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We have calculated the order parameter, the susceptibility and the normalized fourth 
cumulant  gr with high precision on N2 × 4 lattices (N o = 8,12,18 and 26) for SU(2) gauge theory 
at finite temperature. The finite size scaling analysis of these quantities confirms that the critical 
exponents  of SU(2) gauge theory are the same as those of the three-dimensional Ising model, the 
infinite volume value for the critical coupling is 4/&~ (N, = 4 ) =  2.2985 _+ 0.0006. With direct 
scaling fits we determine fl/~ and y / u  and find excellent agreement with the hyperscaling 
relation. 

1. Introduction 

In full QCD Monte Carlo simulations with intermediate bare quark masses (see, 
e.g., the review in ref. [1]) and even in pure SU(3) lattice gauge theory [2] the order 
of the finite temperature transition is still undetermined or at least in question. This 
uncertainty is not only due to the small lattices in use for full QCD, but also to the 

criteria and methods with which a first or higher order transition is identified on 
finite lattices. To improve the situation it is then of importance to study the 
behavior of thermodynamic quantities near a clear second order deconfinement 
transition as a function of lattice size. Pure SU(2) lattice gauge theory contains 
already essential features of full QCD and shows such a second order phase 

transition, which can - in reasonable computer time - be studied with high statis- 
tics even on relatively large lattices. 

To be more detailed, we want to apply finite size scaling techniques to SU(2) to 
check the universality hypothesis of Svetitsky and Yaffe [3]. That conjecture implies 
that SU(2) lattice gauge theory should have the same critical exponents as the 
three-dimensional Ising model. In addition, the method of finite size scaling allows 
for an accurate determination of the critical point in the thermodynamic limit and a 
check on hyperscaling relations. 

* Work supported by the Deutsche Forschungsgemeinschaft  under research grant En 164/2. 
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This paper is organized as follows. In sect. 2 we discuss the thermodynamic 
quantities with critical behaviour and the data which we obtained for them. A 
review of that part of finite size scaling theory, which is relevant for our problem is 
given in sect. 3. In sect. 4 we present applications: the determination of the critical 
point, the check of the universality hypothesis and direct scaling fits. We close with 
a summary in sect. 5. 

2. Thermodynamic quantities with critical behaviour 

We simulated SU(2) gauge theory on N 3 × N, lattices for the standard Wilson 
action 

S(U) = (4 /g  2) E ( 1  -- 1TrUp),  (1) 
P 

where Up is the product of link operators around a plaquette. The number of lattice 
points in space (time) direction No(,) and the lattice spacing a fix the volume and 
temperature 

V= (Noa) 3, T= l/N,a. (2) 

For a given coupling constant g2 the lattice spacing may be expressed in units of 
the lattice scale parameter A L by assuming the asymptotic scaling relation for a (g2) 

12~r 2 51 ( 247r 2 
a(g2)aL=exp - 1 1 g ~  + 121 In . (3)  

On an infinite volume lattice the order parameter for the deconfinement transi- 
tion is the expectation value of the Polyakov loop 

N~ 
L(x) = ½Tr I-[ U,,x;0, (4) 

'7"=1 

or else, that of its lattice average 

L = I / N 2 E L ( x  ), 
x 

(5)  

where /.Ix: 0 are the SU(2) link matrices at four-position x in time direction. In the 
neighbourhood of the critical temperature To one expects for N, -~ 

( L ) - ( T - T c )  ~, for T - ~ T  + .  (6) 

The behaviour near T~ of the susceptibility X, the correlation length ~ and the 
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specific heat Cv is determined by other critical exponents. For N o ~ m one expects 

X -  I T - T c l - v ,  for T ~ T c ,  (7) 

- I T -  T~I-~, for T ~  To, (8) 

Cv- I r -  r~l ~, for T - - ,  T c. (9) 

Of course, on finite lattices there is no singularity. In the three-dimensional Ising 
model, the critical exponents were calculated from theoretical models [4] as well as 
from Monte Carlo simulations [5-7] with the result 

f i --0.325,  7 - -1 .24 ,  u--0.63,  a ~ 0 . 1 1 .  (10) 

The check of the universality hypothesis consists now of a comparison with these 
numbers. 

