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The pressure near the deconfinement transition as determined up to now in lattice gauge theories shows unphysical behaviour:
it can become negative and may in SU(3) even have a gap at the transition. This has been attributed to the use of only perturba-
tively known derivatives of coupling constants. We propose a method to evaluate the pressure, which works without these deriv-
atives, and is valid on large lattices. In SU(2) we study the finite-volume effects and show that for lattices with spatial extent
N,z 15 these effects are negligible. In SU (3) we then obtain a positive and continuous pressure. The influence of non-perturbative
corrections to the S-function on the energy density are investigated and found to be important, in particular for the latent heat.

1. Introduction

Monte Carlo simulations of lattice gauge theories
have proven to be a powerful tool to analyze the non-
perturbative aspects of these theories. This approach
also opened for the first time the possibility to study
the finite-temperature QCD phase transition from
first principles and to obtain quantitative results for
the transition temperature. The analysis of other im-
portant thermodynamic quantities like energy den-
sity, entropy density or pressure have also been stud-
ied on the lattice. The operators used to extract these
quantities have, however, an essential drawback: they
involve in addition to certain matrix elements of the
field strength tensor also derivatives of the bare cou-
plings with respect to temperature and/or volume
[1]. The relevant derivatives of the space-like (g,)
and time-like (g.) couplings in the standard Wilson
action have been calculated perturbatively [2]. One
finds to O(g?) *!

(ag f=l—ca+0(g), (1

#

The derivative with respect to the temperature 7 can be writ-
ten in terms of the lattice anisotropy £=a/a,, where g and a,
are the lattice spacings in the space-and time-like directions,
respectively. Details about this and our notation can be found
inref. [1].

_2
(ag, ) ¢ +0(g?). (1 cont’d)
E=1

i

In most numerical calculations of thermodynamical
quantities performed in the past the leading-order
weak-coupling expressions for these derivatives
(¢,, c;) have been used. Results for thermodynami-
cal quantities obtained in this way are thus not en-
tirely non-perturbative.

Non-perturbative results for the relevant deriva-
tives of the couplings have been calculated at some
selected points [3]. These calculations indicate that
at least for the SU(3) gauge theory at intermediate
couplings (g%=~1) deviations from the perturba-
tively calculated values can be large. This does not
come as a surprise since it is known that the deriva-
tives of g, and g, are related to the QCD p-function
through

dg 3(65’;2 ag:2>
=8 \Ter Y e ), (2)

As there are large deviations from the perturbative
B-function of the SU(3) gauge theory for gz 1, it is
to be expected that this is also true for the derivatives
of g,and g..

Another indication of the inadequacy of the per-
turbative relations for the derivatives 9g, 2,/ 9 at in-
termediate couplings comes from recent high-statis-
tics calculations of thermodynamical quantities for
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the SU(3) gauge theory on thermal lattices of size
N2x4 {4,5]. Close 1o the critical coupling for the
first-order deconfinement transition, which on lat-
tices of this size occurs close to 6/g2~5.69, one ob-
serves that the pressure, P, becomes negative. More-
over, P is discontinuous at the critical point. This
approach also leads to incompatible results for the la-
tent heat of the transition, if it is extracted either from
the interaction measure 4= (e—3P)/T* [1], which
reflects the deviations of the thermodynamical sys-
tem from a massless ideal gas, or the enthalpy den-
sity, e+ P [4,5]. Monte Carlo simulations for these
quantities have thus reached an accuracy where in-
consistencies resulting from the usage of operators for
thermodynamical observables, which are not entirely
non-perturbative, become visible.

2. Thermodynamics

One way of arriving at completely non-perturba-
tive expressions for thermodynamical observables is
outlined in ref. [3]: one first calculates the couplings
given in eq. (1) non-perturbatively at zero tempera-
ture. These results can then be inserted in the stan-
dard expressions for the thermodynamical
observables.

An alternative approach, which we want to discuss
here, is based on a calculation of the free-energy den-
sity, f, and the interaction measure A. The free energy
is related to the partition function via

f=—TV-'InZ. (3)

On the lattice the logarithm of the partition function
may be calculated from the expectation value of the
standard Wilson action, S, since the derivative with
respect to the bare coupling f=2N/g?1is [1]

—3InZ/0B=(SYy=3N3N(P,+P,), (4)
where P, is the space (time) plaquette with
P=N-YWTr(1-UUUTU")> .

