of the thermodynamic (*) or statistical bootstrap (*)
model to e*e~ annihilation is rather straightforward, if one accepts the hadron-
like character of (timelike) photons. The basic building blocks of the thermo-
dynamic model are fireballs: energetic hadronic matter at rest, or in other
words, hadronic systems of large mass M and low spin j, with j/M —~0 as
M — oo, The fundamental property of fireballs is that they decay, as &
consequence of the statistical bootstrap condition, into secondaries of asymptot-
ically bounded average energy. In thermodynamic language this is equivalent
to the existence of a highest temperature T,. From applications to the trans-
verse-momentum distribution in inclusive hadron-hadron interactions one finds
T, ~160 MeV. With j=1 and a mass of about 6 GeV, an energetic virtual
photon would be a fireball par excellence and could provide the most unam-

(*) G. ALTARELLI and L. Ma1ant: preprint 188-72-8, Rome (1972).

(') J. D. BsorkEN and 8. J. BRODSKY: Phys. Rev. D, 1, 1416 (1970).
(‘) E. Ferm1: Progr. Theor. Phys., 1, 570 (1950).

(!) R. HAGEDORN: Suppl. Nuovo Cimento, 3, 147 (1965).

() 8. FravrscHI: Phys. Rev. D, 3, 2821 (1971),
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biguous test for the basis of the thermodynamic model and related questions (7)
—always under the assumption that a hadronlike proton is a valid extrapolation
into deep timelike regions.

Considerations of a somewhat related nature were first proposed by BJoR-
KEN and BRODSKY (%), who generalize the transverse-momentum restriction
exp[—a|p,|] in hadron-hadron interactions to an energy bound exp[—ap,]
for all secondaries produced in e*e~ annihilation. This, however, will in itself
not lead to a bhound on the average energy per secondary, as suggested in

N
ref. (%); since exp [—a > p,.,] = exp[—2M] gives a common factor to all tran-
1

sitions, independent of particle number, it cannot influence average quantities
such as the multiplicity N or the average secondary energy . The bound
on W derived in (%) is in fact due to an ad hoe assumption about the distribution
over particle numbers—ah assumption which can be understood, as we shall
8ee later on, only in the framework of a statistical bootstrap scheme.

Let us finally note for all such thermodynamic considerations a point,
minor in principle, but not unjmportant for comparison with data: in models
with a finite asymptotic average energy # per secondary, the zero-mass limit
hever coincides with the high-energy limit—in contrast to models with unbound-
ed #. Although the qualitative features in the thermodynamic model
remain as m—0, actual predictions are significantly altered.

We begin in Sect. 2 with the presentation of the statistical model for
ete~— hadrons, followed by that of the thermodynamic model as obtained
from statistical bootstrap arguments. Our main objective in Sect. 2 will be
& discussion of the theoretical aspects of the models and of their asymptotic
(M —>oo) results; quantitative predictions for finite energies, obtained by

humerical calculations, will be presented in Sect. 3.

2. ~ Statistical and thermodynamic models for e+e- annihilation.

The cross-section for the production of N hadrons (which we ghall from
now on take to be pions unless otherwise stated) in e*e~ annihilation at centre-

of-mass energy v/# can be written as (%)

(1) ox(8) = ‘%_7:2‘]1’(8)’

(") Cf,e.g., M. I. GORENSTEIN, V
and G. M. ZiNovsev: Kiev preprint ITP 72-168

124, 205 (1972).
(®) M. GourpIN: in Hadronic Interactions of Klectrons and Photons (London, 1971).

. A. MiraNsky, V. P. Suerest, B. V. STRUMINSKY
E (1973); H. Satz: Nuovo Cimento,

34 — I Nuove Cimenio A.

i,
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where I'y(s) denotes the integrated decay width of the virtual photon into
N pions

.4

1 fx2a
(2) P’(”=1"ﬂ 11 ? ‘ﬂ“(Ep,—Q)e(quq.;pn..-,p,)

i 2w 4

with @ = ¢, + ¢,, @* = s characterizing the initial state. The production dy-
namics i8 now contained in the N-particle momentum space weight p. With
the total decay width

(3) I'ym.(a) = zpr(s) = I'u;(g)
Hm=g

we have

0 ) = 2 Lot

a8 the total cross-section for hadron production.

