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Efficient calculation of critical parameters in SU (2) gauge theory 
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We show how the critical point and the ratio ~,/u of critical exponents of the finite temperature deconfinement transition of 
SU (2) gauge theory may be determined simply from the expectation value of the square of the Polyakov loop. In a similar way 
we estimate the ratio ( a -  1 )/~. The method is based on a consistent application of finite size scaling theory to results obtained 
with the density of states technique. It may also be used in other lattice theories at second order transitions. 

Fini te  size scaling (FSS)  techniques have now be- 
come a well-established tool for the invest igat ion of  
crit ical propert ies  in S U ( 2 )  [1 -3 ]  and S U ( 3 )  [4 -  
6 ] latt ice gauge theories at finite temperature .  Many  

ingenious methods  have been devised using FSS the- 
ory to extract the infini te volume critical point  and 
rat ios of  crit ical exponents  from var ious  variables.  

Most  of  these methods  were invented in statist ical  
physics and appl ied  to high precision Monte  Carlo 
da ta  of  Ising [7,8] and other compara t ive ly  s imple 

models.  Especially Binder ' s  four th-order  cumulant  
[9] of  the magnet iza t ion  or the energy has become a 
favouri te  observable for the de te rmina t ion  of  the 
crit ical point.  Besides that  the peak posi t ions  of  ther- 
modynamic  der ivat ives  provide  finite latt ice transi-  
t ion points,  which may be ext rapola ted  by FSS for- 
mulas  to the asymptot ic  critical point.  

Both the cumulant  and the susceptibility, which are 
the most used observables for this purpose are quan- 
tities, which involve differences of  powers of  directly 
measured  observables and require thus higher statis- 
tics to reach the same accuracy. Moreover ,  ins tead o f  
the true susceptibi l i ty a pseudosuscept ibi l i ty  is com- 
monly  used, where the expectat ion value of  the mag- 
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net izat ion is replaced by the one of  the modulus  of  
the magnetizat ion.  

In this letter we want  to show that  the FSS behav- 
iour  of  the expectat ion value of  the square of  the 
magnet izat ion,  though it is not  peaked at the transi- 
tion, allows to determine the asymptotic  critical point  
and  the rat io of  the critical exponents  7 and u. 

We apply our idea to S U ( 2 )  gauge theory on 
N 3 X N ~ ,  N~=4 lattices using the s tandard  Wilson 
act ion 

4 
S ( U ) = ~ 5 ~ ( 1 - ½ T r U p ) ,  (1)  

where Up is the product  of  l ink operators  a round a 
plaquette.  The number  of  latt ice points  in the space 
( t ime)  direct ion N~(~) and the latt ice spacing a fix 
the volume and tempera ture  as 

V = ( N o a )  3, T = I / N ~ a .  (2)  

On an infini te volume latt ice the order  paramete r  
of  magnet iza t ion  for the deconf inement  t ransi t ion is 
the expectat ion value of  the Polyakov loop 

Nr 

L ( x ) = ½  Tr I-[ U~,x;4, (3)  
z = l  

or else, that  of  its latt ice average 

1 
L = - ~ o  ~ L ( x ) ,  (4)  
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where Ux; 4 are the SU (2) link matrices of  four-posi- 
tion x in time direction. 

Since, due to system flips between the two ordered 
states in finite lattices the expectation value ( L )  is 
always zero, the true susceptibility 

z = N ~ ( ( L 2 ) - ( L )  2), (5) 

reduces there to 

z v = N 3 ( L  2) . (6) 

The quantity Z~ is monotonically rising as a function 
offl=4/g 2 or the temperature T. At first sight there 
is no hint of  the transition point. However, below the 
critical point 

Z~=Z, (7) 

and we expect therefore Z~ to have the FSS behaviour 
o f  the susceptibility [ 1 ] for T <  Tc 

Z -N~/~o ~,-Tv~/~ x~NY') (8) 
v - - ~ ,  a ~ X \ - . . "  G ~ 

Here 

T - T c ~  4/g 2 4 2 - / g c , ~  
x = - -  or x =  (9) 

Tcoo 2 ' , 4 / g c , ~  

is the reduced temperature and Qz is a scaling func- 
tion with possible additional dependencies on irrele- 
vant scaling fields xi and exponents y i< 0 leading to 
correction-to-scaling terms. 

