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Near the deconfinement transition of SU(2) gauge theory the finite-size scaling behaviour of
the order parameter, the susceptibility and the normalized fourth cumulant g is studied on
N2 X N_ lattices with N, =4 and 6 and N, =8, 12, 18, 24 or 26. For that purpose we have
calculated new high-statistics data for N, =6 and re-evaluated previous results obtained for

T

N, = 4. In both cases we used the density of states method. We determine the critical coupling
and with a new way of phenomenological renormalization the critical exponents. For N_ =6 we
find that 4/gcz‘°c= 2.4265(30). Using the results for the critical temperature obtained for
different N, we examine the approach to asymptotic scaling.

1. Introduction

During the last few years finite-size scaling (FSS) techniques have been success-
fully applied to study the critical properties of lattice gauge theories [1-3] at finite
temperature. The analysis of the second-order deconfinement transition in SU(2)
lattice gauge theory in 3 + 1 dimensions showed a remarkable agreement of the
critical exponents with those of the three-dimensional Ising model.

The improvement of the original density of states method [4-6] for the evalua-
tion of data [7-9] allows now the application of FSS techniques requiring continu-
ous input functions and not only single data points. It scems therefore worthwhile
to re-evaluate existing data and to extend the analysis to new data.

We consider SU(2) gauge theory on N X N, lattices using the standard Wilson
action

4
SW)=—

g

L(1-:Try,), (1
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where U, is the product of link operators around a plaquette. The number of
lattice points in the space (time) direction N, and the lattice spacing a fix the
volume and temperature as

V=(N,a)’, T=1/(N.a). (2)

On an infinite-volume lattice the order parameter for the deconfinement
transition is the expectation value of the Polyakov loop,

Nf
L(x)=3Tr[1U, .0, (3)
=1
or otherwise, that of its lattice average,
1
L= I gL(x), 4

where U, , are the SU(2) link matrices at four-position x in time direction.

Since, due to system flips between the two ordered states on finite lattices the
expectation value (L) is always zero, we thus consider as the “order parameter”
the expectation value of the modulus of the lattice average:

) )

X =N2(CLB — (I LIY). (6)

<ILI>=<

7 T

Similarly we replace the true susceptibility by

A direct scaling function is obtained from the normalized fourth cumulant,

A

=<_W_3’ (7)

&;

which we shall exploit to determine the infinite-volume critical coupling with high
precision.

In sect. 2 we shall describe how one may obtain information on the infinite-
volume limit of the thermodynamical quantities from a finite-size scaling analysis.
We develop a new technique - the method of phenomenological renormalization
— which we apply later to our data. This method has the additional advantage that
no explicit functional form of the scaling functions has to be assumed. The
improved density of states method (DSM) enables us to interpolate our data in the
critical region. The relevant details for carrying out this program are contained in
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sect. 3. Sect. 4 presents the Monte Carlo data and their evaluation with the DSM.
The results are then used to determine the ratios of the critical exponents, B /v
and y /v. The N.-dependence of the critical temperature and its connection to the
B-function are then investigated with our new and previous results. Finally we
summarize our findings and conclusions.

2. Finite-size scaling theory and phenomenological renormalization

For a second-order phase transition the behaviour of the thermodynamical
quantities in the infinite-volume limit is determined by the critical exponents. In
the neighbourhood of the critical temperature 7, one expects in the limit of large
N, that

(LY~(T-T.)? forT->Tr. (8)

The behaviour near to T, of the susceptibility y and the correlation length £ in the
large-N, limit is expected to be

x~IT-T.|77, ¢~IT-T.|". (9). (10)

