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Near the deconfinementtransition of SU(2) gaugetheory the finite-size scalingbehaviourof
the order parameter,the susceptibilityand the normalizedfourth cumulant gr is studied on
N,~x N~latticeswith N~= 4 and 6 and IV~,= 8, 12, 18, 24 or 26. For that purposewe have
calculatednew high-statisticsdata for Nr = 6 and re-evaluatedprevious results obtained for
Nr = 4. In both caseswe usedthe density of statesmethod.We determinethe critical coupling
andwith a new way of phenomenologicalrenormalizationthe critical exponents.For N. 6 we
find that ~/g~

2
0. 2.4265(30). Using the results for the critical temperatureobtained for

different N~we examine the approachto asymptoticscaling.

1. Introduction

During the last few yearsfinite-sizescaling(FSS)techniqueshavebeensuccess-

fully applied to studythe critical propertiesof lattice gaugetheories[1—3]at finite
temperature.The analysisof the second-orderdeconfinementtransition in SU(2)
lattice gaugetheory in 3 + 1 dimensionsshoweda remarkableagreementof the
critical exponentswith thoseof the three-dimensionalIsing model.

The improvementof the original densityof statesmethod[4—6]for the evalua-
tion of data[7—9]allowsnow the applicationof FSStechniquesrequiringcontinu-
ous input functions andnotonly singledatapoints.It seemsthereforeworthwhile
to re-evaluateexistingdataand to extendthe analysisto new data.

We considerSU(2) gaugetheoryon ]~v~x N~lattices usingthe standardWilson
action

S(U)=—~E(1—~TrU0), (1)
g ~
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where U~is the product of link operatorsarounda plaquette.The number of
lattice points in the space(time) direction Nff(T) andthe lattice spacing a fix the
volume and temperatureas

V=(N~a)3, T=1/(N~a). (2)

On an infinite-volume lattice the order parameterfor the deconfinement
transitionis the expectationvalueof the Polyakovloop,

N~

L(x) = ~Tr fl Ur,x;O, (3)
T’I

or otherwise,that of its lattice average,

L=~EL(x), (4)

whereU~.
0are the SU(2) link matricesat four-position x in time direction.

Since,dueto systemflips betweenthe two orderedstateson finite lattices the
expectationvalue <L> is always zero,we thusconsideras the “order parameter”
the expectationvalueof themodulusof the lattice average:

L~)=(~L(x)~). (5)

Similarly we replacethe true susceptibilityby

x=N~(<L
2>—K!LI>2). (6)

A direct scalingfunction is obtainedfrom the normalizedfourth cumulant,

(L4)
gr= <L2)2 ~, (7)

which we shall exploit to determinethe infinite-volume critical coupling with high
precision.

In sect. 2 we shall describehow one may obtain information on the infinite-
volume limit of the thermodynamicalquantitiesfrom a finite-size scalinganalysis.

We developa new technique— the method of phenomenologicalrenormalization
— whichwe apply later to our data.This methodhasthe additional advantagethat
no explicit functional form of the scaling functions has to be assumed.The
improveddensityof statesmethod(DSM) enablesusto interpolateour datain the
critical region. The relevantdetails for carrying out this programarecontainedin
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sect. 3. Sect.4 presentsthe Monte Carlo dataandtheir evaluationwith the DSM.
The results are then usedto determinethe ratios of the critical exponents,13/v
andy/v. The Ni-dependenceof the critical temperatureandits connectionto the
13-function are then investigatedwith our new and previousresults. Finally we
summarizeour findingsand conclusions.

2. Finite-size scaling theory and phenomenologicalrenormalization

For a second-order phase transition the behaviour of the thermodynamical
quantitiesin the infinite-volume limit is determinedby the critical exponents.In
the neighbourhoodof the critical temperatureI~ oneexpectsin the limit of large
N~,that

<L)~(T-T~)0 forT—~I~. (8)

The behaviournearto I~of the susceptibilityx andthecorrelationlength ~ in the
large-Na limit is expectedto be

x~IT- TCI~, ~ IT-T~L~. (9), (10)

