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The pressure near the deconfinement transition as determined up to now in lattice gauge theories shows unphysical behaviour: 
it can become negative and may in SU (3) even have a gap at the transition. This has been attributed to the use of only perturba- 
tively known derivatives of coupling constants. We propose a method to evaluate the pressure, which works without these deriv- 
atives, and is valid on large lattices. In SU(2) we study the finite-volume effects and show that for lattices with spatial extent 
N, ~> 15 these effects are negligible. In SU ( 3 ) we then obtain a positive and continuous pressure. The influence of non-perturbative 
corrections to the fl-function on the energy density are investigated and found to be important, in particular for the latent heat. 

1. Introduction 

Monte Carlo s imulat ions  o f  lat t ice gauge theories 
have proven to be a powerful  tool to analyze the non- 
per turba t ive  aspects of  these theories. This approach  
also opened for the first t ime the possibi l i ty  to study 
the f in i te- temperature  Q C D  phase t ransi t ion from 
first principles and to obta in  quant i ta t ive  results for 
the t ransi t ion temperature .  The analysis of  o ther  im- 
por tant  t he rmodynamic  quanti t ies  like energy den- 
sity, ent ropy densi ty or  pressure have also been stud- 
ied on the lattice. The operators  used to extract  these 
quantit ies have, however, an essential drawback: they 
involve in addi t ion  to certain matr ix  elements  o f  the 
field strength tensor  also der ivat ives  o f  the bare cou- 
plings with respect to tempera ture  a n d / o r  volume 
[ 1 ]. The relevant  der ivat ives  of  the space-like (g~) 
and t ime-l ike (g~) couplings in the s tandard  Wilson 
act ion have been calculated per turbat ively  [ 2 ]. One 
finds to O(g 2) **l 

(0g;2  
u g / ~ ' ¢ = L = c ' + O ( g  2); (1) 

~ The derivative with respect to the temperature Tcan be writ- 
ten in terms of the lattice anisotropy ~= a/a,, where a and a~ 
are the lattice spacings in the space-and time-like directions, 
respectively. Details about this and our notation can be found 
in ref. [ l ]. 

( 0g7  2 
- - - ~ J ¢ =  1 = C'~ + O ( g 2 ) .  ( 1 con t 'd )  

In most  numerical  calculations of  thermodynamica l  
quanti t ies  per formed in the past  the leading-order  
weak-coupling expressions for these der ivat ives  
(c~,, c'~) have been used. Results for the rmodynami-  
cal quanti t ies  obta ined  in this way are thus not  en- 
t irely non-perturbat ive.  

Non-per turba t ive  results for the relevant deriva- 
tives of  the couplings have been calculated at some 
selected points  [ 3 ]. These calculations indicate that  
at least for the SU (3)  gauge theory at in termedia te  
couplings ( g 2 ~ l )  devia t ions  from the per turba-  
t ively calculated values can be large. This does not  
come as a surprise since it is known that  the deriva- 
tives of  g~ and g~ are related to the QCD fl-function 
through 

a~_~g a = g 3 ( ~  + Og~-2~ 
. ( 2 ) 

As there are large devia t ions  from the per turbat ive  
fl-function of  the S U ( 3 )  gauge theory for g~> 1, it is 
to be expected that this is also true for the der ivat ives  
ofg~ and g~. 

Another  indica t ion  of  the inadequacy of  the per- 
turbat ive  relat ions for the der ivat ives  Og;c~) / O~ at in- 
te rmedia te  couplings comes from recent high-statis- 
tics calculat ions o f  thermodynamica l  quanti t ies  for 
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the SU (3)  gauge theory on thermal  lattices of  size 
N 3 × 4  [4,5].  Close to the critical coupling for the 
f irst-order deconf inement  transit ion,  which on lat- 
tices of  this size occurs close to 6 /g  2~ - 5.69, one ob- 
serves that the pressure, P, becomes negative. More- 
over, P is d iscont inuous at the critical point.  This 
approach also leads to incompat ib le  results for the la- 
tent heat of  the transition, if it is extracted either from 
the interact ion measure d =  ( ~ _ - 3 P ) / T  4 [ 1 ], which 
reflects the deviat ions of  the thermodynamica l  sys- 
tem from a massless ideal gas, or the enthalpy den- 
sity, e + P [4,5].  Monte  Carlo s imulat ions for these 
quanti t ies  have thus reached an accuracy where in- 
consistencies resulting from the usage of  operators for 
thermodynamica l  observables,  which are not entirely 
non-perturbat ive,  become visible. 