The physical free-energy density is then obtained up

to an integration constant, i.e. the value at f§,, from
s f

T =—3N‘,‘jd/3’[2P0—(P,,+P,)]. (5)

Bo 5o

626

PHYSICS LETTERS B

27 December 1990

Here we have normalized f, removing the vacuum
contribution at approximately 7'=0 by subtracting the
plaquette value P, on a symmetric lattice (N.=N,).
The interaction measure A can be obtained as [1]
_e=3P  dg7*

A= -
T4 a da

6NN2[2P,—(P,+P))] .
(6)

This relation involves the QCD g-function, adg/da.
In the past it has been approximated in the leading
order by the perturbative weak-coupling expression,
€q. (2). However, as discussed above we should take
into account deviations from asymptotic scaling in
the S-function in order to achieve a truly non-pertur-
bative calculation of the thermodynamical quan-
tities. Starting with a calculation of fand A has the
advantage that we need to know on/y the non-pertur-
bative form of the S-function and the average pla-
quette P,+ P,, i.e. the expectation value of the action
on a lattice with N, <N, and on the corresponding
symmetric lattice with N.=N,.

Other thermodynamical quantities can then be ob-
tained from standard thermodynamical relations, if
we assume in addition homogeneity of the system *2.
This general property can usually be expected to hold
in a given phase of a very large system of a single par-
ticle type when only isotropic interactions are acting.
An important consequence of the homogeneity of the
system is then

dlnZ Inz
v, v

(7)

which in fact relates the pressure, P, and the free-en-
ergy density, f, through the identity

P=—_f. (8)
Given eq. (8) and the thermodynamic relation
f=€e—-Ts, (9)

we can then determine the entropy density, s, using
egs. (5) and (6) *3. In general we can expect eq. (8)
to hold in the thermodynamic limit. In a finite vol-

#2 An extensive quantity is said to be homogeneous of order one
when an increase of the size of the system by a factor 1 leads
to an increase of the quantity by the same factor.

¥3 We note that the quantity (e+ P)/T calculated on finite lat-
tices is usually taken to be the entropy density, though this is
true only for homogeneous systems.
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ume, however, this relation is violated due to surface
effects. For a derivation of non-perturbative ther-
modynamics of SU(N) gauge theories on finite lat-
tices we therefore have to look somewhat closer at
the properties of the thermodynamical functions:

(1) The relation between P and fgiven in eq. (8)
has to be investigated for finite volumes.

(2) We need a non-perturbative S-function.

We shall discuss these points in the following
sections.

3. The free-energy density and pressure

As pointed out above we want to determine the
pressure from the free-energy density by simply using
eq. (8). A first test of eq. (8) consists in comparing
the weak-coupling expansions of P/T* and —f/T*.
The expansions are obtained from those of the pla-
quettes, which were calculated up to order g* in ref.
[6]. Of course, the integration constant to be used in
eq. (5) is the value at g2=0, i.e. we can only test the
approach to this point. The integrand contains first a
g2-term, which must disappear to leave a finite inte-
gral. Indeed, with the values from ref. [6], we find
for N,_,6, N.=4 a cancellation of the g2-factor with
an accuracy of 107, The next term from the integral
and the corresponding one from the pressure weak-
coupling expansion (see, e.g., ref. [7]) coincide
within 5%.

We have studied the problem of finite-size correc-
tions to eq. (8) at intermediate S-values in the case
of SU(2). There we have a large set of data on lat-
tices with N,=38, 12, 18, 26 and N,=4 from a finite-
size analysis [8] and an investigation of the interac-
tion measure A [7]. In addition we have calculated
some new points on the 82X 4 lattice below =2.24.
In fig. 1 we show the pressure data divided by T re-
sulting from the usual formula, ref. [1], involving the
perturbative coupling derivatives. Inside the fluctua-
tion of the data points (the error bars have been
omitted for clarity, their size is of the order of the
fluctuation for the data from each lattice size) the P/
T* values show no significant finite-size effects. In-
deed this is expected from finite-size scaling theory
[8]. The corresponding data for 4= (e—3P)/T* are
gathered in fig. 2. They show a considerable finite-
size effect in the neighbourhood of the critical cou-
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Fig. 1. Pressure divided by T for the SU(2) gauge theory plot-
ted against S on N,=8, 12, 18, 26 and N,=4 lattices calculated
with the conventional formula involving the perturbative cou-
pling derivatives.
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Fig. 2. The interaction measure A=(¢—3P)/T* for SU(2) gauge
theory plotted against 8, eq. (6), with adg~%/da calculated from
the weak-coupling scaling relation. The lines are fits through the
small-B points, used for the integral in eq. (5) for ¥,=8 (long
dashes), 12 (short dashes) and 18 (solid line).
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pling, f.=2.3, up to about f=2.35. Since A is propor-
tional to the integrand in eq. (5) we expect a similar
finite-size effect for f/ T,