2'1. The statistical model. — In the absence of information about the decay
dynamics, the simplest assumption is to take ¢ constant

(5) 0(d1; @25 Pry vy Pw) = 0”'9

t.¢. to consider an equidistribution in momentum space. The normalization
function ¢ can depend only on s= @*; a determination of this dependence
(the y-hadron coupling) is certainly not possible in statistical or thermo-
dynamic approaches, which determine only relative weights of different
final states and do not give absolute predictions, We thus write

(6) o) = I;iaa,,,(s) Gse)
2’61(3)
with
xl N dlp‘ b4
(7) Galo) = 357 E 3 5(4)( ‘_21 p‘_Q) ,

denoting the N-particle phase 8pace. For large ¢ (extreme relativistic limit),
the phase space (7) becomes

8 ST (emf2)r
® G’(")“z(N--l)z(N—-z)zN:'
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Summing (6) over all ¥ gives us the total phase space, which asymptotically
takes the form (*)

(rixs[2)}

Ta gt P [3[nxs/2}] .

(9 G(s) ~

The average number of produced hadrons (multiplicity) ean for large s easily
be obtained from (3), (5) and (9):

- G{(s)
(10 W DEL. LN S

It thus increases as a power, but less than linearly, in the photon mass;
consequently the average energy per secondary

(11) W(8) ~ %-E o~ [2[mn st

grows asymptotically without bound. The normalized inclusive single-particle
distribution for secondary energy ¢,

(19) Flgo ) = w200 /G

becomes for large photon mass V8 = V@

(13) F(qo, 8) =2 n{mxs[2)t (1 - ;-/q—f) GXP[— 2[mxf2] gg] ’

and hence does not lead to a nonzero scaling limit; for fixed = 2¢,/V8
(14) Pz, 8) = lmws2)} (1 — )+ exp [—almws[2]F]

vanishes exponentially.
We close our survey of the asymptotic behaviour of the statistical model

with two comments.
1) The qualitative features of most of these results are rather insensitive
to the specific form of momentum space. Had we chosen

(15) Gh(s) = 'Hd*pﬁ“’(i Q)

i=1

(") H. Satz: Nuovo Cimenio, 37, 1407 (1965).

et
a1
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instead of (6), then, e.g., the multiplicity would grow like (°) N ,~s% instead
of st, leaving the general picture essentially unchanged. We might note here
also the case

N L GE 1 x
16a G(s) = 22 {ﬁ __} S -
(16a) alé) Nyt E 2040 p?o (g?; Q)’

which, although without any jet structure, leads to

N(s)~Ins,

16b —_
e Flg, 8)~(1—&)™, 2=2q/Vs,

i.e. to features otherwise found in uncorrelated jet () or parton model (")
considerations. It is thus clear that more detailed quantities than multiplicities

or single-particle spectra have to be measured to distinguish these models
from a purely statistical description.

2) We have not taken into account momentum-space restrictions due

to the given spin one of the photon, as it can be shown (**) that the resulting
effects become unimportant at high energies.

22. The thermodynamic (statistical bootsirap) model. — Instead of the
single centre decay (Fig. 1) discussed above, consider now a cascade decay

Fig. 1. - Statistical decay.

et

(*) L. VAN HovE: Rev. Mod. Phys., 36, 655 (1964 . Nuovo Cimento,
32, 1087 (1964). ys., 36, 655 (1964); A. KrzywICKI:

(*) S. D. DrELL, D. J. Levy and Tune-Mow Yan: Phys. Rev. D, 1, 1617 (1970);

N. CaBiBBo, G. Panist and M. Tesra: Lett. Nuovo Cimento, 4, 35 (1970).

2;26:)1 Joos and H. $a1z: Nuovo Cimento, 34, 619 (1964); H. Sarz: DESY Report 65/2
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with two-body intermediate steps (Fig. 2), each consisting of one pion and J
one excited hadronic sytem (fireball). The decay width is then given by }

a1 Iy~ f St AP, + Py Q)P Q)

f_&dm 09(py + Py — P)|<Pypy| P |2 ...

a*py-, d*p
. J‘ 21)’: : 2p,: 0P gy + Py — Pys)| Dy P3| Prs) 2.