However, on finite lattices this limiting behaviour is modified. A quantitative
analysis becomespossible by using the renormalization group theory. In this
frameworkit hasbeenshown [10] that the singular part of the free energydensity
hasthe following form:

f~(x,h, N~)=Nff”QfS(gTNff”~, g~N~P)/~,giN’). (11)

The scaling function Qf dependson the temperatureT and the external field
strengthh in the form of a thermalanda magneticscalingfield,

g~=cTx+O(xh, x2), (12)

g~=chh+O(xh, h2), (13)

which are independentof N~andwhere x is the reducedtemperature,which in
the neighbourhoodof the transitionfor a fixed valueof N~canbeapproximatedby

4/g2— 4/g~2,
00

X = 4/g~
2,,

0 (14)

Here the action contains a further symmetry breaking term h . ~1L(x). Also
additional irrelevantscalingfields g1 with negativeexponentsy may be present.
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The order parameter<L), the susceptibilityx and the renormalizedcoupling

gr are obtainedfrom f~by taking derivativeswith respectto h at h = 0. The
generalform of the scalingrelationsderivedin this way is

0(x, Ne,)=N’~ QO(gTN~~,g~N~i). (15)

Here 0 is (L), x and gr with o = —13, y and0. Taking into accountonly the
largestirrelevantexponenty

1 andexpandingthe scalingfunction Q0 to first order

at x = 0 results in the following equation:

0(x, N0.) ={c0+(c1+c2N~I)xN~+c3N,~1}N/”. (16)

Standardfinite-sizescaling(FSS)methodsarebasedon the evaluationof eq.(15)
in the neighbourhoodof the infinite-volume critical coupling 4/g~.Using the

linear expansionin eq. (16)we get

0(0, N )
w/v=ln~~/ln Nt,. (17)

Even in this linear approximationwe havefour unknownparameters4/g~00(for
the definition of x), c0, c3 and y1 which haveto be determinedby measuring0
for various lattice sizes N~,and then fitting the parameters.Thesedifficulties in
the usualfits ariseon onehandfrom the incompleteinformation on the 13-depen-
dence(where13 = 4/g

2 is the inversecoupling,not to be confusedwith the critical
exponent13) of the scalingfields g~

1(f3)andon the otherhandfrom the unknown
functional form of the scaling functions.

A more elegantway avoiding the mentionedproblemsand including possible
irrelevant scalingfields is the method of phenomenologicalrenormalization.The
existenceof a scalingfunction Q allows us to developa procedureto renormalize
the coupling by the use of two different lattice sizes N0. and bN0.. Formally this
phenomenologicalrenormalizationis definedby the equation

Q(gT(P)N,~, g,(/3)N~)= Q(g~(~)blN~,VV,g~(fi)b~N~). (18)

It expressesthat the scaling function Q remainsunchangedif the lattice size is
resealedby a factor b and the inverse coupling /3 is shifted to Ji(/3, N0., b)
simultaneously.Of coursethe argumentsof Q on the left- andright-handside of
eq. (18) are then equalseparately.As a resulteq.(18) is valid for QL, Q~and Qg

with a common coupling /3.
The procedurefor the calculationof the critical exponentsis then thefollowing:

first the phenomenologicallyrenormalizedinversecoupling j3(3, N0., b) is deter-
mined by eq.(18) usingthe fact that g~is a scalingfunction directly. We do thisby
comparingthe two curves gr(/3, N0.) and g~(/3,bN0.) determinedfor two different
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lattice sizesN0. and bN0.. Inserting f(/3, N0., b) in eq.(15), taking the logarithmof
the ratio thenresults in the following expressionfor the exponentw:

o(~,bN)
= ln 0(13, N0.) /ln b. (19)

In practicethe phenomenologicalrenormalizationof the coupling /3 is mosteasily
doneby measuring0(13, N0.) andg~(f3,N0.)simultaneouslyandthen plotting 0 as
a function of g,~

The infinite-volume critical coupling f3~canbe extractedfrom the fixed points

= 4/g~(N0.,b) of the renormalization transformations/3(13, N0., b) for finite
lattices.The equationfor a fixed point reads:

(20)

The effective, critical couplings /3~(N0.,b) are determinedby the intersection

pointsof two curves gr(f3, N0.) and g~(f3,bIV~~).
Usingthe expansion(16) at /3 = ~ for gr(/3, N0.) gives for N0.>> 1:

13~(N0.,b) =/3~(1+ ~), (21)

where

1 — bY
e=N~I/~b1/~l. (22)

By plotting f3~(N0.,b) as a function of E it is possibleto determine13~as 13~at

� = 0, if the valuesof y1 and p are alreadyknown. If /3/N0., b) is known for at
least three different pairs of N0. and b then for fixed p one can estimatethe
exponenty1 by a fit to the datasuch that 13C(’~Y, b) becomesa linear function of
C.