We have evaluated ffrom eq. (5) in two steps: in
the regions where our data populations were dense
enough, we have used the histogram technique [9]
to find the integral contributions from the N3 X 4 lat-
tices, the contributions of the symmetric lattice were
calculated from spline fits to high-statistics 16* lat-
tice plaquette values in the same f-ranges; in the
small-f region we have supplemented the A data by
fits through the remaining few points (the fits are also
shown in fig. 2) and then integrated these fits to ob-
tain the lower integral parts. The errors from the his-
togram method are difficult to determine. Most
probably they are much smaller than the fluctuation
of data points, since information from many overlap-
ping histograms (in the case of the 83X 4 lattice we
had 38, for 183X 4 still 20) was used simultaneously.
Errors from the fits to A and their integrals could shift
the free-energy density curves slightly in the y-direc-
tion but would not change their shapes.

The resulting curves for —f/7T*on N,=8, 12, 18
lattices (for N,=26 too few points were available)
are compared in fig. 3 to the direct data for P/T* on
the 183x 4 lattice from fig. 1. We observe a strong
volume dependence of the free-energy density indi-
cating that F'= Vs not an extensive quantity on small
lattices. On the other hand, the N,=18 curve is in
perfect agreement with the direct data above and al-
ready at the transition point, i.e. for SU(2) we see in
this region essentially no violation of the perturba-
tive relations for the coupling derivatives. Below the
phase transition the direct data should, however, de-
viate more and more from the true non-perturbative
result,

We conclude that for SU(2) on lattices with N, > 15
(and N,.=4) the finite-size dependence of the free-
energy density becomes negligible and therefore that
eq. (8) is applicable. For SU(3) gauge theory we ex-
pect similar finite-size effects; in contrast to SU(2),
however, a noticeable difference to the perturbative
calculation is anticipated.

To caiculate the pressure via eq. (8) we have taken
the SU(3) data on 163X 4 and 16* lattices from ref.
[4]. In fig. 4a we show N4(2P,—P,—P,) as ob-
tained from the A-data of ref. [4], and the known
factors in front of this quantity in eq. (6). The solid
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Fig. 3. Finite-size dependence of the free-energy density for the
SU(2) gauge theory plotted against 8. Compared are —f/T* from
eq. (5) for N,=8 (long dashes), 12 (short dashes) and 18 (solid
line) with P/T* (circles) from the direct formula with perturba-
tive coupling derivatives for the 18X 4 lattice (same as in fig. 1).

curve in the plot is an interpolation of these data
points, with a gap assumed at $=5.6925. From this
interpolation we evaluated the integral in eq. (5). The
resulting non-perturbative P/T* is shown in fig. 4b
together with the Monte Cario data of ref. [4], which
were calculated with perturbative coupling deriva-
tives. We note that by construction this pressure is
always continuous across the deconfinement transi-
tion. Evidently, our approach solved the unsatisfac-
tory situation of a negative, discontinuous pressure.

4. Non-perturbative S-function and energy density

Already the early Monte Carlo renormalization
group (MCRG) studies [10,11] of the QCD g-func-
tion have shown that there are considerable devia-
tions from the weak-coupling scaling relation. In par-
ticular in the case of SU (3) large deviations have been
observed for #= 5.7, which, however, seem to disap-
pear rapidly above 2 6.1. The numerical resuits for
the discrete f-function, AB(B), obtained from a stan-
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Fig. 4. (a) The difference between plaquette expectation values
on asymmetric and symmetric lattices times N # from Monte Carlo
SU(3) data [4] on 163X 4 and 16* lattices, respectively. The solid
line is an interpolation through these data, used for the integral
in eq. (5). (b) The non-perturbative result for the pressure in
SU(3) gauge theory as a function of § along with the Monte Carlo
data of ref. [4], based on perturbative coupling derivatives.