N-s Pyg  Pua

'gdzd z"Pl 'y

Fig. 2. - Linear casoade decay.

Now if all couplings are constant, ](P,p,-]PH) fﬂzl, £=2,3,.., N, then
I,(8) with proper normalization can be written

Tx(8
[ 1y0) = Lt 22,
zTi(s)

(18) =2

= AF1 H d’p, 5(4)(21,'._@) ,

4-1

The essential difference between (6) and (18) is the absence of the Boltzmann
factor 1/N!in the latter; as we shall see now, it is this difference which yields
in one case secondaries with unbounded, in the other with bounded average
energy,

Consider first the case of mass-zero secondaries, for which all phase-space
expressions are solvable in closed form. We obtain from (18)

17 (ns[2)72
(19) al) =M =g

and hence for the sum over all N

(20) w(8) = (An[26)}1,(2VAnsf2)

where I,(z) is the Bessel function of order one and pure imaginary argument,
For large s eq. (20) gives

(21) 7(8) ~ %’— (Ans[2)~ exp [2V1ns/2l i
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which leads to an average particle number

(22) Ny =1+ 181"8&';(8) = Vins/2 (1 +0 (}‘%3)) '

increasing linearly with the photon mass v/z. In contrast to (11) we thus
obtain with

_ i _q/2
(23a) g =S

an asymptotically bounded average energy per secondary; the actual value
of the bound depends on the coupling constant A. The inclusive single-particle
distribution (cf. (12)) at high energy and for g, <V/% is easily obtained from

(21); a8 expected from the above, we have with
F(go)8) ~ AVins[2 (1 — z)texp [— v 2nﬁ.qo]

(23b) [
@ = 2q,/4/8 ,

an exponential cut-off in secondary energy which is independent of the photon
mass.

Let us now rederive these results using thermodynamic arguments. We
define the grand canonical partition function

24 2(6, 4) = [d'Q exp [ 4,0"1r(q"

with f* = $,6*> 0, §,> 0; trom (3) and (19) we then have

(25) 26, =20
with

o d*p 2n
(28) o(f) Efé;:exp = B.pr]= B

For the particularly simple case considered here (m = 0, linear chain decay)
we could now invert the Laplace transform (24) to obtain 7(Q*) for large Q*;
a8 this is, however, practically very diffcult in more complicated cases, we
shall instead pursue here & more general approach. The exponential increase
in V¢ of 1(s) leads to singular ty of Z(8, 2) at that value B =P, for which

(37 elB) =11,
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and from (24) and (27) we see that the allowed range of B is

(28) Br=V2ni<f< oo,

In thermodynamic language, f is an inverse temperature, f = 1/kT, with k&

denoting the Boltzmann constant. Equation (27) thus predicts the existence
of a highest temperature

(29) = 1/kV2md

for which the partition function becomes gingular. Using (24), we can now
define an average total energy

_ 9
(30) B=—g5log (6, 3

in terms of the inverse temperature f. Requiring £ to be equal to the actusl
energy 4/# yields an energy-temperature relation (**) (¢ Stefan-Boltzmann law »)

(31) Ji= =N, 1) a-—-—-—l"gg’ @)
with
(32) F=1+442 10826, 1.

For the average energy per secondary we then have

while (31) and (32) give

1 1
3 = =40 -) .
(34) B = 2mA [1+ =7 + ( p }

32) and (33) reproduces our previous results (22) and

Inserting this value of §in (
formulation converge to

(23): a8 8-> co, the results of the grand canonical

the exact calculation. ‘
We have thus seen that the bound on the average energy per secondary

I8 expressed in thermodynamic language as a bound on the temperature, T <T,.
If we choose kT, =160 MeV, as found in inclusive hadron-hadron inter-

(%) A.T. Kamvcumv: Mathematioal Foundations of Siatistical Mechanics (New York, 1949).
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actions, then the only free parameter A is fixed and we obtain
(36) W, = 320 MeV

a8 the asymptotic energy of a (mass-zero) secondary. As already indicated
above, this bound will be different for massive secondaries, to which we shall
return further down.