Taking into account only the largest irrelevant ex- 
ponent y~ = - t o  and expanding the scaling function 
Qz around x = 0 one arrives at 

xv=NJV[Co+(Cl +c2Nj~)xN~/V+c3N~°~]. (10) 

I f  we take now the logarithm of the last equation at 
x = 0 we find 

lnzv=ln(N3~(L 2) ) 

= l n c o + ~ l n N ~ + C a N j ~ +  .... (11) 
Co 

i.e., apart from probably small correction-to-scaling 
terms ( to~ 1 [3] ), we have a linear dependence on 
In No with slope y/v, whereas for x ~  0 the N~-behav- 
iour is drastically changed due to the presence of  
xN1/~-terms ( 1 / u ~  1.59 [ 8 ] ). We shall take advan- 
tage of  this fact to determine the critical point as that 
fl-value where a linear fit of ln  Z~ as a function of ln  No 
has the least minimal X2 and /o r  highest goodness of  

fit. In addition we obtain then the value ofy/v from 
the slope at the critical point. 

The SU (2) Monte Carlo data, which we want to 
use here for a demonstration of  the above method 
were computed on N3XNT lattices with N~=8,  12, 
18, 26 and N , = 4  and have already been reported on 
in refs. [ 1,3 ], apart from one new point. Though these 
data were taken at many (except on the largest lat- 
tice) fl-values in the neighbourhood of  the critical 
point this is not sufficient for a systematic search for 
the asymptotic critical point. The necessary interpo- 
lation may, however, be performed with the density 
o f  states method (DSM) [ 10 ]. Following the same 
lines as in ref. [3],  we have reevaluated the data in 
the very close vicinity (2.2980~<fl~<2.3005) of  the 
transition. In fig. 1 we show Xv as a function offl  for 
the different lattices. The error corridors were calcu- 
lated with the jackknife method. The results from the 
No= 26 lattice have the largest errors. There only four 
overlapping histograms were available from refs. 
[ 1,3 ]. To improve this situation and to test the sta- 
bility of  the DSM interpolation we calculated one new 
point at f l= 2.2988 on the 263 X 4 lattice with a 9 times 
higher statistics as compared to the point at f l= 2.30. 
We observed no change in the DSM interpolation of  
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Fig. 1. The expectation value of the square of  the lattice averaged 
Polyakov loop N ~ as a function of f l=  4 / g  2 for N~= 8, 12, 18, 26 
and N~= 4. The solid lines were calculated from the DSM, the 
dotted lines indicate the errors. 
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Z~, however the error corridor decreased by 50%. The 
data points in fig. 1 are the directly measured quan- 
tities and indicate the fl-values of  the corresponding 
histograms falling into our fl-interval. 

In fig. 2 we present the result of  a linear Z 2 fit o f  
In Z~ as a function of  In No. At each fl-value we have 
determined the minimal z2/Nf, with Nf= 2 the num- 
ber of  degrees of  freedom. We see that there is a 
unique fl-value, where the four data points for N~= 8, 
12, 18, 26 lie on a perfect straight line. We consider 
this value, 

f lm~0=2.2988(1),  (12) 

to be a very good estimate of  the infinite volume crit- 
ical point. Indeed it is in excellent agreement with the 
best determination from the cumulant [ 3 ] 

f l c ,~=2 .2986(6 ) ,  (13) 

and, as is evident from fig. 2, ~min is fixed by the data 
with extreme precision. The error in eq. ( 12 ) was es- 
t imated from the change in flmin which was induced 
due to the inclusion of  our high statistics point on the 
largest lattice. The slope of  each linear fit is com- 
pared to 7/u from the three-dimensional Ising model. 
That model and SU (2) gauge theory are supposed to 
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  n/Nf 
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Fig. 2. The minimal ~(2 per degree of freedom if at each fl a linear 
fit of the logarithm ofz~=N~(L 2) a s  a function ofln No is per- 
formed; Q is the goodness of fit. The ratio ),/u is the slope of the 
fit; the dotted line the 3D Ising model value. 

be in the same universality class [ 11 ] and therefore 
to have coinciding critical exponents. 

The slope of  the linear fit which we find at flmi, is 

y /U= 1.931 ( 1 5 ) ,  (14) 

i.e. less than 2% different from the value 

y /~ t=  1 .970(11) ,  (15) 

of  the three-dimensional Ising model [ 8 ]. The error 
in eq. ( 14 ) comes from the error in flmi, and the error 
of  the slope from the linear fit. In fig. 3 we show the 
fits at flmi~ with these two slopes, respectively. We ob- 
serve only for the highest In N~ (No=26)  a slight 
difference. 