Our data were taken on N 3 x 4 lattices with N~ = 8, 12,18 and 26. In general, we 
used 100000 sweeps per point, very close to T c, this was increased up to 450000 
updates per point. The evaluation was carried out with a full group heat-bath vector 
program. For thermalization, we discarded the first 1000 iterations before data 
measuring. 

In fig. 1 we show the probability density P(]L])  of the modulus of the lattice 
average of the Polyakov loop at 4 / g  2 =  2.27, 2.29, 2.30, 2.31 and 2.35. This 
corresponds to T / A  L = 39.21, 41.22, 42.27, 43.34 and 47.92; the critical point is at 
42.11, as we shall see. Let us first look at the results for the largest, the 263x 4 
lattice. Well above T c we have a single gaussian peak. Approaching T c the peak 
broadens and becomes asymmetric, the region between the position of the maxi- 
mum, [L[max and ILl = 0 is being filled up due to the increasing probability for 
tunnelling between the two equivalent broken symmetry states. Even very close to T c 
we still have a maximum of the distribution for ILl > 0, well below T c a gaussian 
distribution around ILl = 0 is obtained. On the smaller lattices we find in principal 
the same behaviour; the main differences are 

(i) the heights of the maxima decrease, the widths of the distributions increase 
with decreasing N o (see the different scales in the plots), 

(ii) the smaller the lattice is, the larger is the tunnelling probability above To, i.e. 
in the distributions the region below [L[max is enhanced, 

(iii) with decreasing N o the point ILl m a x  is increasing. 
Obviously it is very difficult to determine the critical point on too small lattices; 
even below T~ the distribution may still have a maximum at ILl ~ 0. It is important 
to note, that all distributions show only one peak, in contrast to what is observed at 
a first order transition. 

Since, due to the system flips between the two ordered states on finite lattices the 
expectation value ( L )  is always zero, we take as "order parameter" the expectation 
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Fig. 1. The probabil i ty density P( [ L I) for the 83 × 4, 123 × 4, 183 × 4 and 263 × 4 lattices at 4 / g  2 = 2.27, 
2.29, 2.30, 2.31 and 2.35. The histograms with the maximum at ILl = 0 correspond to 4 / g  2 = 2.27, the 

ones with maximum at ILl > 0.22 to 4 / g  2 = 2.35. 
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Fig. 2. The expectation value of the modulus of the lattice average for different lattice sizes. 
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value of the modulus of the lattice average of the Polyakov loop. It is shown in fig. 
2. The errors on ( [L I )No were calculated both with the blocking method [8] and the 
method of Daniell et al. [9], which led to the same result. Among the quantities 
measured, (ILl)No has the least errors. We see from fig. 2 an approach to the 
limiting form (6) with increasing No. Just above the critical 4/g  2 (~ 2.30) each two 
data sets cross twice, for larger 4 /g  2 the data with bigger N o are smaller, in accord 
with the weak coupling expansion of (I L I )No" 

The data for the susceptibility 

XNo= N 3 ( L 2 )  - (ILl) 2) (11) 

are plotted in fig. 3. The estimate of the error of the susceptibility is not straightfor- 
ward, since X is composed of two expectation values. We take the average distance 
of the values of X found for four subblocks to the value for the total data set as 
estimator. As expected for a second order phase transition we find an increasing X No 
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Fig. 3. The susceptibility X for different |attJce sizes. 

with increasing N o near T c. Somewhat further away from the critical point the 
different No-curves cross again, X No is then decreasing with increasing N~. 

The direct calculation of the specific heat C v 

C v = 8 , / 8 T  (12) 

requires plaquette correlation measurements or the numerical derivative of the 
energy density (. Since both methods do not result in very reliable data, we 
investigate instead quantities connected to the energy density and pressure P, 
namely the entropy density 

s / T  3 = ( (  + P ) / T  a = 1 6 ( N ~ a / g 2 ) ( 1  + g2c~) (Po - P,) ,  (13) 
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Fig. 4. The difference Po - PT, which is proportional to the entropy density, for different lattice sizes. 

where C'G---- --0.0908 and Po and P, are the space-space and space-time plaquettes, 
and the interaction measure A, which is given by 

4--2( ) 
,~ = (~ - 3 P ) / T  4 = 2 4 N ~ a ~ -  a P° + P, 

2 P o ,  (14) 

and vanishes for an ideal gas of massless gluons. In the last equation, P0 is the 
plaquette on a symmetric (N 4) lattice and was included to take away the T =  0 
contribution. For a discussion of the dynamical implications of the forms of s / T  3 

and A we refer the reader to ref. [10]. Our current interest in these quantities is in 
their finite size behaviour. For that purpose the gZ-dependent, but volume-indepen- 
dent factors in eqs. (13) and (14) are not needed. Therefore we have directly plotted 
the difference of Po and P~ and the difference of the average of Po and P~ to P0 for 
the different lattices in figs. 4 and 5. We observe in the neighbourhood of the critical 
point again a strong finite size effect similar to the one in < ILl). 