Now we want to investigate the relation between our cascade decay
scheme (18) and statistical bootstrap arguments by essentially rewriting (18)
a8 & bootstrap condition. In the cascade, we require an excited hadronic state
(the photon) to decay into an object of similar nature (fireball) plus one pion.
Denote the density of states of the initial fireball of mass v by 7(Q?); we
then want the decay product fireball of mass M, to be described by t(M3).
We thus obtain the bootstrap equation (1¢)

(36) Q") = 8(@*— m?) + 4 f %dﬂPr(Pﬂa‘ﬂ(pw—@)
with
I Bu{a® — m#) = O(z,) 8ot — )
(87)
T(2*) = 6(a*) b(2, —m) F(2?) .

From (36) we obtain by Laplace transformation (>0, §,>0) for the
partition function

(38) 2(8, 3 =449 exp [ 4,041[x(@") — 5,0 — m")]
the relation
@) 24, 1) =20

with p(B) as defined in (26). As the partition function (39) obtained from (36)
is identical to the one, (25), obtained from (18), we conclude that the cascade
decay (18) is in fact the solution of the bootstrap condition (36).

Relation (36) is, however, not the most general bootstrap condition; this
is obtained (**141) by allowing unrestricted decay of the photon into any

(1) I. MoNTVvAaY: CERN preprint TH. 1572 (1972),
(") J. YELLIN: CERN preprint TH. 1513 (1972).

(**) R. HAGEDORN and I. MoNTVAY: CERN preprint TH. 1610 (1973).
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number of fireballs and/or pions (cf. Fig. 3):

B

@) ey =s@—m+ 357 [TTakemye(Sh—e),

-
1!

Fig. 3. — Full bootstrap decay.

where B' denotes the one-to-I fireball coupling. The Laplace transformation
of this «full » bootstrap condition gives

@1) 2, B) = 2@ exp [ £,@1%(@) = 9(p) + 3 [exp [BZ]—1— BZ].

The resulting Z(8, B) as functional of ¢ can be shown (1%17) to have a square-
root branch point at

(42) Bp(f) =2In2—1=2,.

Instead of the pole (39), it is now this singularity which determines the max-
imum temperature k7T, = f;’. From (26) and (42) we obtain

(43) kT, = B3> = V2,|27B

for the connection between T, and the interaction parameter B, instead of
the relation (28)/(29) for the linear cascade. With the choice

(44) BlA =2

we thus have the same maximum temperature in both cases.

(1) W. NamM: Nucl. Phys., 45 B, 525 (1972).
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The solution to eq. (40) can moreover be written (1)

© L L p }
(45) "@)= 3084 T2 00(3p,— ),

where the g, are determined by expressing the solution to eq. (41) in the
form

(46a) Z(p, B) = 3, g:[By(p)]".

I=1
As a consequence the g, obey the recursion relation

—-1 1
== [ig—2Skag.
(46) Jues +1[g' 290 "]’

[
1,

I

)1

which for large 7 has the solution (%)

(46¢) gy~

From (44) and (46¢) we thus see that the full bootstrap (46a) and the linear
cascade (39) lead to the same exponential increase in level density

(47) T(M) = M’ exp[M[kT,],

the additional I”* in (46) yields only a different value of ». This asymptotic
¢ equivalence » between the two cases ig not as surprising as it may first seem,
since the linear cascade was in fact shown (%) to be the dominant decay mode
in the full bootstrap.

In Sect. 3 we shall return to nonasymplotic calculations using the g, from
(46b); we note here already that we want to consider predictions both from
the full bootstrap and from the linegy chain, As long as we have no specific
dynamical model, it is not clear whether & given bootstrap scheme (if at all
applicable) describes only the asymptotic limit or the approach thereto as
well. By investigating two thermodynamic schemes converging at high
energies, we have some measure of the range of predictions from such approaches
possible at finite energies.