3. The density of statesmethod

The density of statesmethod was introduced[4—6]for partition functions, which
may be written in the form

Z(K) =fW(S) exp(—KS)dS. (23)

Here, W(S)is the densityof states,K the coupling — in our case4/g
2 — and KS

correspondsto the total action in eq. (1). Werecapitulatethe essentialformulaeof
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the method in the way it was proposedby Ferrenbergand Swendsen[8,9] and as
we haveactually usedit.

The aim of the method is to determinethe (unnormalized)density W(S)by

Monte Carlo measurementsat oneor morecouplingvaluesandthen to interpolate
between the input values or even to extrapolate from those values. For that
purposethe S-range is subdivided into N~bins. The partition function is then
approximated by

N,

Z(K) = ~ W(S,) exp( —KS1). (24)
i= I

Assumedwe have measuredS and any observable0 at r couplings Km, m =

1,..., r with ~m measurementseach,then [9]

g;~’i\~.(S1)
W(S,) = r , (25)

~ ~ exp(—KmSj+fm)
m=1

where !‘~.(S~)gives the frequencydistribution of S for K3 in the N~ bins of the
S-range. The contributions to W(S,)of the different couplingsare weightedby
factors g~,where g~is two times the integratedautocorrelation time. The
quantitiesfm are the free energies

fm —ln Z(Km), (26)

and haveto be determinediteratively from eqs.(24) and(26). On the otherhand
the expectationvalueof S is [11,12]

B In Z

BK (27)

so that integrating(5~iover K leadsto f(K) up to an integrationconstant.We
haveusedthis fact to find excellentstart valuesfor the self-consistentiteration of
the fm-values.To do that wefirst order the couplingsKm in ascendingsizeandset
then

f1 = 0,

(28)

fm fm-i + ~(Km Kmi)(KS)m + KS)m-i);

for m = 2, . . . , r, i.e. we use the trapezoidalintegrationrule. The following itera-
tion is considerablyacceleratedwith thesestart valuesandyieldsas final result for
the fm only slightly different values.
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To calculatethe expectationvalueof an observable0 as a functionof K we use
the following procedure.First we determinethe weightedaverageof the observ-

ablein bin i:

r N
1(S,)

E °jk

0(S~)= j=1 k-I , (29)

~J,g,~N,,,(S1)
m=1

where is the value of the observablemeasuredat coupling K~for the kth
S-valuefalling into bin i. Theexpectationvalueof 0 is then obtainedin the usual
way:

E W(S~)0(S1)exp(—KS1)

(0) = ‘=~ N . (30)

~. W(51) exp(—KS1)
f—i

By applyingthis methodwe avoid the constructionof two-dimensionalhistograms
andbesidesthat we cancomputeexpectationvaluesof different observablesat the
sametime.

4. Dataanderroranalysis

We re-evaluatedour existing data for NT = 4 [1] and performed additional
simulations for N~= 6 in order to get results locatedcloser to the asymptotic
scaling regime. For the FSS analysis we used lattices of size N~X N~with
N0.=26,18,12,8 for Nr=4 and N0.=24,18,12,8 for NT=6. In the case of
N~= 4 we ran 100000 to 450 000 iterationsfor eachcoupling, while for N~= 6 we
used similarly 300000 to 500000 iterations. The first 1000 (NT = 4) and 2000
(N~= 6) iterationswere discardedfor thermalization.The integratedautocorrela-
tion time for the expectationvalueof the modulusof thelattice averagedPolyakov
ioop is listed in table 1.