However, on finite lattices this limiting behaviour is modified. A quantitative
analysis becomes possible by using the renormalization group theory. In this
framework it has been shown [10] that the singular part of the free energy density
has the following form:

x, b, N,)=N40, (g NM*¥, g NBV/v g N¥. 11
s o o fs\o6T' Y h o iVo

The scaling function Q,. depends on the temperature 7 and the external field
strength 4 in the form of a thermal and a magnetic scaling field,

gr=crx+O(xh, x?), (12)
g, = cph + O( xh, h?), (13)

which are independent of N, and where x is the reduced temperature, which in
the neighbourhood of the transition for a fixed value of N, can be approximated by

4/g>—4/g2
x=—4—ﬂg2ig‘fi. (14)

Here the action contains a further symmetry breaking term h-X L{x). Also
additional irrelevant scaling fields g, with negative exponents y, may be present.
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The order parameter (L), the susceptibility y and the renormalized coupling
g, are obtained from f, by taking derivatives with respect to 4 at h=0. The
general form of the scaling relations derived in this way is

O(x, N,y =Np’" Qo(gTNal/Va giN;i)~ (15)

Here O is (L), x and g, with @ = —f, v and 0. Taking into account only the
largest irrelevant exponent y, and expanding the scaling function Q,, to first order
at x = 0 results in the following equation:

O(x, N,) = {co+ (c, + caNJYxN/¥ + ¢y NJYNL /™. (16)

Standard finite-size scaling (FSS) methods are based on the evaluation of eq. (15)
in the neighbourhood of the infinite-volume critical coupling 4/g§m. Using the
linear expansion in eq. (16) we get

20Ny 17
AT R 0

Even in this linear approximation we have four unknown parameters 4 /gém (for
the definition of x), ¢y, ¢; and y, which have to be determined by measuring O
for various lattice sizes N, and then fitting the parameters. These difficulties in
the usual fits arise on one hand from the incomplete information on the B-depen-
dence (where 8 =4 /g2 is the inverse coupling, not to be confused with the critical
exponent ) of the scaling fields g, ,(8) and on the other hand from the unknown
functional form of the scaling functions.

A more elegant way avoiding the mentioned problems and including possible
irrelevant scaling fields is the method of phenomenological renormalization. The
existence of a scaling function Q allows us to develop a procedure to renormalize
the coupling by the use of two different lattice sizes N, and bN,. Formally this
phenomenological renormalization is defined by the equation

O(8r(BIN,", 8 BYN) = Q(gr(B)D'/"N, /", g,(B)bYNy).  (18)

It expresses that the scaling function O remains unchanged if the lattice size is
rescaled by a factor b and the inverse coupling B is shifted to B(B, N_, b)
simultaneously. Of course the arguments of O on the left- and right-hand side of
eq. (18) are then equal separately. As a result eq. (18) is valid for Q,, Q, and Q.
with a common coupling 8.

The procedure for the calculation of the critical exponents is then the following:
first the phenomenologically renormalized inverse coupling B~(B, N_, b) is deter-
mined by eq. (18) using the fact that g, is a scaling function directly. We do this by
comparing the two curves g(8, N,) and g8, bN,) determined for two different
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lattice sizes N, and bN,. Inserting B(B, N_, b) in eq. (15), taking the logarithm of
the ratio then results in the following expression for the exponent w:

O(B, bN,) -

w/v=In 0B, N,) /In b.

(19)

In practice the phenomenological renormalization of the coupling $ is most easily
done by measuring O(8, N,) and g, (8, N,) simultancously and then plotting O as
a function of g,.

The infinite-volume critical coupling B can be extracted from the fixed points
B.=4/82(N,, b) of the renormalization transformations B(B, N,, b) for finite
lattices. The equation for a fixed point reads:

B(B, N,, b) =B=B.N,, b). (20)

The effective, critical couplings BN, , b) are determined by the intersection
points of two curves g.(8, N,) and g, (B, bN,).
Using the expansion (16) at g8 = 8, for g (B, N,) gives for N, > 1:

BN b) g1+ e, )

1

where

1-b%

— -1/v
e=NnN —_bl/”—l'

(22)
By plotting B.(N_, b) as a function of € it is possible to determine B7 as B, at
e =0, if the values of y, and v are already known. If B(N,, b) is known for at
least three different pairs of N, and b then for fixed v one can estimate the
exponent y, by a fit to the data such that B (N,, b) becomes a linear function of

ar
€.