Up to now we have in all calculations treated only secondaries of zero mass;
before taking up the case of masgive secondaries, let us briefly comment on
the approach of BIorkEN and BRODSKY (*), who consider explicitly only the
m=0 case. As already noted in the Introduction, all inelusive quantities
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remain unchanged if one replaces (18) by

. N dip‘ ¥

(48) ay(s) = 2 H{z——eXp - “Pto]} 5‘“(21’{"0) )
i=1 |<4Pw 1

which is the form proposed by ref. (*). The critical assumption is, as we have
seen in comparing (16a) and (18), the absence of the Boltzmann factor 1/N!
in (18) and (48); it is this absence, and not the momentum-space damping,
which provides the bound on the average gecondary energy; the form (48)
with a 1/N! leads to secondaries With unbounded average energies. Note,
however, the difference between (18) and (48) for certain exclusive measure-
ments: the single-particle distribution for an N-body final state should accord-
ing to (48) already exhibit exponential energy damping

Zqo ¥4
(49) Falge, MYF0, M ~erp-aad(1-5)
whereas with (18) we have
2(10 N4
(50) F(go, 3)/F5(0, M)~ (1‘ "ji) !

since the exponential damping of ¢o here arises only after summation over

all N.
Let us now extend our considerations to include massive gecondaries.

In the formulation as given here this i§ achieved simply by replacing @(p)
in (26) by the corresponding function for nonvanishing mass

! 2
(61) (8, m) §J‘ g;,{’-exp [—Aup*]= —%ﬂKW),

where K,(x) denotes the Hankel function of order one and imaginary argment.
The determining equation (27)/(42) between maximum temperature and inter-

action parameter then becomes

2amA

(62) T K (mpy) =1
[ ]

for the linear chain, and
B

(53) 213 (o) = %

for the full bootstrap. In either case We have, by fixing kT, = B;* = 160 MeV,
determined the only open parameter in the model.
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As all other arguments remain valid, we now obtain from (33) and (51)

— ?_ Ko(mﬁo)
(54) Yo = Bo T mKl(mﬁo) ’

which in the case of pions yields
(55) W, = 414 MeV

as the asymptotic energy per secondary; the corresponding multiplicity
grows as

(56a) N@)=2.4vs

with increasing photon mass.
The extension of our thermodynamic description to p different types of
secondaries is easily obtained by generalizing eq. (18) to

NI

(56b) T, (8) = __'_-—f A AT ﬁ dp, 5(4)(51,‘ - Q) ,
Nl....N‘,. ‘_121)‘0 T

(56¢) N=3¥,

i=1

where N; denotes the number of particles of type ¢ and A, the corresponding
coupling constant. The combinatorial factor in (56b) counts the number of
different possible orderings of the decay chain with fixed ¥,,..., N, assuming
all particles to obey Boltzmann statistics. Summing (56b) over all Ny

i=1,..., 4, and Laplace-transforming the result gives us as generalization
of (25) the form

1

(56d) Z(By Ay ooy By = ——
1- ; }'i‘p(ﬁy m,)

’

80 that the maximum temperature kT, = f;* and hence one of the s pPara-
meters A; is determined by

(56e) iziqﬂ(ﬂ, m)=1.

fnl

Since

= d
(567) Nf=f‘l;51~;logzm, Ry ey A} i=1,2y .0y s
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we can fix the remaining u —1 constants by using the asymptotic multiplicity
ratios

(66g) Rd‘-:Nf/ﬁu =23,.., 4,

a8 given input. Going from the linear chain to the full bootstrap is achieved
by multiplying 7, x, 10 €q. (56b) by g, as is evident from eqs. (44) and (45).

Further details concerning physical particles, conservation laws for discrete
quantum numbers, ete., will be taken up in Sect. 3; we close this Section
With some comments on the asymptotic results obtained so far.

2'3. Critioal aspects of asymplatic behaviour. ~ In Table I we summarize
the essential results of Sect. 2, concerning the asymptotic predictions of sta-
tistical and thermodynamic descriptions of e*e~ annihilation into hadrons.