2. Thermodynamics 

One way of  arr iving at completely non-perturba-  
rive expressions for thermodynamica l  observables is 
out l ined in ref. [ 3 ]: one first calculates the couplings 
given in eq. ( 1 ) non-per turbat ively  at zero tempera-  
ture. These results can then be inserted in the stan- 
dard  expressions for the thermodynamica l  
observables.  

An al ternative approach,  which we want  to discuss 
here, is based on a calculation of  the free-energy den- 
s i t y , f  and the interact ion measure A. The free energy 
is related to the par t i t ion function via 

f = - T V  -1 In Z .  (3)  

On the latt ice the logari thm of  the par t i t ion function 
may be calculated from the expectat ion value of  the 
s tandard  Wilson action, S, since the der ivat ive with 
respect to the bare coupling B= 2 N / g  2 is [ 1 ] 

- 0  In Z/Off= ( S )  = 3N 3 N~( P~ + P~) , (4)  

where P~(~) is the space ( t ime)  plaquette  with 

P = N  -1 ( T r (  1 - UUU*U t)  ) . 

The physical free-energy density is then obta ined up 
to an integration constant,  i.e. the value at Bo, from 

= - 3 N ,  4 d B ' [ 2 P o - ( P , + P d ] .  (5)  
Bo 

Here we have normal ized f removing the vacuum 
contribution at approximately T =  0 by subtracting the 
plaquette value Po on a symmetr ic  lattice (N~=No).  

The interact ion measure A can be obta ined  as [ 1 ] 

dg 4 A= ~ - 3 P  -2 
T 4 - a ~ - a  6 N N ~ [ 2 P o - ( P ~ + P O ] .  

(6)  

This relat ion involves the QCD B-function, adg/da.  
In the past it has been approximated  in the leading 
order  by the per turbat ive weak-coupling expression, 
eq. (2) .  However,  as discussed above we should take 
into account deviat ions from asymptot ic  scaling in 
the ff-function in order  to achieve a truly non-pertur-  
bat ive calculation of  the thermodynamica l  quan- 
tities. Starting with a calculation of  f and A has the 
advantage that we need to know only the non-pertur-  
bat ive  form of  the/?-funct ion and the average pla- 
quette Po+ P,, i.e. the expectat ion value of  the action 
on a lattice with N~<N~ and on the corresponding 
symmetr ic  lattice with N~ = N~. 

Other thermodynamica l  quanti t ies can then be ob- 
ta ined from s tandard  thermodynamica l  relations, if  
we assume in addi t ion  homogenei ty of  the system ~2 
This general proper ty  can usually be expected to hold 
in a given phase of  a very large system of  a single par- 
ticle type when only isotropic interact ions are acting. 
An impor tan t  consequence of  the homogenei ty  of  the 
system is then 

0 In Z In Z 
0-I7 T-- V ' (7)  

which in fact relates the pressure, P, and the free-en- 
ergy density, f through the identi ty 

P =  - f .  (8)  

Given eq. (8)  and the the rmodynamic  relat ion 

f = ¢ - T s ,  (9)  

we can then de termine  the entropy density, s, using 
eqs. (5)  and ( 6 ) ,3. In general we can expect eq. (8)  
to hold in the the rmodynamic  limit.  In a finite vol- 

~2 An extensive quantity is said to be homogeneous of order one 
when an increase of the size of the system by a factor 2 leads 
to an increase of the quantity by the same factor. 

~3 We note that the quantity (e+P)/T calculated on finite lat- 
tices is usually taken to be the entropy density, though this is 
true only for homogeneous systems. 
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ume, however,  this relat ion is v iola ted due to surface 
effects. For  a der iva t ion  o f  non-per turbat ive  ther- 
modynamics  o f  S U ( N )  gauge theories on finite lat- 
tices we therefore have to look somewhat  closer at 
the propert ies  of  the the rmodynamica l  functions: 

( 1 ) The relat ion between P and f g i v e n  in eq. (8)  
has to be invest igated for finite volumes.  

(2)  We need a non-per turbat ive  fl-function. 
We shall discuss these points  in the following 

sections. 