Due to the relatively large computer time necessary for an update of the 263 x 4 
lattice, we measured only at eight 4/gZ-values there. The smaller lattices were 
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Fig. 5. The difference P0 - (P, + P,)/2,  which is proportional to the interaction measure A, for different 
lattice sizes. 

TABLE 1 
Number of iterations in units of 1000 

4 / g  2 T/At.  83 × 4 123 × 4 183 × 4 263 × 4 

2.16 29.78 150 151 151 100 
2.21 33.74 200 200 200 100 
2.27 39.21 200 200 100 150 
2.29 41.22 200 400 300 150 
2.2975 42.01 400 401 459 208 
2.30 42.27 200 300 450 200 
2.31 43.34 400 300 300 150 
2.35 47.92 200 150 194 100 
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TABLE 2 
Polyakov loop values ( I L I ) 

745 

4 / g  2 T//AL 83 x 4  123 x 4  183 x 4  263 ×4  

2.16 2 9 . 7 8  0 . 0 4 0 0 ( 0 3 )  0 . 0 2 1 8 ( 0 2 )  0 . 0 1 1 8 ( 0 1 )  0.0068(01) 
2.21 3 3 . 7 4  0 . 0 5 4 8 ( 0 5 )  0 . 0 2 9 9 ( 0 3 )  0 . 0 1 6 4 ( 0 1 )  0.0094(01) 
2.27 3 9 . 2 1  0 . 1 0 2 6 ( 1 2 )  0 . 0 6 2 5 ( 1 0 )  0 . 0 3 6 1 ( 1 2 )  0.0196(05) 
2.29 41.22 0 . 1 2 8 8 ( 1 4 )  0 . 0 9 4 5 ( 1 2 )  0 . 0 6 6 1 ( 1 4 )  0.0417(17) 
2.2975 4 2 . 0 1  0 . 1 3 9 9 ( 1 1 )  0 . 1 1 3 7 ( 1 3 )  0 . 0 8 9 7 ( 1 5 )  0.0698(25) 
2.30 42.27 0 . 1 4 4 0 ( 1 5 )  0 . 1 1 8 0 ( 1 6 )  0 . 0 9 5 1 ( 1 6 )  0.0843(30) 
2.31 43.34 0 . 1 6 3 7 ( 1 0 )  0 . 1 4 5 8 ( 1 6 )  0 . 1 4 1 7 ( 1 4 )  0.1423(14) 
2.35 47.92 0 . 2 2 1 9 ( 1 3 )  0 . 2 2 3 6 ( 0 9 )  0 . 2 2 5 4 ( 0 3 )  0.2256(03) 

TABLE 3 
The susceptibility X 

4 / g  2 T/At .  83 X 4 123 × 4 183 X 4 263 X 4 

2.16 29.78 0.46(01) 0.46(01) 0.46(01) 0.46(02) 
2.21 33.74 0.83(01) 0.86(01) 0.88(02) 0.89(03) 
2.27 39.21 2.09(03) 3.15(09) 4.36(52) 3.92(39) 
2.29 41.22 2.50(05) 5.15(07) 9.61(10)  14.03(165) 
2.2975 42.01 2.61(02) 5.64(21) 12.16(27) 22.77(290) 
2.30 42.27 2.65(03) 5.85(26) 13.09(52) 25.23(248) 
2.31 43.34 2.65(04) 5.82(27) 9.11(35) 11.59(79) 
2.35 47.92 2.11 (16) 2.19(09) 2.03(05) 2.01 (13) 