3. The density of states method

The density of states method was introduced [4—6] for partition functions, which
may be written in the form

Z(K) = [W(S) exp(~KS) dS. (23)

Here, W(S) is the density of states, K the coupling — in our case 4/g* - and KS
corresponds to the total action in eq. (1). We recapitulate the essential formulae of
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the method in the way it was proposed by Ferrenberg and Swendsen [8,9] and as
we have actually used it.

The aim of the method is to determine the (unnormalized) density W(S) by
Monte Carlo measurements at one or more coupling values and then to interpolate
between the input values or even to extrapolate from those values. For that
purpose the S-range is subdivided into N, bins. The partition function is then
approximated by

N,
Z(K) = X W(S,) exp(—KS;). (29

i=1

Assumed we have measured S and any observable O at r couplings K, m =

1,...,r with n,, measurements each, then [9]
L &7 'N(S)
w(s,) = —1—- , (25)
Z g;zlnm exP( _KmSi +fm)
m=1

where N,(S,) gives the frequency distribution of § for K, in the N, bins of the
S-range. The contributions to W(S,) of the different couplings are weighted by
factors g,,, where g, is two times the integrated autocorrelation time. The
quantities f,, are the free energies

fm=—In Z(K,), (26)

and have to be determined iteratively from egs. (24) and (26). On the other hand
the expectation value of S is [11,12]

(27)

so that integrating (S) over K leads to f(K) up to an integration constant. We
have used this fact to find excellent start values for the self-consistent iteration of
the f,,-values. To do that we first order the couplings K,, in ascending size and set
then

fl = 05
(28)
fm =fm—l + %(Km _Km—l)(<s>”‘ + <S>m—1);
for m=2,...,r, i.e. we use the trapezoidal integration rule. The following itera-

tion is considerably accelerated with these start values and yields as final result for
the f,, only slightly different values.
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To calculate the expectation value of an observable O as a function of K we use
the following procedure. First we determine the weighted average of the observ-
able in bin &:

r Nj(Si)

E gj_1 Z Ojk
k=1

j=1

Z g;lle(Si)
m=1

0(S) = , (29)

where O, is the value of the observable measured at coupling K; for the kth
S-value falling into bin {. The expectation value of O is then obtained in the usual
way:

N,
Z W(S;)O(S;) exp(—KS;)
(0)=""x . (30)

; W(S;) exp(—KS;)

By applying this method we avoid the construction of two-dimensional histograms
and besides that we can compute expectation values of different observables at the
same time.

4. Data and error analysis

We re-evaluated our existing data for N, =4 [1] and performed additional
simulations for N, =6 in order to get results located closer to the asymptotic
scaling regime. For the FSS analysis we used lattices of size N2 XN, with
N,=26,18,12,8 for N,=4 and N,=124,18,12,8 for N,=6. In the case of
N, =4 we ran 100000 to 450000 iterations for each coupling, while for N. =6 we
used similarly 300000 to 500000 iterations. The first 1000 (N, =4) and 2000
(N, = 6) iterations were discarded for thermalization. The integrated autocorrela-
tion time for the expectation value of the modulus of the lattice averaged Polyakov
loop is listed in table 1.

The use of the DSM allows us to compute | L), x and g, as continuous
functions of the inverse coupling. We have convinced ourselves that the histograms
of the action calculated at neighbouring values of the inverse coupling were
overlapping. In table 1 we give the number R of data points with overlapping
histograms and the B-range of their couplings for each lattice.