dard MCRG analysis, have been fitted with Padé ap-
proximants, in order to extract a non-perturbative -
function [12,13]. The approximants are chosen such
that they are consistent with the perturbative form at
large B and reproduce the observed scaling violations
down to f~5.7. To be specific we use the following
parametrization given in ref. [13]:

e, o (1-agh)?+ale’
da =78 1= (a,+b,/2b0) >t arg®’

where bo=11N/487? and b, = 34N %/768n* are the first
two coefficients in the perturbative QCD p-function
for SU(N) gauge theories. In the case of SU(3) we use
the set of coefficients {a, =0.853572, a,=
0.0000093, a3 =0.0157993}, given in ref. [13].

(10)
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We have used this non-perturbative f-function and
our interpolation of N (2P, — P, — P,), shown in fig.
4a, to extract the interaction measure A from eq. (6).
This is plotted in fig. 5a as a solid curve. For compar-
1son we show the unchanged data of ref. [4], which
are based on the asymptotic weak-coupling scaling
relation. Near the transition point, around f=15.7, we
observe a drop in A by about a factor two, which arises
from the non-perturbative g-function. By construc-
tion the two results approach each other at higher g-
values. The non-perturbative energy density was then
found by adding three times the pressure from eq. (8)
(solid curve in fig. 4b). In fig. 5b we compare the
result (solid curve) again with the unchanged data
from ref. [4]. A similar drop as in A occurs; in par-
ticular the slight peak in ¢/7T* near #=5.83 has dis-
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Fig. 5. The interaction measure A= (¢—3P)/T*, (a), and the en-
ergy density divided by 7%, (b), plotted against 8 for SU(3) gauge
theory. The data are from ref. [4] and were calculated using per-
turbative coupling derivatives. The solid lines show the corre-
sponding results when the pressure is computed from eq. (8) and
the non-perturbative S-function, eq. (10), is taken into account.
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appeared - the non-perturbative energy density is a
very monotonously rising function and the gap Ae/
T*is reduced considerably.

5. Summary and discussion

In summarizing, we have seen that, under the as-
sumption of the homogeneity of the system, it is pos-
sible to calculate the pressure non-perturbatively on
the lattice. By construction it is also continuous at the
first-order transition points and it turns out to be
positive everywhere. The information needed on an
N2 XN, lattice is just the expectation value of the av-
erage plaquette (P,+ P,) and a corresponding value
Py on a symmetric N} lattice, i.e. essentially the
actions.

From the same lattice data, the average plaquettes,
one then determines the interaction measure ¢—3P
and after that by the simple addition of 3P the energy
density. In this second step, however, one needs the
p-function. The non-perturbative g-function may
change the shape of the energy density and the size of
the latent heat density in SU(3) considerably. In fact
it may resolve the problem of the N,-dependence of
Ae/T? found in ref. {14]. Because of the continuity
of the non-perturbative pressure there is no further
ambiguity in the determination of the latent heat
density, as is the case in the usual gap calculations
from the enthalpy density, e+ P, or e—3P involving
the derivatives ¢, ¢, and the asymptotic f-function.

This ambiguity and its origin, the incomplete
knowledge of the derivatives of the couplings with re-
spect to the anisotropy & was already noticed in one
of the first determinations of the latent heat density
in SU(3), ref. [15]. The cure in both refs. [14] and
[15] was to impose the condition of continuity of the
pressure at the transition point. The two calculations
still differ in so far as in ref. [ 14] the quantity e+ P,
and in ref. [15] the quantity e—3P, was used to ex-
tract the gap in the energy density. The enthalpy den-
sity €+ P depends on the difference of the partial de-
rivatives given in eq. (1), while the interaction
measure ¢ — 3P depends on the sum of these deriva-
tives via eq. (2). If one insists on using perturbative
coupling derivatives, the second quantity is to be pre-
ferred, because, owing to eq. (2), and the weak-cou-
pling -function the sum of the derivatives is known
up to order g2, the difference only to order g°.
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In full QCD theory, the same difficulties in the de-
termination of the pressure appear, see, for example,
ref. [16]. There too our procedure to obtain a phys-
ical pressure is applicable and certainly superior to
the conventional approach as long as Monte Carlo
simulations for thermodynamic quantities are re-
stricted to rather small temporal lattices (N, < 10).
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