As is evident, the thermodynamic approach can easily be subjected to
critical empirical tests. The maximum temperature T, is related directly to
the hadronic level density, which one would expect to be universal, i.e. inde-
Ppendent of production mechanism. Hence the average pion energy in e*e~ anni-
hilation should with increasing photon mass approach from below an asymptotic
value of about (400--450)MeV (*). Thus if one should observe at storage
ring energies around 6 GeV average pion energies of around one GeV, then
this would constitute a serious difficulty for the thermodynamic approach.
A failure of this approach, on the other hand, would seem to rule out the only
scheme—besides the dual-resonance model, which moreover appesrs closely
related (")—proposed up to now to explain, rather than only accommodate,
the transverse-momentum bound in hadronic interactions. Whuteve‘r the
results of experiments will be, from this point of view they will provide significant
information.

The statistical description, in contrast, is much less specific. If we allow
the possibility of factorized power law weights in momentum space, e.g.

x’ ¥ dlp‘ L
(Mg} = L RELYAR Y, T —
(57) Gy'(s) =¥ H{zp“ ?a} (;P( Q);
where r =0 yields the covariant form (), r=1 the Fermi. version (15? then
for multiplicities, average secondary energies or single-particle spectrs it can
accommodate any behaviour eveept that predicted by the thermodyna'n'nc
model. As we have already indicated, the measurement of these quantities

will therefore not be sufficient to distinguish between parton mﬁdlfllf“) 311:1
statistical considerations. For this it will be necessary first to establish expe

(*) This value could be exceeded significantly only if one .nhould observe—in ;onh"uf
to large-angle hadron-hadron data—very strong production of heavy secondarics;

cf. Sect. 3.
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TABLE 1. — The asymptotic behaviour of statistical and thermodynamic models for e*e~ an-
nihilation into hadrons, M denotes the photon mass, g, the centre-of-mass energy of
the observed secondary.

Multi- ~ Averagesecon- Single-particle

plicity N  dary energy w spectrum F(q,, M)
Statistical model, covariant M M exp [—const (x/M)ig,]
Statistical model, Fermi Mt Mi exp [— const (x/ M)iq,)
Statistical model, eq. (16) In M Mn M (1 — z)oomst, 3 =2¢,/M
Thermodynamic model M const oxp [— const ¢,]

imentally the jet structure predicted by the former, .. to measure two or
more particle correlations. It should be noted that, although not listed in
Table I, a statistical approach can also lead to bounded asymptotic multi-
plicities: if in (87) r< —2, N will become constant at high energies.

3. — Finite-energy predictions.

In this Bection we shall present the essential predictions of the thermo-
dynamic approach to ete~ annihilation for the energy range to be investigated
in storage ring experiments at SLAC and DESY, i.e. Vs =E = (2= 6) GeV.
For comparison we shall also show some results of the conventional statistical
model at these energies.

As above, we choose always for the maximum temperature the value
kT, =160 MeV, observed in large-angle hadron production at the ISR (1%).
Charge conservation, and more generally isospin, is introduced into the model
by weighting the various final-state charge configurations according to their
statistical isospin weight factors (**), normalized over all posgible charge con-
figurations of a given N-particle final state. To do this, it is necessary to specify
the relative coupling strength g,/g,=r of hadrons to the isovector and iso-
scalar components of the photon, which are assumed not to interfere. It turns
out, however, that for £>2 GeV, the inclusive results considered here depend
very little (less than 1%, variation in N*) on r and are in fact very close to
the asymptotic predictions Ny, = N, Np. = Npo= No,, ete. The main im-
pact of r comes through G-parity conservation, which allows the isovector
photon component to couple only to an even, and the isoscalar component only
to an odd number of pions in the final state. At high energies, however, pure

(') BRITISH - SCANDINAVIAN COLLABORATION: Inclusive particle production at the

OERN IS8R, in XVI International Conference on High-Energy Physics (Batavia, I,
1072).

(**) J. BuaPmo: Suppl. Nuovo Cimento, 18, 40 (1960).
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pion final states and hence G-parity conservation become less and less important.
All the results presented in the following were calculated with r=1.