The calculation of the errors was carried out according to the Jackknife method
dividing the entire sample into 8 blocks. In figs. 1-3 we show the measured values
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TABLE 1

Number of overlapping histograms with the range of 8 and 7,

N, N, R B-range Tin-Tange
26 4 4 2.290-2.310 19— 88
18 4 20 2.270-2.350 9- 56
12 4 24 2.260-2.350 9- 26
8 4 30 2.240-2.360 8- 14
24 6 8 2.410-2.445 280-505
18 6 6 2.400-2.450 120-295
12 6 10 2.415-2.460 32- 60
8 6 10 2.400-3.000 20— 35

of the lattice order parameter {| L), the susceptibility y and the renormalized
coupling g,. For clarity only the continuous curves are shown for N, =4. The
curves are fully consistent with the individual points shown in ref. [1]. The
measured order parameter and the susceptibility show the approach to the
asymptotic behaviour described by egs. (8) (9) with increasing spatial lattice size
N,. For N, =4 the renormalized coupling g, shows the expected fixed point with
remarkable precision. However for N_ = 6 we observe especially for N = 8 differ-
ences in the intersection points.

4.1. THE CRITICAL COUPLING

The infinite-volume limit of the critical coupling is determined from the
intersection points of g (4/g%, N,) for different spatial lattice size N,. The DSM
has the advantage that direct and accurate measurement of these crossing points
are possible.

The position of the intersection points summarized in table 2 is shown in fig. 4.
For N.= 4 we observe a clear fixed point. Within error bars all curves intersect in
a single point. Neither is there a significant influence from irrelevant scaling fields
nor is there a noticeable correction from the regular part of the free energy
density. As a consequence of the relatively small number of iterations and the
number of only four B-values which determine the curve for N, =26 we get the
best estimate for the critical coupling extrapolated to the infinite-volume limit
from the intersection point of the two curves for N, =12 and N, = 18. This
corresponds to taking the highest value for 87 and appears to be reasonable since
usually the intersection points approach the infinite-volume limit from below {13].
In this way we get a value of B7 = 2.2986(6) for N, = 4.

For N, =6 there exist obvious deviations from a fixed point. Therefore it is
necessary to examine the influence of an irrelevant scaling field. Inserting the
value v = 0.63 in eq. (22) we use eq. (21) to estimate both the critical coupling in
the infinite-volume limit B7 and the largest irrelevant exponent y,. The two
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Fig. 1. The expectation value of the modulus of the lattice averaged Polyakov loop as a function of
B=4/g? for N.=4 and 6. The dashed line marks the infinite-volume behaviour according to eq. (8)
with the critical exponent 8 = 0.325.
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Fig. 2. The susceptibility as a function of 8 for N, = 4 and 6.
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Fig. 3. The renormalized coupling as a function of 8 for N, = 4 and 6.
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TABLE 2
Intersection points of g,

N, N N 4/s?

4 8 12 2.2980 (7)
4 8 18 2.2984 (4)
4 8 26 2.2982 (6)
4 12 18 2.2986 (6)
4 12 26 2.2983 (D)
4 18 26 2.2981(13)
6 8 12 2.4149(40)
6 8 18 2.4189(30)
6 8 24 2.4219(10)
6 12 18 2.4222(40)
6 12 24 2.4238(15)
6 18 24 2.4247(30)

parameters B and y, are fitted to the data points such that a linear behaviour
results when the intersection points are plotted as a function of the variable €
defined in eq. (22). This is shown in fig. 5. By extrapolating to € = 0 we determine
the value of the infinite-volume critical coupling to be B = 2.4265(30). The largest
irrelevant exponent y, turnes out to be consistent with a value of y, = —0.9. This
is in agreement with a value of y, = —1 found for the three-dimensional Ising
model [13]. It shows that y, is in fact large and negative. Thus irrelevant
contributions will disappear rather fast with increasing spatial lattice size.