The use of the DSM allows us to compute (I L I), x and g~as continuous
functionsof the inversecoupling.We haveconvincedourselvesthat the histograms
of the action calculated at neighbouringvalues of the inverse coupling were
overlapping. In table 1 we give the numberR of datapoints with overlapping
histogramsandthe /3-rangeof their couplingsfor eachlattice.
The calculationof the errors was carriedout accordingto the Jackknifemethod
dividing the entire sampleinto 8 blocks. In figs. 1—3 we show themeasuredvalues
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TABLE 1
Numberof overlappinghistogramswith the rangeof 13 and T

10t

N~ N~ R 13-range r1~~-range

26 4 4 2.290—2.310 19— 88
18 4 20 2.270—2.350 9— 56
12 4 24 2.260—2.350 9— 26

8 4 30 2.240—2.360 8— 14
24 6 8 2.410—2.445 280—505
18 6 6 2.400—2.450 120—295
12 6 10 2.415—2.460 32— 60

8 6 10 2.400—3.000 20— 35

of the lattice order parameter<~L I>, the susceptibilityx and the renormalized
coupling gr. For clarity only the continuouscurves are shown for NT = 4. The
curves are fully consistent with the individual points shown in ref. [1]. The
measuredorder parameterand the susceptibility show the approach to the
asymptoticbehaviourdescribedby eqs. (8) (9) with increasing spatial lattice size
N0.. For N~= 4 the renormalizedcoupling g~showsthe expectedfixed point with
remarkableprecision.Howeverfor N,. = 6 we observeespeciallyfor N0. = 8 differ-
encesin the intersectionpoints.

4.1. THE CRITICAL COUPLING

The infinite-volume limit of the critical coupling is determinedfrom the
intersectionpoints of g/4/g

2, N
0.) for different spatial lattice size N0.. The DSM

hasthe advantagethat direct andaccuratemeasurementof thesecrossingpoints

arepossible.
The position of theintersectionpoints summarizedin table2 is shown in fig. 4.

For N,. = 4 we observea clear fixed point. Within error barsall curvesintersectin
a singlepoint. Neitheris therea significant influencefrom irrelevantscalingfields
nor is there a noticeable correction from the regular part of the free energy
density. As a consequenceof the relatively small numberof iterations and the
numberof only four 13-valueswhich determinethe curve for N0. = 26 we get the
best estimatefor the critical coupling extrapolatedto the infinite-volume limit
from the intersection point of the two curves for N0. = 12 and N0. = 18. This
correspondsto taking the highestvaluefor /3~’andappearsto be reasonablesince
usually the intersectionpointsapproachthe infinite-volume limit from below [13].
In this waywe get a valueof f3~’= 2.2986(6)for N,. = 4.

For N,. = 6 there exist obvious deviationsfrom a fixed point. Therefore it is
necessaryto examinethe influence of an irrelevant scaling field. Inserting the
value v = 0.63 in eq. (22) we use eq. (21) to estimateboth the critical coupling in
the infinite-volume limit /3~and the largest irrelevant exponent y1. The two
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Fig. 1. The expectationvalue of the modulusof the lattice averagedPolyakov loop as a function of
13 = 4/g

2 for N,. = 4 and6. The dashedline marks the infinite-volume behaviouraccordingto eq.(8)
with thecritical exponent/3 = 0.325.
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TABLE 2
Intersectionpointsofg~

________ N,,.’ N,,
2 4/g~

4 8 12 2.2980 (7)
4 8 18 2.2984 (4)
4 8 26 2.2982 (6)
4 12 18 2.2986 (6)
4 12 26 2.2983 (7)
4 18 26 2.2981(13)
6 8 12 2.4149(40)
6 8 18 2.4189(30)
6 8 24 2.4219(10)
6 12 18 2.4222(40)
6 12 24 2.423805)
6 18 24 2.4247(30)

parameters/3~’and y

1 are fitted to the datapoints such that a linear behaviour
resultswhen the intersectionpoints are plotted as a function of the variable �

definedin eq.(22). This is shownin fig. 5. By extrapolatingto e = 0 we determine
the valueof the infinite-volume critical couplingto be J3~= 2.4265(30).The largest
irrelevantexponenty1 turnesoutto be consistentwith a value of y = —0.9. This
is in agreementwith a value of y, = — 1 found for the three-dimensionalIsing
model [13]. It shows that y1 is in fact large and negative. Thus irrelevant
contributionswill disappearratherfast with increasingspatial lattice size.

