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We show how the critical point and the ratio 7/v of critical exponents of the finite temperature  deconfinement 
transition of SU(2) gauge theory may be determined simply from the expectation value of the square of the 
Polyakov loop. In a similar way we estimate the ratio (a  - 1)/v. The method may also be used in other lat t ice 
theories at second order transitions. 

Finite size scaling (FSS) techniques have now 
become a well-established tool for the investi- 
gation of critical properties in SU(2) [1-3] and 
SU(3) [4-6] lattice gauge theories at finite tem- 
perature. Many ingenious methods have been de- 
vised using FSS theory to extract the infinite vol- 
ume critical point and ratios of critical exponents 
from various variables. Most of these methods 
were invented in statistical physics and applied to 
high precision Monte Carlo data of Ising [7, 8] and 
other comparatively simple models. Especially 
Binder's fourth-order cumulant [9] of the mag- 
netization or the energy has become a favourite 
observable for the determination of the critical 
point. Besides that the peak positions of thermo- 
dynamic derivatives provide finite lattice transi- 
tion points, which may be extrapolated by FSS 
formulas to the asymptotic critical point. 

Both the cumulant and the susceptibility, 
which are the most used observables for this pur- 
pose are quantities, which involve differences of 
powers of directly measured observables and re- 
quire thus higher statistics for the same accu- 
racy. Moreover, instead of the true susceptibility 
a pseudosusceptibility is commonly used, where 
the expectation value of the magnetization is re- 
placed by that of the modulus of the magnetiza- 
tion. 

We want to show that the FSS behaviour of the 
expectation value of the square of the magnetiza- 
tion, though it is not peaked at the transition, 
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allows to determine the asymptotic critical point 
and the ratio of the critical exponents 7 and v. 

We apply our idea to SU(2) gauge theory on 
N~ × Nr,  Nr = 4 lattices using the standard Wil- 
son action . The number of lattice points in the 
space (time) direction No(r) and the lattice spac- 
ing a fix the volume and temperature as 

V = (g, ,a)  3, T = 1 / ( g r a )  . (1) 

On an infinite volume lattice the order parameter 
or magnetization for the deconfinement transition 
is the expectation value of the Polyakov loop 

L(x) = ~Tr I I  Ur,x;4 , (2) 
7"----1 

or else, that of its lattice average 

1 L = L(x), (3) 
x 

where Ux;4 are the SU(2) link matrices at four- 
position x in time direction. Since, due to sys- 
tem flips between the two ordered states on finite 
lattices the expectation value < L > is always 
zero, the true susceptibility 

X = N~(< L2 > - < L > 2 )  , (4) 

reduces there to 

X~ = N 2 < L  2> • (5) 

The quantity Xv is monotonuously rising as a 
function of fl = 4/g 2 or the temperature T. At 
first sight there is no hint to the transition point. 
However, below the critical point 

X~ = X, (6) 
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and we expect therefore Xv to have the FSS be- 
haviour of the susceptibility [1] for T<~Tc 

~ l " n  t ~ 1 1 .  x iN~ ' ) .  (7) 
X v  ~ " ' a  " ~ X k ~ " a  ' 

Here 

T - T¢,oo 4/g2 2 
- 4/g¢,oo 

x -  or z =  (8)  
T~,oo 4/g~,oo ' 

is the reduced temperature and Qx is a scaling 
function with possible additional dependencies on 
irrelevant scaling fields zi and exponents Yi < 0 
leading to correction-to-scaling terms. 

Taking into account only the largest irrelevant 
exponent Yx = - w  and expanding the scaling 
function Qx around x = 0 one arrives at 

Xv -- NTz/V {co+(cl +c2N;~°)xNl/V +caN~°}  .(9) 

If we take now the logarithm of the last equation 
at x = O w e f i n d  

lnxv = lnc0 + 7-1nNq + C3N~-~ + ..., (10) 
/ /  c o  

i.e., apart  from probably small correction-to- 
scaling terms ( w ~ 1 [3] ), we have a linear de- 
pendence on lnNa with slope 7/v ,  whereas for 
x ¢ 0 the Na-behaviour is drastically changed 

due to the presence of xN$ -terms ( 1Iv ~-, 1.59 
[8]). We shall take advantage of this fact to de- 
termine the critical point as that/3-value where 
a linear fit of lnx~ as a function of lnNo has the 
least minimal X 2 and/or  highest goodness of fit. 
In addition we obtain then the value of 7 /v  from 
the slope at the critical point. 

The SU(2) Monte Carlo data, which we want 
to use here for a demonstration of the above 
method were computed on N~ x ArT lattices 
with No = 8, 12, 18,26 and N~ = 4 and have 
already been reported on in refs.[1, 3], apart 
from one new point. Though these data  were 
taken at many ( except on the largest lattice ) 
/3-values in the neighbourhood of the critical 
point this is not sufficient for a systematic search 
for the asymptotic critical point. The neces- 
sary interpolation may, however, be performed 
with the density of states method (DSM) [10]. 
Following the same lines as in ref.[3], we have 
reevaluated the data  in the very close vicinity 

( 2.2980 < /3  <_ 2.3005) of the transition. In Fig. 
1 we show X~ as a function of /3  for the differ- 
ent lattices. The error corridors were calculated 
with the Jackknife method. The results from the 
Na = 26 lattice have the largest errors. There 
only 4 overlapping histograms were available from 
refs.[1, 3]. To improve this situation and to test 
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Figure 1. The finite volume susceptibility versus 
/3 = 4/g 2 for No = 8, 12, 18, 26 and N~ = 4. 

the stability of the DSM interpolation we calcu- 
lated one new point at /3 = 2.2988 on the 263 × 4 
lattice with a 9 times higher statistics as com- 
pared to the point a t /3  = 2.30. We observed no 
change in the DSM interpolation of Xv, however 
the error corridor decreased by 50%. 