4.2. PHENOMENOLOGICAL RENORMALIZATION

On condition that irrelevant scaling fields are negligible it is possible to apply
the method of direct scaling fits to determine the ratios 8/v and y/v. This seems
to be valid for N, =4 and we refer to ref. [1], where we assumed a linear form of
the scaling function for the order parameter and the renormalized coupling and a
quadratic form for the susceptibility.

In the present analysis we want to include higher-order terms of the reduced
temperature by using a phenomenological renormalization. As already explained
the method has the advantage that no knowledge about the critical coupling or the
explicit form of the scaling function is required. To accomplish this we regard the
order parameter and the susceptibility as a function of g, for the values of N,
under consideration. According to eq. (15) the resulting curves would be propor-
tional to N7A/* and N}/". The exponents are determined by comparing two
curves for different N_ at a fixed value of g,.

From figs. 6 and 7 one can see that we get results close to the expected
three-dimensional Ising values 8 /v = 0.5180(57) and vy /v = 1.9828(70) [13]. Espe-
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Fig. 4. The effective critical coupling for N, =4 and 6.

cially in the case of N, =6 the computed values are for /v systematically too
large while for y /v they are correspondingly too small.

Although the values for {|L|), x and g, are cvaluated with much higher
precision the statistical errors on the quotients B/v and y/v can reach twenty
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0 . 001 .002
£

Fig. 5. Extrapolation of the critical coupling to the infinite-volume limit € = 0 for N, = 6. The variable ¢
is defined in eq. (22).

percent. The largest deviations occur when the smallest lattice size N, =8 is
involved. Therefore the deviations are most significant for exponent ratios calcu-
lated involving the smallest lattice size N, =8 and N, = 6. The observed correc-
tions can arise from irrelevant scaling fields and from the regular part of the free
energy density. Both contributions may depend on the volume, so that it is here
impossible to disentangle them. However we know that irrelevant contributions
vanish for large volumes.

At fixed temperature the physical volume is given by (N, /N,)*. This is in accord
with previous investigations of the heavy quark potential [14] where it has been

TABLE 3
Relative volume

N, N, v,
6 8 1.0
6 12 3.4
6 18 11.4
6 24 27.0
4 8 3.4
4 12 114
4 18 384
4 26 115.9




J. Engels et al. / Phenomenological renormalization 515

1.5 T I T T T
(a)
B/v | _ T'v 1,2
N, =4 S5 N, N,
r by s 812
L 52 — 818
— 826
1 - 1218
A 12 26
— 18 26
5 T e
I~
A - B/v=0.516
| |
-1.6 -1.5 -1.4
1.5 T
(b}
B/v critical |
N, =6 region Ny N
__ 812
— i
1 1278
1224 |
— 18 24
\v ]
0.5
.
—_ - B/=0.516
o 1 | | | |
-1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1.0
g,

Fig. 6. The ratio of B /v as a function of g, for N, = 4 and 6. The critical region is here defined as the
interval containing the intersection points of g,.
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Fig. 7. The ratio of y /v as a function of g, for N, = 4 and 6.
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TABLE 4
Critical couplings

N, 4/g°2 TiA;]
2 1.8600(23) 28.30(16) [15]
3 2.1710(30) 41.11(30) [16]
4 2.2986 (6) 42.12(06)
5 2.3726(45) 40.58(53) [17]
6 2.4265(30) 38.73(29)

found that the finite-size dependence is a function of the ratio N, /N, and not of
N, alone. From table 3 we see that the relative volume of the lattice with N, =6
and N, = 8§ is more than three times smaller than the next larger volume. Even the
volume V, = 27 for N, = 6 is four times smaller than the largest lattice for N, = 4.
This explains why the largest deviations occur for small N_ and large N, where the
physical volume is the smallest. Considering only volumes with N_/N,_> 2 in figs. 6
and 7 we see a convergence of the exponent ratios to the corresponding three-di-
mensional Ising values.