TABLE 4 
The difference Po - P, in units of 10 4 

4 / g  2 T / A  L 83 x 4 123 X 4 183 X 4 263 x 4 

2.16 29.78 0.03(46) 0.18(25) 0.31(14) 0.27(10) 
2.21 33.74 0.73(38) 0.37(21) 0.37(12) 0.39(09) 
2.27 39.21 2.83(37) 1.34(20) 1.01(16) 0.90(07) 
2.29 41.22 4.42(37) 2.77(15) 1.96(10) 1.50(08) 
2.2975 42.01 5.08(27) 3.70(15) 2.85(07) 2.32(07) 
2.30 42.27 5.60(37) 3.87(17) 3.01(08) 2.76(06) 
2.31 43.34 6.37(27) 5.30(17) 5.14(09) 5.15(08) 
2.35 47.92 9.91(36) 9.77(23) 10.00(11) 10.06(10) 
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TABLE 5 

The difference Po - (Po + PT)/2 in  units of 10 -4  

4 / g  2 T / A  L 83 × 4 123 × 4 183 x 4 263 × 4 

2.16 29.78 0.19(51) 0.14(29) 0.08(15) 0.15(15) 
2.21 33.74 2.24(47) 0.52(28) 0.57(17) 0.43(15) 
2.27 39.21 8.39(60) 3.39(31) 1.59(20) 1.49(13) 

2.29 41.22 12.53(58) 7.37(23) 4.67(29) 3.22(19) 
2.2975 42.01 14.12(44) 9.87(33) 7.25(25) 5.50(29) 

2.3O 42.27 14.50(60) 10.39(39) 7.88(16) 7.01(31) 

2.31 43.34 17.81(40) 14.46(45) 13.44(22) 13.59(26) 

2.35 47.92 22.11(55) 21.91(34) 22.47(18) 22.33(16) 

TABLE 6 
The renormalized coupling gr 

4 / g  2 T / A  L 83 X 4 123 × 4 183 × 4 263 × 4 

2.16 29.78 - 0.088(25) - 0.029(52) - 0.031(38) - 0.004(64) 
2.21 33.74 -0 .212(31)  -0 .105(21)  -0 .025(117)  0.044(91) 

2.27 39.21 - 0.916(57) - 0.598(30) - 0.103(51) - 0.036(120) 
2.29 41.22 - 1.226(20) - 1.120(28) - 0.971(33) - 0.647(142) 

2.2975 42.01 - 1.323(27) - 1.351(28) - 1.336(15) - 1.286(135) 
2.30 42.27 - 1.352(16) - 1.387(35) - 1.374(51) - 1.479(69) 

2.31 43.34 - 1.503(26) - 1.606(23) - 1.788(14) - 1.901(08) 
2.35 47.92 - 1.770(16) - 1.916(03) - 1.974(01) - 1.991(01) 

evaluated at 25-40  points. The number of iterations and the results for the 
4/g2-values with the complete set of data are presented in tables 1-6.  

3. Finite size scaling theory 

3.1. D I R E C T  S C A L I N G  A N S A T Z  

On a finite lattice the correlation length is limited by the characteristic length 
scale of the system, in our case N o. That observation leads to the introduction of a 
scaled variable [11,12] 

y = N o / ~ ,  (15) 

where ~ is the correlation length of the infinite volume lattice: Near a second order 
transition ~ is supposed to diverge as described by eq. (8). If instead of the 
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temperature we use a normalized variable 

T -  T c o~ 4/g2 2 • - 4/gc, oo 
x -  rc,o~ , or x =  4/g2,o~ , (16) 

any observable O with critical behaviour will have the form 

Oo~-x  -° ,  for x--+0.  (17) 

On a finite lattice, i.e. for finite No, and for fixed T, or 4 /g  2, close to T~,~, we make 
then the ansatz [11, 12] 

N~Qo(y  ) . (18) ONo(T) = ,o-- 

Here we have neglected correction-to-scaling terms. The behaviour of the correla- 
tion length 

- x -v ,  (19) 

implies then 

y - N o x  (20) 

and we may change variables in eq. (]8) to find 

ON. = N2'Qo ( xN2 /" ) . (21) 

The scaling function Qo must then behave as 

Q o - ( x N  1/~) ", (22) 

for fixed small x, if the form (17) is to be recovered for No ~ ~ ,  the exponent oa 
must be 

¢0 = O / v .  (23)  