In Fig.2 we present the result of a linear X 2 
fit of lnx~ as a function of lnNo. At each /3- 
value we have determined the minimal x~/NI ,  
with N I = 2 the number of degrees of freedom. 
We see that there is a unique/3-value, where the 
four data points for No = 8, 12, 18, 26 lie on a 
perfect straight line. We consider this value 

~3,ran = 2.2988(1) (11) 

to be a very good estimate of the infinite volume 
critical point. Indeed it is in excellent agreement 
with the best determination from the ¢umulant 
[3] 

/3c,oo = 2.2986(6), (12) 
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and, as is evident from Fig. 2, ~mi, is fixed by the 
data with extreme precision. The error in eq . l l  
was estimated from the change in ~mi,, which was 
induced due to the inclusion of our high statistics 
point on the largest lattice. The slope of each lin- 
ear fit is compared to 7 / v  from the 3 dimensional 
Ising model. Tha t  model and SU(2) gauge the- 
ory are supposed to be in the same universality 
class [11] and therefore to have coinciding critical 
exponents. 
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Figure 2. The minimal x 2 / N !  of linear fits at 
each /3; Q is the goodness, 7 / v  the slope of the 
fit; the dotted line the 3d Ising model value. 

The slope of the linear fit which we find at ~,mn 
is 

7 / v  = 1.931(15), (13) 

i.e. about 2% different from the value 

7 / u l  = 1.970(11), (14) 

of the 3 dimensional Ising model [8]. The error in 
eq.13 comes from the error in fl, m,, and the error 
of the slope from the linear fit. 

The critical exponent a of the specific heat is 
difficult to determine directly. From the hyper- 
scaling relation 

= 2 - d~, (15) 

one estimates a ~ 0.11. The non-singular parts 
in the specific heat and the energy density are 
therefore dominating. This leads to a modified 
scaling ansatz for the energy density 

..(,~- 1)/,. . . . .  1/..  (16) c = ~regu~ar + I v ;  ~dx~vg  ), 

where we have already neglected the irrelevant 
scaling fields. The regular part of the energy den- 
sity is assumed to be, up to exponentially damped 
contributions, independent of No. The respec- 
tive singular part of the pressure is proportional 
to N j  d, d = 3 and therefore also much less size 
dependent than the singular part of the energy. 
Linear combinations of the energy and the pres- 
sure P are then generally expected to behave like 

el -4- N(a-1) /V c2, Cl, 2 = const.  (17) 

at x = 0. Since apart from only g2 but not No 
dependent factors [12] 

Po - P~ " (c + P ) I T  4, (18) 

and 

P~ + P,  ,,. (e - 3 P ) / T  4, (19) 

where Po and PT are the expectation values of 
the space and time plaquettes, one may use the 
last three relations to determine (a - 1 ) /v  in 
a similar manner as we have done it before to 
obtain 7 /u .  There are, however, some modifica- 
tions. First, due to the regular term represented 
by the constant Cl we cannot just  fit the loga- 
ri thm to a straight line in lnNo. Instead we shall 

use as variable N (c~-l)/~', where we prefix the ex- 
ponent and then look for the best linear approx- 
imation at each fl-value. As a consequence we 
have a three parameter fit for cl,c2 and the expo- 
nent (a - 1)Iv.  The measured values for Po - P~- 
and Po +PT were again interpolated with the den- 
sity of states method in the close vicinity of the 
deconfinement transition. Quite similarly as for 
the energy of the 3 dimensional Ising model [8] 
we observed noticeable systematic errors in the 
interpolation results for Po + Pr • This was not 
so pronounced in the case of the plaquette differ- 
ence Po - PT. We have therefore only evaluated 
the latter quantity. In contrast to the DSM inter- 
polation for < L 2 > on the largest lattice, which 
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was unaffected by the inclusion of the additional 
histogram, we found a considerable change in the 
DSM interpolation leading to a steeper slope of 
the plaquette difference. The resulting critical ex- 
ponent ratios which we shall calculate below will 
therefore have to be taken with some care. 
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Figure 3. Ratio (o~- l ) /v  from fits to P, , -P~  , us- 
ing No = 8, 12, 18 data  (solid line), No = 8, 12, 26 
data (dashed line) and all data (dot-dashed line). 
Dotted line: the 3d Ising model value. 

To take into account the systematic errors due 
to the DSM interpolation results for Po - Pr and 
the uncertainties coming from possibly too low 
statistics we proceed as follows. Since the in- 
terpolations for No = 18 and 26 are probably 
the least reliable, we make three different fits : 
one where we discard the No = 26 data, one 
where the No = 18 data are omitted - in these 
cases we have three parameters and three points 
and therefore exact solutions - and a fit with all 
data. The corresponding solutions for the expo- 
nent (o~- 1) /v  are compared in Fig. 3 to the Ising 
value [8] obtained from the hyperscaling relation 

(a - 1 ) /v  = 1 / v -  d ,~  - 1 . 41 .  (20) 

Averaging the three solutions at /3,~i,, we find 

(a - 1)/v = -1.36(14) . (21) 

In addition to the ratio of critical exponents 
we obtain information on the size of the regu- 
lar part at the transition point. Th i s  is of im- 
portance for theoretical models of the deconfine- 
ment transition. The constant Cl from the fit is 
1.93(19). 10 -4 , or expressed with the energy den- 
sity and pressure 

(e + P)/T4r~,uh, r = 0.38(4). (22) 

Here, the main contribution will be that of the 
energy density, because the size of the total pres- 
sure is only about 7% of the size of the regular 
sum in eq.22. 
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