3. The free-energy density and pressure 

As poin ted  out  above we want  to de te rmine  the 
pressure from the free-energy densi ty by s imply using 
eq. (8) .  A first test of  eq. (8 )  consists in compar ing  
the weak-coupling expansions of  P / T  4 and - - f i t  4. 
The expansions are obta ined  from those of  the pla- 
quettes, which were calculated up to order  g4 in ref. 
[ 6 ]. Of  course, the integrat ion constant  to be used in 
eq. (5)  is the value at g2 = 0, i.e. we can only test the 
approach to this point.  The integrand contains  first a 
g2-term, which must  d isappear  to leave a finite inte- 
gral. Indeed,  with the values from ref. [6] ,  we f ind 
for N~= 16, N~=4 a cancel lat ion of  the g2-factor with 
an accuracy o f  10 -6 . The next te rm from the integral 
and the corresponding one from the pressure weak- 
coupling expansion (see, e.g., ref. [7 ] ) coincide 
within 5%. 

We have s tudied the problem of  finite-size correc- 
t ions to eq. (8)  at in termedia te  fl-values in the case 
o f  SU (2) .  There we have a large set o f  data  on lat- 
tices with N~=8,  12, 18, 26 and N~=4 from a finite- 
size analysis [ 8 ] and an invest igat ion of  the interac- 
t ion measure A [ 7 ]. In addi t ion  we have calculated 
some new points  on the 83)<4 latt ice below f l=2.24 .  
In fig. 1 we show the pressure da ta  d iv ided  by T 4 re- 
sulting from the usual formula, ref. [ 1 ], involving the 
per turbat ive  coupling derivatives.  Inside the fluctua- 
t ion of  the da ta  points  ( the error  bars  have been 
omi t t ed  for clarity, their  size is of  the order  of  the 
f luctuation for the da ta  from each lat t ice size) the P /  

T 4 values show no significant finite-size effects. In- 
deed this is expected from finite-size scaling theory 
[8] .  The corresponding data  for A = ( E -  3 P ) / T  4 are 
gathered in fig. 2. They show a considerable  finite- 
size effect in the ne ighbourhood of  the crit ical cou- 
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Fig. 1. Pressure divided by T 4 for the SU(2) gauge theory plot- 
ted against B on N~=8, 12, 18, 26 and N,=4 lattices calculated 
with the conventional formula involving the perturbative cou- 
pling derivatives. 
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Fig. 2. The interaction measure A = ( ~ - 3 P ) / T  4 for SU(2) gauge 
theory plotted against fl, eq. (6), with adg-2/da calculated from 
the weak-coupling scaling relation. The lines are fits through the 
small-l/points, used for the integral in eq. (5) for No=8 (long 
dashes), 12 (short dashes) and 18 (solid line). 
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piing, tic = 2.3, up to about f l= 2.35. Since A is propor- 
tional to the integrand in eq. (5) we expect a similar 
finite-size effect for f /  T 4. 

We have eva lua ted f f rom eq. (5) in two steps: in 
the regions where our data populations were dense 
enough, we have used the histogram technique [9] 
to find the integral contributions from the N 3 × 4 lat- 
tices, the contributions of  the symmetric lattice were 
calculated from spline fits to high-statistics 164 lat- 
tice plaquette values in the same fl-ranges; in the 
small-fl region we have supplemented the A data by 
fits through the remaining few points (the fits are also 
shown in fig. 2) and then integrated these fits to ob- 
tain the lower integral parts. The errors from the his- 
togram method are difficult to determine. Most 
probably they are much smaller than the fluctuation 
o f  data points, since information from many overlap- 
ping histograms (in the case of  the 83X 4 lattice we 
had 38, for 183X 4 still 20) was used simultaneously. 
Errors from the fits to A and their integrals could shift 
the free-energy density curves slightly in the y-direc- 
tion but would not change their shapes. 

The resulting curves for - f i T  4 on N~=8, 12, 18 
lattices (for N~= 26 too few points were available) 
are compared in fig. 3 to the direct data for P / T  4 on 
the 183X4 lattice from fig. 1. We observe a strong 
volume dependence of  the free-energy density indi- 
cating that F =  V/is not an extensive quantity on small 
lattices. On the other hand, the No= 18 curve is in 
perfect agreement with the direct data above and al- 
ready at the transition point, i.e. for SU (2) we see in 
this region essentially no violation of  the perturba- 
tive relations for the coupling derivatives. Below the 
phase transition the direct data should, however, de- 
viate more and more from the true non-perturbative 
result. 