The critical exponent a of  the specific heat is dif- 
ficult to determine directly. From the hyperscaling 
relation 

a = 2 - d u ,  (16) 

one estimates a ~ 0.1 I. The non-singular parts in the 
specific heat and the energy density are therefore 
dominating. This leads to a modified scaling ansatz 
for the energy density, 

~.=~.regular-.b N(aa-1)/V Q,(xW 1/u) , (17) 

where we have already neglected the irrelevant scal- 

I I I I 

z l '  

s L 

4 

3 ~ 7/u=  1. g 3 1  

7/~) = 1.970 ISINS 

2 I I I I 

2 .o  2 .5  a . o  L n N  a 

Fig. 3. The best linear fit at the minimum ofz 2, i.e. at flmi. (solid 
line) and a fit with the slope fixed to the 3D Ising model value 
(dashed line ). 
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ing fields. The regular part o f  the energy density is 
assumed to be, up to exponentially damped contri- 
butions, independent of  No. The respective singular 
part of  the pressure is proportional to Ng a, d =  3 and 
therefore also much less size dependent than the sin- 
gular part of  the energy. Linear combinations of  the 
energy and the pressure P are then generally expected 
to behave like 

Ca q-N(a-1) /v¢2 , ¢1,2 =const .  , (18) 

at x = 0 .  Since apart from only g2 but not N,  depen- 
dent factors [ 12 ] 

P o - P , ~ ( e + P ) / T  4 , (19) 

and 

P,~+P, :~(e -3P) /T  4 , (20) 

where Po and P, are the expectation values of  the space 
and time plaquettes, one may use the last three rela- 
tions to determine (oe -  1 ) / v  in a similar manner as 
we have done it before to obtain 7/u. There are, how- 
ever, some modifications. First, due to the regular 
term represented by the constant Cl we cannot just fit 
the logarithm to a straight line in In No. Instead we 
shall use as variable N~ '~-a)/", where we prefix the 
exponent and then look for the best linear approxi- 
mation at each fl-value. As a consequence we have a 
three parameter fit for Ca, cz and the exponent 
( a - 1 ) / v .  The measured values for P~-P~ and 
Po+P~ were again interpolated with the density of  
states method in the close vicinity of  the deconfine- 
ment transition. Quite similarly as for the energy of  
the three-dimensional Ising model [8] we observed 
noticeable systematic errors in the interpolation re- 
sults for P,+P,. This was not so pronounced in the 
case of  the plaquette difference Po-P~. We have 
therefore only evaluated the latter quantity. In con- 
trast to the DSM interpolation for ( L  2) on the larg- 
est lattice, which was unaffected by the inclusion of  
the additional histogram, we found a considerable 
change in the DSM interpolation leading to a steeper 
slope of  the plaquette difference. The resulting criti- 
cal exponent ratios which we shall calculate below will 
therefore have to be taken with some care. 

A plot of  the DSM results for P ~ -  P~ versus fl for 
the different lattice sizes is shown in fig. 4. To take 
into account the systematic errors due to the DSM 
interpolation and the uncertainties coming from pos- 

.0006 

.0005 

P o-Pr 

.0004 ~ 12 

.0003 ~ 18 
26 

.00O2 i I I 2.298 2.299 2.300 
Fig. 4. The difference of the space and time plaquette expectation 
values as obtained ~om the DSM for the same lattices as in fig. 
I. 

sibly too low statistics we proceed as follows. Since 
the interpolations for No= 18 and 26 are probably the 
least reliable, we make three different fits: one where 
we discard the N~=26 data, one where the No= 18 
data are omitted - in these cases we have three pa- 
rameters and three points and therefore exact solu- 
tions - and a fit with all data. The corresponding so- 
lutions for the exponent ( a - 1  ) /u  are compared in 
fig. 5 to the Ising value [ 8 ] obtained from the hyper- 
scaling relation 

( a -  1)/u= 1 / v - d , . ~ -  1.41 . (21) 

Averaging the three solutions at flmin we find 

( a -  1 ) / u = - 1 . 3 6 ( 1 4 ) .  (22) 

In addition to the ratio of  critical exponents we ob- 
tain information on the size of  the regular part at the 
transition point. This is of  importance for theoretical 
models of  the deconfinement transition. The con- 
stant Cl from the fit is 1.93(19) × 10 -4, or expressed 
with the energy density and pressure 

4 (E'k-P)/Tregular = 0 . 3 8 ( 4 ) .  (23) 

Here, the main contribution will be that of  the energy 
density, because the size o f  the total pressure is only 
about 7% of  the size of  the regular sum in eq. (23).  
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Fig. 5. The ratio ( a - l ) / v  obtained from linear fits to P~-P, 
with the ansatz eq. (24),  using only the N, = 8, 12, 18 data (solid 
line ), only the N~= 8, 12, 26 data (dashed line) and from all lat- 
tices (dot-dashed line). The points indicate the 3D Ising model 
value from the hyperscaling relation. 

We are indebted to the computer center of the Uni- 
versity of  Cologne, where we calculated our addi- 
tional high statistics histogram on the largest lattice. 
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