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A straightforward way to evaluate some critical parameters in

SU(2) lattice gauge theory
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We show how the critical point and the ratio v/v of critical exponents of the finite temperature deconfinement
transition of SU(2) gauge theory may be determined simply from the expectation value of the square of the
Polyakov loop. In a similar way we estimate the ratio (o — 1)/v. The method may also be used in other lattice

theories at second order transitions.

Finite size scaling (FSS) techniques have now
become a well-established tool for the investi-
gation of critical properties in SU(2) [1-3] and
SU(3) [4-6] lattice gauge theories at finite tem-
perature. Many ingenious methods have been de-
vised using FSS theory to extract the infinite vol-
ume critical point and ratios of critical exponents
from various variables. Most of these methods
were invented in statistical physics and applied to
high precision Monte Carlo data of Ising [7, 8] and
other comparatively simple models. Especially
Binder’s fourth-order cumulant [9] of the mag-
netization or the energy has become a favourite
observable for the determination of the critical
point. Besides that the peak positions of thermo-
dynamic derivatives provide finite lattice transi-
tion points, which may be extrapolated by FSS
formulas to the asymptotic critical point.

Both the cumulant and the susceptibility,
which are the most used observables for this pur-
pose are quantities, which involve differences of
powers of directly measured observables and re-
quire thus higher statistics for the same accu-
racy. Moreover, instead of the true susceptibility
a pseudosusceptibility is commonly used, where
the expectation value of the magnetization is re-
placed by that of the modulus of the magnetiza-
tion.

We want to show that the FSS behaviour of the
expectation value of the square of the magnetiza-
tion, though it is not peaked at the transition,
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allows to determine the asymptotic critical point
and the ratio of the critical exponents ¥ and v.

We apply our idea to SU(2) gauge theory on
N23x N;, N; = 4 lattices using the standard Wil-
son action . The number of lattice points in the
space (time) direction N,(,y and the lattice spac-
ing a fix the volume and temperature as

V =(N,a)3, T=1/(Na). (1)

On an infinite volume lattice the order parameter
or magnetization for the deconfinement transition
is the expectation value of the Polyakov loop

N
1 T
L(x) = 5Tr I Urxa s (2)

7=1

or else, that of its lattice average
1
L=— Z L(x) , (3)
N2 &

where U4 are the SU(2) link matrices at four-
position z in time direction.  Since, due to sys-
tem flips between the two ordered states on finite
lattices the expectation value < L > is always
zero, the true susceptibility

x=NY<L?>-<L>?, (4)
reduces there to
Xv = N2<L?> . (5)

The quantity x, is monotonuously rising as a
function of B = 4/¢? or the temperature T'. At
first sight there is no hint to the transition point.
However, below the critical point

Xv =X, (6)
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and we expect therefore x, to have the FSS be-
haviour of the susceptibility [1] for T<T,

Xo = NIV Qu(zN7/”, 2iNY) . ™

Here

z = T-Too or = _______4/92 _ 4/93’00
TC,OO 4/9?,00 ’

is the reduced temperature and @, is a scaling
function with possible additional dependencies on
irrelevant scaling fields x; and exponents y; < 0
leading to correction-to-scaling terms.

Taking into account only the largest irrelevant
exponent ¥ = —w and expanding the scaling
function @, around z = 0 one arrives at

(8)

Xo = NJ/"{eot(er+e2N;“)z N3/ +esN;“} (9)

If we take now the logarithm of the last equation
at £ = 0 we find

Inx, = Inco + LInN, + 3N;% 4 ., (10)
14 Co

i.e., apart from probably small correction-to-
scaling terms (w =~ 1 [3] ), we have a linear de-
pendence on InN, with slope y/v, whereas for
z # 0 the N,-behaviour is drastically changed
due to the presence of zN3/*-terms (1/v ~1.59
[8]). We shall take advantage of this fact to de-
termine the critical point as that B-value where
a linear fit of Iny, as a function of InN, has the
least minimal x? and/or highest goodness of fit.
In addition we obtain then the value of /v from
the slope at the critical point.

The SU(2) Monte Carlo data, which we want
to use here for a demonstration of the above
method were computed on N3 x N, lattices
with N, = 8,12,18,26 and N, = 4 and have
already been reported on in refs.[l, 3], apart
from one new point. Though these data were
taken at many ( except on the largest lattice )
p-values in the neighbourhood of the critical
point this is not sufficient for a systematic search
for the asymptotic critical point. The neces-
sary interpolation may, however, be performed
with the density of states method (DSM) [10].
Following the same lines as in ref.[3], we have
reevaluated the data in the very close vicinity

(12.2980 < § < 2.3005) of the transition. In Fig.
1 we show x, as a function of § for the differ-
ent lattices. The error corridors were calculated
with the Jackknife method. The results from the
N, = 26 lattice have the largest errors. There
only 4 overlapping histograms were available from
refs.[1, 3]. To improve this situation and to test
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Figure 1. The finite volume susceptibility versus
B =4/g° for N, = 8,12,18,26 and N, = 4.

the stability of the DSM interpolation we calcu-
lated one new point at § = 2.2988 on the 263 x 4
lattice with a 9 times higher statistics as com-
pared to the point at 3 = 2.30. We observed no
change in the DSM interpolation of x,, however
the error corridor decreased by 50%.