The necessary phase-space integrations were performed by Monte Carlo
methods using the standard FOWL (**). Allowing only pionic final states
yields through eq. (52), i.e. for the linear chain model, the value A,=9.45(GeV)2.

3 A 6
EGeV)

Fig. 4. - Charged-pion multiplicity as afunction of e+e- energy, for allowed final states
consisting of pions only (—— —), pions and kaons ( ) and pions, kaons and
nucleons (—:—-— ).

The resulting average multiplicity of charged pions N& is shown in Fig. 4.
It is seen to be a straight line, which can be parametrized by

_ E
ch ___ ani
(568) Nt =0.6+ i

with E in GeV, in accord with the agymptotic average pion energy of 414 MeY
found in (55). The very early start (£>1GeV) of asymptotic beha.vl'om: is
modified, as we shall see, by the presence of other final-state particles besides
pions. ' |
As next simplest case, we allow pions and kaons in the final state, enforcing
strangeness conservation for the latter. This is ensured by writing

(59) (8)= ;

¥ Mg

n ¥re g
Nn+ ¥y Np 130 5 d*p? wx.d_fﬁéﬂ) i+ pr___Q’
( w, )l" | gy, o (Zl e )

which yields
(60) 2B, Ay ) = [1— R By ) — T Mg

One of the parameters A, and Ag is determined as in (56¢) by the relation

(1) P, Jamrs: CERN Yellow Report 68-15 (1968).

£t
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defining the asymptotic temperature

(61) 1= 2,9(B,, mz) + A 9* By, mg) ,

the other by requiring the pion to kaon multiplicity to have the value observed
at large-angle ISR experiments (1*)

(62) NN =100:7.

The resulting values
(63) L= 9.03 (GeV)-?,
(64) Az =11.82 (GeV)~?,

were then used to calculate the multiplicity distributions and spectra shown
in Fig. 4 to 9. We notice in Fig. 4 that the average number of charged pions
now increasges slower with F than in the previous case where only pions are
allowed as secondaries—an effect due to the opening of phase space for kaon
production. At 6 GeV, the presence of kaons has some 209, effect on the
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Fig. &. Fig. 6.

Fig. 6. - Energy distributions for secondary pions and kaons at 4 GeV.
Fig. 8. — Energy distributions for secondary pions and kaons at 6 GeV.
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average number of charged pions. The average energies per pion or kaon,
calculated by integrating the energy spectra (in Fig. 5 and 6 we show repre-
sentative results at 4 and 6 GeV), slowly converge to their asymptotic values
of 414 and 754 MeV, respectively, as seen in Fig. 7. In Fig. 8 we show the
ratio of pion to kaon (both K and K) multiplicities as a function of incident

.
e
—

\

400

ul

3 4
EGeV)

Fig. 7. — Average pion energy as a function of ete~ energy for full bootstrap (———)
and linear cascade ( ).

energy; the asymptotic value is N,/N=10.7, as determined from (62).
This value is approached from below because of G-parity conservation, which
allows pure pion final states containing an even (odd) number of particles to
couple only to the isospin one (zero) component of the photon, respectively,

o |
|
{
\
\
\
20F \
iz N
l2= i -
1 1 ] i 1
i 2 3 4 5 6
E (GeV)

Fig. 8. - Ratio of pion to kaon multiplicities as a function of e*e~ energy with (—)
aud without (———) G-parity conservation.

35 ~ Il Nuovo Cimenio A.
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while no such selection rule exists for states containing kaons. Removing
G-parity conservation results in the dashed line in Fig. 8, which approaches
the asymptotic value from above, as expected.

(arbitrary wnits)

n_
9

2 3 4 56 7 89 0
Ny

Fig. 9. - Multiplicity distribution for negative pions, allowing pions and kaons in the
final state, at an e*e~ energy of 6 GeV.

The model can now be further refined by including baryon pair and asso-
ciated production as well. We have tried to assess the influence of such processes

by including nucleon-antinucleon production at the rate observed in ISR
data (19)

(65) N.:N,=100:25.
The pair production restriction is taken into account as for kaons, and the
determining equation for the maximum temperature becomes now

(66) 1= A-n:?’(ﬂo’ My) + }%‘}’”(ﬁo’ Myg) -+ 13"?’2(/307 M)

yielding together with (62) and (65)
(67) 2, =8.86(GeV)?, 1 =117 (GeV)?, iy =85.4 (GeV)—.