4.2. PHENOMENOLOGICALRENORMALIZATION

On condition that irrelevant scalingfields arenegligible it is possibleto apply
the methodof direct scalingfits to determinethe ratios /3/v andy/v. This seems
to be valid for N,. = 4 andwe refer to ref. [1], where we assumeda linear form of
the scalingfunction for the order parameterandthe renormalizedcoupling anda
quadraticform for the susceptibility.

In the presentanalysiswe want to include higher-orderterms of the reduced
temperatureby usinga phenomenologicalrenormalization.As alreadyexplained
the methodhasthe advantagethat no knowledgeaboutthecritical coupling or the
explicit form of the scaling function is required.To accomplishthis we regardthe
order parameterand the susceptibilityas a function of g~for the values of N,,
underconsideration.According to eq. (15) the resulting curveswould be propor-
tional to N;~~”and NJ/U. The exponentsare determinedby comparing two
curvesfor different N,, at a fixed valueof g~.

From figs. 6 and 7 one can see that we get results close to the expected
three-dimensionalIsing values /3/v = 0.5180(57)and y/v = 1.9828(70)[13]. Espe-
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Fig. 4. Theeffectivecritical couplingfor N,. = 4 and6.

cially in the caseof N,. = 6 the computedvaluesare for /3/v systematicallytoo
largewhile for y/v they arecorrespondinglytoo small.

Although the values for (I L I), x and gr are evaluatedwith much higher
precisionthe statistical errors on the quotients /3/,-’ and y/v can reachtwenty
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Fig. 5. Extrapolationof the critical coupling to theinfinite-volume limit � = 0 for N,.= 6. Thevariablee
is definedin eq. (22).

percent. The largest deviations occur when the smallest lattice size N0. = 8 is
involved. Therefore the deviationsaremost significant for exponentratios calcu-
lated involving the smallest lattice size N,., = 8 and N,. = 6. The observedcorrec-
tions can arisefrom irrelevantscalingfields andfrom the regularpart of thefree
energydensity. Both contributionsmay dependon the volume, so that it is here
impossible to disentanglethem. However we know that irrelevant contributions
vanishfor largevolumes.

At fixed temperaturethe physicalvolume is given by (N,.,/N,.)
3.This is in accord

with previousinvestigationsof the heavyquark potential [14] where it has been

TABLE 3
Relativevolume

N~ __________

6 8 1.0
6 12 3.4
6 18 11.4
6 24 27.0
4 8 3.4
4 12 11.4
4 18 38.4
4 26 115.9
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Fig. 6. Theratio of /3/v as a functionof gr for N, = 4 and 6. Thecritical regionis heredefinedasthe
interval containingtheintersectionpointsof g,~
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TABLE 4
Critical couplings

N,. 4/g
2 TC[ALI

— 2 1.8600(23) 28.30(16)[15]
3 2.1710(30) 41.11(30)[16]
4 2.2986 (6) 42.12(06)
5 2.3726(45) 40.58(53)[171
6 2.4265(30) 38.73(29)

found that the finite-sizedependenceis a function of the ratio N,,/N,. andnot of
N,, alone. From table 3 we seethat the relativevolume of the lattice with N,. = 6
and N,, = 8 is morethan threetimessmallerthan the next largervolume.Eventhe
volume l-’ = 27 for N,. = 6 is four times smaller than the largestlattice for N,. = 4.
This explainswhy the largestdeviationsoccurfor small N,, andlarge N,. wherethe
physicalvolume is the smallest.Consideringonly volumeswith N,,/N,.> 2 in figs. 6
and7 we seea convergenceof the exponentratios to the correspondingthree-di-
mensionalIsing values.