In Fig.2 we present the result of a linear x2
fit of Iny, as a function of InN,. At each §-
value we have determined the minimal x?/Ny,
with Ny = 2 the number of degrees of freedom.
We see that there is a unique F-value, where the
four data points for N, = 8,12,18,26 lie on a
perfect straight line. We consider this value

Bmin = 2.2988(1) (11)
to be a very good estimate of the infinite volume
critical point. Indeed it is in excellent agreement
with the best determination from the cumulant
3)

Be,00 = 2.2986(6), (12)
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and, as is evident from Fig. 2, 8.y, is fixed by the
data with extreme precision. The error in eq.11
was estimated from the change in 8,,;, which was
induced due to the inclusion of our high statistics
point on the largest lattice. The slope of each lin-
ear fit is compared to v/v from the 3 dimensional
Ising model. That model and SU(2) gauge the-
ory are supposed to be in the same universality
class [11] and therefore to have coinciding critical
exponents.
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Figure 2. The minimal x2/N; of linear fits at
each f; @ is the goodness, v/v the slope of the
fit; the dotted line the 3d Ising model value.

The slope of the linear fit which we find at G55
is

v/v = 1.931(15), (13)
i.e. about 2% different from the value
y/vr = 1.970(11), (14)

of the 3 dimensional Ising model [8]. The error in
€q.13 comes from the error in B, and the error
of the slope from the linear fit.

The critical exponent « of the specific heat is
difficult to determine directly. From the hyper-
scaling relation

a=2-—dy, (15)

one estimates o = 0.11. The non-singular parts
in the specific heat and the energy density are
therefore dominating. This leads to a modified
scaling ansatz for the energy density

€ = €regular + Nga—l)/”Qc(ZN;/v); (16)

where we have already neglected the irrelevant
scaling fields. The regular part of the energy den-
sity is assumed to be, up to exponentially damped
contributions, independent of N,. The respec-
tive singular part of the pressure is proportional
to N;4,d = 3 and therefore also much less size
dependent than the singular part of the energy.
Linear combinations of the energy and the pres-
sure P are then generally expected to behave like

c1+ Nga—l),”CQ, c1,9 = const. 17

at £ = 0. Since apart from only g2 but not N,
dependent factors [12]

P, — P, ~ (¢ + P)/T*, (18)
and
P, + P, ~ (e - 3P)/T*, (19)

where P, and P, are the expectation values of
the space and time plaquettes, one may use the
last three relations to determine (a —1)/v in
a similar manner as we have done it before to
obtain 7y/v. There are, however, some modifica-
tions. First, due to the regular term represented
by the constant ¢; we cannot just fit the loga-
rithm to a straight line in InN, . Instead we shall
use as variable N§*™1/% | where we prefix the ex-
ponent and then look for the best linear approx-
imation at each (-value. As a consequence we
have a three parameter fit for ¢;,¢c and the expo-
nent (& — 1)/v. The measured values for P, — P;
and P,+ P, were again interpolated with the den-
sity of states method in the close vicinity of the
deconfinement transition. Quite similarly as for
the energy of the 3 dimensional Ising model [8]
we observed noticeable systematic errors in the
interpolation results for P, + P, . This was not
so pronounced in the case of the plaquette differ-
ence P, — P,. We have therefore only evaluated
the latter quantity. In contrast to the DSM inter-
polation for < L? > on the largest lattice, which
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was unaffected by the inclusion of the additional
histogram, we found a considerable change in the
DSM interpolation leading to a steeper slope of
the plaquette difference. The resulting critical ex-
ponent ratios which we shall calculate below will
therefore have to be taken with some care.
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Figure 3. Ratio (a~1)/v from fits to P,— P, , us-
ing N, = 8,12, 18 data (solid line), N, = 8,12,26
data (dashed line) and all data (dot-dashed line).
Dotted line: the 3d Ising model value.

To take into account the systematic errors due
to the DSM interpolation results for P, — P, and
the uncertainties coming from possibly too low
statistics we proceed as follows. Since the in-
terpolations for N, = 18 and 26 are probably
the least reliable, we make three different fits :
one where we discard the N, = 26 data, one
where the N, = 18 data are omitted - in these
cases we have three parameters and three points
and therefore exact solutions - and a fit with all
data. The corresponding solutions for the expo-
nent (a—1)/v are compared in Fig. 3 to the Ising
value [8] obtained from the hyperscaling relation

(=D /v=1/v—d=-141. (20)
Averaging the three solutions at f,;;, we find

(¢ —1)/v=-1.36(14) . (21)

In addition to the ratio of critical exponents
we obtain information on the size of the regu-
lar part at the transition point. This is of im-
portance for theoretical models of the deconfine-
ment transition. The constant ¢; from the fit is
1.93(19) - 10~*, or expressed with the energy den-
sity and pressure

(e + P)/T* = 0.38(4). (22)

regular

Here, the main contribution will be that of the
energy density, because the size of the total pres-
sure is only about 7% of the size of the regular
sum in eq.22.
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