We conclude that for SU (2) on lattices with N~> 15 
(and N~= 4) the finite-size dependence of  the free- 
energy density becomes negligible and therefore that 
eq. (8) is applicable. For SU (3) gauge theory we ex- 
pect similar finite-size effects; in contrast to SU (2), 
however, a noticeable difference to the perturbative 
calculation is anticipated. 

To calculate the pressure via eq. (8) we have taken 
the SU (3) data on 163 × 4 and 16 4 lattices from ref. 
[4].  In fig. 4a we show N 4 ( 2 P o - P , - P ~ )  as ob- 
tained from the A-data of  ref. [4],  and the known 
factors in front of  this quantity in eq. (6).  The solid 
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Fig. 3. Finite-size dependence of the free-energy density for the 
SU(2) gauge theory plotted against fl, Compared a r e  - f i T  4 from 
eq. (5) for N,,=8 (long dashes), 12 (short dashes) and 18 (solid 
line) with P/T 4 (circles) from the direct formula with perturba- 
tive coupling derivatives for the 183× 4 lattice (same as in fig. 1). 

curve in the plot is an interpolation of  these data 
points, with a gap assumed at f l= 5.6925. From this 
interpolation we evaluated the integral in eq. (5). The 
resulting non-perturbative P I T  4 is shown in fig. 4b 
together with the Monte Carlo data ofref. [ 4 ], which 
were calculated with perturbative coupling deriva- 
tives. We note that by construction this pressure is 
always continuous across the deconfinement transi- 
tion. Evidently, our approach solved the unsatisfac- 
tory situation of  a negative, discontinuous pressure. 

4. Non-perturbative//-function and energy density 

Already the early Monte Carlo renormalization 
group ( M C R G )  studies [ 10,11 ] of  the QCD fl-func- 
tion have shown that there are considerable devia- 
tions from the weak-coupling scaling relation. In par- 
ticular in the case of  SU (3) large deviations have been 
observed for fl> 5.7, which, however, seem to disap- 
pear rapidly above fl> 6.1. The numerical results for 
the discrete fl-function, Afl(fl), obtained from a start- 

628 



Volume 252, number 4 PHYSICS LETTERS B 27 December 1990 

1.5 

l .O  

0 .5  

0 .0  

- 0 . 5  

5 .6  

, I , i 

N4 (2p o- (Pa+Pr)) 

[] 
p/T4 

(b) 

a SU (3) 

. . . . . . . . . . . . . . . . .  . . . . . .  

5 .8  6 ,o  6/g 2 

Fig. 4. (a) The difference between plaquette expectation values 
on asymmetric and symmetric lattices times N 4 from Monte Carlo 
SU(3)  data [4] on 16ax4  and 16 4 lattices, respectively. The solid 
line is an interpolation through these data, used for the integral 
in eq. (5).  (b)  The non-perturbative result for the pressure in 
SU ( 3 ) gauge theory as a function offl along with the Monte Carlo 
data of  ref. [4], based on perturbative coupling derivatives. 

dard  M C R G  analysis, have been fi t ted with Pad6 ap- 
proximants ,  in order  to extract  a non-per turbat ive  r -  
function [ 12,13 ]. The approx imants  are chosen such 
that  they are consistent  with the per turba t ive  form at 
large fl and reproduce the observed scaling violat ions 
down to f l~  5.7. To be specific we use the following 
paramet r iza t ion  given in ref. [ 13 ]: 

dg (1-alg2)2+a~g 4 
a ~ a  a = b o g  3 [l_(al+bl/2bo)gZ]2+a3g4, (10)  

where bo= 11N/48x 2 and bt = 34N2/768/~ 4 are the first 
two coefficients in the per turbat ive  Q C D  B-function 
for SU(N) gauge theories.  In the case o f  SU(3) we use 
the set of  coefficients {a~=0.853572,  a 2 =  
0.0000093, a3 =0.0157993},  given in ref. [13]. 