We see in Fig. 4 that the inclusion of nueleon-antinucleon pair production
reduces the average charged-pion multiplicity by about 5% at 6 GeV.

All results so far were for the linear-chain version of the model. To have
some feeling for variations, possible at finite energies in different decay schemes,
we have also calculated the charged-pion multiplicity for the full bootstrap (40),
allowing pions and kaons in the final state. The resulting values of N—;’," at
6 GeV are somewhat (5 %) lower than those from the linear chain, as seen
in Fig, 10.

Let us now compare the behaviour of our thermodynamic considerations
with that of the conventional statistical model (6)/(7). Adjusting the open
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parameter » of the latter to reproduce the charged-particle multiplicities
observed in e*e~ annihilation at 2 GeV (*) gives x =12 (GeV)™; the resulting
charged-pion multiplicity is shown in Fig. 11. As expected from (10), it increases
much slower with E than the corresponding statistical bootstrap predictions.

In closing, we show in Fig. 12, for pions and kaons in the final state, the
predictions of N;’,“ from the linear chain and full bootstrap, and from the

3
EGeV)

Fig. 10. - Charged-pion multiplicity, allowing pions and kaons in the final state,
for full bootstrap (— — —) and linear cascade

.

0l
1

w -

A
EGeV)
Fig. 11. Fig. 12.
Fig. 11. - Charged-pion multiplicity, allowing pions and kaons in the final state, for
linear chain ( ) and conventional statistical model (———):

Fig. 12, — Charged-pion multiplicity, allowing pions and kaoms in .the final ‘St?tzi
for linear cascade (——), full bootstrap (—— —) and conventional Bta.tls.tl?
model (—-—-— ), compared with present experimental data for charged multiplicity
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statistical model together with all presently available data (*1-2%). It is clearly
geen that more accurate and higher-energy data are needed before any con-
clusions can. be drawn.

* % %
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® RIASSUNTO (%

8i formulano il modello statistico e quello termodinamico (bootstrap statistico) per
la produzione multipla di hadroni in ammichilazioni e*e-, Si ricavamro risultati asintotici
per entrambi i metodi, con particolare attenzione alle caratteristiche critiche soggette
a verifica sperimentale. Si presentano stime quantitative delle molteplicita, delle energie
secondarie medie e delle distribuziomi di particelle singole inclusive per energie degli
anelli di accumulazione nel sistema del centro di massa varianti da 2 a 6 GeV,

(*) Traduzione a cura della Redazione.

CraTicTHYeCKOE B TEPMOIHBAMASCCKOE OMHCAHRY POXK/ICHES 2/POHOB DA ¢*6~ AHNMIA/INIHE,

Pesome (*). — DopMymHpyeTCAa CTaTHCTHYECKAS MOJIENb M TepMOIHMHAMMYECKAs (CTATH-
cTrieckuli GyTcTpam) Mozens Ans MHOTO-3APOHHOTO POXKICHHA NPH e'e~ aHHATHIALHY.
BLBOMATCA aCHMITOTHYECKHS Pe3ylbTaTH s oGOHX IIOAXOHoB, o6pamas ocoboe
BHHMAHAC Ha XapaKkTeépHbIe OCOOCHHOCTH, KOTOPbIE MOIYT OHITh 3KCICPHMEHTANLHO
npoBepersl. TIpHBONATCA KONAYECTBEHHBIE NPEICKA3aHAY MHOXECTBEHHOCTeH, CpeaHUX
3Hepruit BTOPMYHBIX 9YACTHI[ H HMHKJIO3MBHEIX OJHO-YACTHYHLIX pacrpefeieHui s
3HEpruil B CHCTEME HEHTPa MACC HAKONHTENBHOTO KOJbIa OT 2 10 6 [3B.

(*) Hepesedeno pedaxyueil.

——— |
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