4.3. ASYMPTOTIC SCALING

An important point for the continuum limit of lattice gauge theories is the
question where as a function of 4 /g2 asymptotic scaling sets in. The determination

50 . ; . - N .

T.[A ]

N

It

3 4 5 6

30 -

B=4/97

20 . R — .
1.8 2.0 2.2 2.4 2.6

Fig. 8. The critical temperature as a function of 8. The line is drawn just to guide the eye.
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of the critical coupling for different values of N, allows us to look for violations of
asymptotic scaling. Values for the critical coupling for N, =2, 3, 4, 5 and 6 are
listed in table 4. The critical temperature is calculated using the two-loop approxi-
mation to the renormalization group equation.

By looking at the critical temperature as a function of N, it becomes obvious
that the region of asymptotic scaling is not yet reached for N_= 6 or equivalently
at 4/g*=2.4265. From fig. 8 we see that T, as a function of 4/g2 shows a
maximum at N, =4 and goes to smaller values for larger values of N,. The change
in the behaviour of 7.(N.) at N, =4 is probably due to the fact that the critical
couplings for N, =2 and 3 still fall into the strong coupling region 4/g* < 2.2. For
N, = 6 the critical temperature seems to be still falling, whereas one would expect
a constant if asymptotic scaling is valid.

Although it is possible to construct a numerical beta function from the critical
coupling as a function of N, [18], different operators may approach the continuum
limit in a different way. Therefore it is important to know the region of asymptotic
scaling where a universal beta function exists. The necessary calculations of the
critical couplings for higher values of N, are already in progress [19].

5. Summary

In a comparative study we have investigated the finite-size scaling behaviour of
SU(2) lattice gauge theory on various cubic spatial lattices with N_=4 and N, = 6.
Our high-statistics data were taken at selected values of the coupling 8 =4/g°
such that the critical region around the deconfinement transition was covered by
histograms which were overlapping as a function of the action. Thus we were able
to apply the density of states method, which we improved in some details, to obtain
the relevant thermodynamic quantities as continuous functions of the coupling
constant in the whole critical region. From the normalized fourth cumulant g, we
find the following precise values of the critical couplings:

4/g2(N,=4) =2.2986(6),  4/g2(N.=6) =2.4265(30). (31)

In contrast to the case N, =4, where no influence of irrelevant scaling fields or
other corrections could be observed at the critical point, we find that for N, =6
there are additional contributions which may be explained by an irrelevant expo-
nent for which we estimate a value of y, = —0.9.

The value of g, at the infinite-volume critical coupling is supposed to be a
universal quantity. From the N, =4 data we find from the two largest lattices a
value

8:(4/82.) = —1.38(5), (32)
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which is compatible with the N_= 6 data and the value —1.41 [13] found for the
three-dimensional Ising model.

With our method of phenomenological renormalization we examined the critical
exponent ratios 8/v and y/v. As in ref. [1] we observe that for both N, values
B/v is somewhat larger and y/v is somewhat smaller but close to the expected
three-dimensional Ising model value. The deviation is stronger for the N, =6
lattices. This is no big surprise, since one may argue that the true finite-size
dependence is on N,/N, and not on N, alone. Then at fixed temperature the

N, = 6 lattices we used are by a factor of three smaller than our corresponding
N, = 4 lattices.

Finally we have investigated the N, or 4 /g dependence of the critical tempera-
ture as obtained from the two-loop renormalization group equation. We conclude

that for N, = 6 or equivalently at 4/g2 = 2.43 the region of asymptotic scaling has
not yet been reached.

We are indebted to the KFA Jiilich, the Ruhr Universitdt Bochum computer
center, the HRZ Universitit Bielefeld and the late John von Neumann Supercom-
puter Center at Princeton for providing the necessary computer time. For valuable
discussions and assistance we thank our colleagues F. Karsch, K. Redlich, and M.
Weber. One of us (D.E.M.) would like to express his gratitude to R. Baier and B.
Petersson for the support on their DFG projects.
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