We have used this non-per turbat ive  r - func t ion  and 
our  in terpolat ion o fN4(2Po  - P , - P , ) ,  shown in fig. 
4a, to extract  the interact ion measure A from eq. (6) .  
This is plot ted in fig. 5a as a solid curve. For  compar-  
ison we show the unchanged da ta  o f  ref. [4] ,  which 
are based on the asymptot ic  weak-coupling scaling 
relation. Near  the transit ion point, a round r =  5.7, we 
observe a drop in A by about a factor two, which arises 
from the non-per turbat ive  r - funct ion.  By construc- 
t ion the two results approach each other  at higher r -  
values. The non-perturbative energy density was then 
found by adding three t imes the pressure from eq. (8)  
(sol id curve in fig. 4b) .  In fig. 5b we compare  the 
result (sol id curve)  again with the unchanged da ta  
from ref. [4 ]. A similar  drop as in A occurs; in par- 
t icular  the slight peak in ~ / T  4 n e a r  r =  5.83 has dis- 
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Fig. 5 The  interact ion measure  A = ( e -  3P) / T 4, ( a ) ,  and the en- 

ergy density divided by T 4, ( b ), plotted against fl for SU ( 3 ) gauge 
theory. The data are from ref. [4] and were calculated using per- 
turbative coupling derivatives. The solid lines show the corre- 
sponding results when the pressure is computed from eq. (8) and 
the non-perturbative r-function, eq. (10), is taken into account. 
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appeared  - the non-per turbat ive  energy densi ty is a 
very monotonous ly  rising function and the gap Ae/  
T 4 is reduced considerably.  

5. Summary and discussion 

In summarizing,  we have seen that, under  the as- 
sumpt ion of  the homogenei ty  of  the system, it is pos- 
sible to calculate the pressure non-per turbat ively  on 
the lattice. By construct ion it is also cont inuous at the 
f irst-order t ransi t ion points  and it turns out to be 
posit ive everywhere. The informat ion needed on an 
N 3 × N~ lattice is just  the expectat ion value o f  the av- 
erage plaquette  (Po+P~) and a corresponding value 
Po on a symmetr ic  N4~ lattice, i.e. essentially the 
actions. 

F rom the same latt ice data, the average plaquettes,  
one then determines the interact ion measure e - 3 P  
and after that  by the simple addi t ion  of  3P the energy 
density. In this second step, however, one needs the 
//-function. The non-per turbat ive fl-function may 
change the shape of  the energy density and the size of  
the latent heat densi ty in SU (3)  considerably.  In fact 
it may resolve the problem of  the N~-dependence of  
A~/T 4 found in ref. [ 14]. Because of  the cont inui ty  
of  the non-per turbat ive  pressure there is no further 
ambigui ty  in the de te rmina t ion  of  the latent heat 
density, as is the case in the usual gap calculations 
from the enthalpy density, e + P ,  or ~ - 3 P  involving 
the derivat ives c~, c'~ and the asymptot ic  fl-function. 

This ambigui ty  and its origin, the incomplete  
knowledge of  the derivat ives of  the couplings with re- 
spect to the anisotropy ~, was already not iced in one 
of  the first de terminat ions  of  the latent heat  densi ty 
in SU (3) ,  ref. [ 15 ]. The cure in both refs. [ 14 ] and 
[ 15 ] was to impose the condi t ion of  cont inui ty  of  the 
pressure at the t ransi t ion point.  The two calculations 
still differ in so far as in ref. [ 14] the quant i ty  e + P ,  
and in ref. [ 15 ] the quant i ty  E -  3P, was used to ex- 
tract  the gap in the energy density. The enthalpy den- 
sity e + P depends  on the difference of  the part ial  de- 
r ivatives given in eq. (1) ,  while the interact ion 
measure ~ -  3P depends  on the sum of  these deriva- 
tives via eq. (2) .  I f  one insists on using per turbat ive  
coupling derivatives,  the second quant i ty  is to be pre- 
ferred, because, owing to eq. (2) ,  and the weak-cou- 
pling fl-function the sum of  the derivat ives is known 
up to order  g2, the difference only to order  gO. 

In full QCD theory, the same difficulties in the de- 
te rmina t ion  of  the pressure appear,  see, for example,  
ref. [ 16 ]. There too our procedure  to obtain a phys- 
ical pressure is applicable and certainly superior  to 
the convent ional  approach as long as Monte  Carlo 
s imulat ions for the rmodynamic  quanti t ies are re- 
stricted to rather small temporal  lattices (N~ < 10). 
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