4.3. ASYMPTOTIC SCALING

An importantpoint for the continuum limit of lattice gaugetheories is the

questionwhereas a function of 4/g2 asymptoticscalingsetsin. The determination

50 I I I

T[ALJ

p456

N,=2

$=4/g2

20 I I

18 20 2.2 2.4 2,6

Fig. 8. Thecritical temperatureasa functionof /3. The line is drawnjust to guidetheeye.
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of the critical couplingfor different valuesof N, allows us to look for violationsof
asymptoticscaling. Values for the critical coupling for N,. = 2, 3, 4, 5 and 6 are
listed in table4. The critical temperatureis calculatedusingthe two-loop approxi-
mation to the renormalizationgroupequation.

By looking at the critical temperatureas a function of N, it becomesobvious
that the regionof asymptoticscalingis not yet reachedfor N, = 6 or equivalently
at 4/g2 = 2.4265. From fig. 8 we see that T~as a function of 4/g2 shows a
maximumat N,. = 4 andgoes to smallervaluesfor largervaluesof N,.. The change
in the behaviourof 1/N,.) at N,. = 4 is probably due to the fact that the critical
couplingsfor N,. = 2 and3 still fall into the strongcoupling region4/g2 <2.2. For
N,. = 6 the critical temperatureseemsto be still falling, whereasonewould expect
a constantif asymptoticscalingis valid.

Although it is possibleto constructa numericalbeta function from the critical
coupling as a functionof N,. [18], differentoperatorsmay approachthe continuum
limit in adifferent way. Thereforeit is importantto know the regionof asymptotic
scalingwhere a universalbeta function exists. The necessarycalculationsof the
critical couplingsfor highervaluesof N,. are alreadyin progress[191.

S. Summary

In a comparativestudywe have investigatedthe finite-size scalingbehaviourof
SU(2)lattice gaugetheoryon variouscubic spatial latticeswith N,. = 4 and N,. = 6.
Our high-statisticsdatawere takenat selectedvalues of the coupling /3 = 4/g2
such that the critical region aroundthe deconfinementtransition was coveredby

histogramswhich wereoverlappingas a function of the action.Thus wewere able
to apply the densityof statesmethod,whichwe improvedin somedetails,to obtain
the relevant thermodynamicquantitiesas continuousfunctions of the coupling

constantin the whole critical region. From the normalizedfourth cumulantg. we
find the following precisevaluesof the critical couplings:

4/g,~(N,.=4)= 2.2986(6), 4/g~(N,.=6)= 2.4265(30). (31)

In contrast to the case N,. = 4, where no influence of irrelevant scaling fields or
other correctionscould be observedat the critical point, we find that for N,. = 6
thereare additional contributionswhich may be explainedby an irrelevantexpo-
nent for which we estimatea valueof y

1 = —0.9.
The value of g~at the infinite-volume critical coupling is supposedto be a

universalquantity. From the N,. = 4 datawe find from the two largestlattices a
value

gr(4/g~,,,)=—1.38(5), (32)
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which is compatiblewith the N,. = 6 dataandthe value — 1.41 [13] found for the
three-dimensional Ising model.

With our methodof phenomenologicalrenormalizationwe examinedthecritical
exponentratios 13/v and y/v. As in ref. [1] we observethat for both N,. values
13/v is somewhatlarger and y/v is somewhatsmallerbut closeto the expected
three-dimensionalIsing model value. The deviation is strongerfor the N,. = 6
lattices. This is no big surprise,since one may argue that the true finite-size

dependenceis on N,,./N,. and not on N,., alone. Then at fixed temperaturethe
N,. = 6 lattices we used are by a factor of threesmaller than our corresponding
N,. = 4 lattices.

Finally we haveinvestigatedthe N,. or 4/g2 dependenceof the critical tempera-
ture asobtainedfrom the two-loop renormalizationgroup equation.We conclude
that for N,. = 6 or equivalentlyat 4/g2= 2.43 the regionof asymptoticscalinghas

notyet beenreached.

We are indebtedto the KFA Jülich, the Ruhr Universität Bochum computer
center,the HRZ UniversitätBielefeld andthe late Johnvon NeumannSupercom-
puterCenterat Princetonfor providing the necessarycomputertime. Forvaluable
discussionsandassistancewe thank our colleaguesF. Karsch,K. Redlich, andM.
Weber.Oneof us (D.E.M.) would like to expresshis gratitudeto R. Baier and B.
Peterssonfor the support on their DFG projects.
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