The ansatz for ON, may be tested in the following way: one plots ONoNoP/~ as a 
function of xN2/~. For large T near Tc, oo, and N, large one should get a unique 
function independent of No. Of course, such scaling plot tests may be carried out 
independently for each observable, no hyperscaling relations between different 
critical exponents have to be known as input. On the other hand, there must be 
relations between different critical exponents, because the critical behaviour of all 
observables is determined by the same partition function. 
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3.2. SCALING ANSATZ FOR THE SINGULAR PART OF THE FREE ENERGY 

The basic idea of this approach [11] is to consider the singular part of the free 
energy density 

rs 1 
f~ v r  v l n  Z~, (24) 

and to assume a scaling ansatz for this quantity 

f~(x, h, No) = NodQ( gT N1/~', ghN~ ~+v)/~', giNY'), (25) 

where d is the spatial dimension. The scaling function Q depends on the thermal 
scaling field 

gT = CTX + O(x2) (26) 

and the magnetic scaling field 

gh = chh + O( xh ), (27) 

here c T and c a are constants and h denotes the coupling of the symmetry breaking 
term h~,xL (x)  in the action. The additional dependence on irrelevant scaling fields 
gi with yi < 0 determines the correction-to-scaling terms. 

The order parameter and the susceptibility are now obtained as derivatives of fs 

Ofs h=o ( L )  = - ~ = N~-~/~QL(gTN1/~ , giNY'), (28) 

O2fs h=o= NoV/,Qx(,. ~ 1 / ,  giNd,). (29) X = - - ~  6 T  ~'a , 

In the last two equations we have used the hypersealing relation 

V/v + 2f l /v  = d. (30) 

Taking the fourth derivative of fs at h = 0, it is then easy to see that the quantity 

t94fs h=o/X2Nod g~ = - ~  (31) 

is directly a scaling function 

I N1/r  gr = {a~.gr~, g T  o ' giN.Y') • (32) 
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O n  a finite lattice gr has the form 

g~ = ( L 4 ) / ( L : )  2 -  3, 
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(33) 

i.e. it is the normalized fourth cumulant of the Polyakov loop. It corresponds, up to 
a constant, to the renormalized coupling defined for infinite systems [6,13,14]. 

Consider now the energy density 

1 O In Z V=cons t ,  h = O "  "=  V O ( 1 / T )  (34) 

The contribution from fs to ~ is 

Of~ h=0 Cs- ~ - x  ' or = N J +  gTN2/", giNY' ) . (35),(36) 

In comparison with 
dependent (for 
data [10]. 

leads to 

Ps = No-dQp(  gTNJ/1 ' ,  giNY'  ) • ( 4 2 )  

the energy density the pressure is therefore much less size 
d =  3 , -  d +  1/~ = - 1 . 4 )  and this is indeed confirmed by the 

Correspondingly one obtains for the specific heat 

a2fs h=0 - - -  , - N  -a+2/"tn [ "  N '/~ g iN: ' )  (37),(38) Cv, s Ox 2 o r  C v ,  s - a ~ C v k / S T  . , • 

With the second hyperscaling relation 

a = 2 -  d r ,  (39) 

one recovers the expected No-dependence. However, due to the smallness of the 
exponent a, the analytic parts in C v and c are dominating. For the total energy 
density one anticipates therefore the form 

' = %e~u,a~ + N ~ - x ) / " Q , ( g T N 2 / " ) ,  (40) 

where we neglected the irrelevant scaling fields. The corresponding consideration for 
the pressure 

0 In Z [ In Z h=O (41) 
P = T ~  T = c o n s t ,  h = 0  -~- T V 



750 J. Engels et aL / Lattice gauge theory 

4. Applications 

4.1. THE DETERMINATION OF THE CRITICAL POINT 

If  the quant i ty  gr is directly a scaling function, it must, at x = 0, the critical point, 

be independent  of N o, apart from corrections to scaling [6]. Expanding Qg, around 

x = 0 results in 

gr(x,  No) = a o + ( a  i + a2N~)xNol/P + a3NYl q- " ' "  , (43) 

where the a i are constants and one irrelevant scaling field with exponent  Yi < 0 has 

been taken into account. At  x = 0 we get 

gr(O, So )  = ao + a UJ* . (44) 

For  large N o the intersection point  for two No-curves is the critical point;  no 

informat ion  about  the critical exponent v is required! 

In  fig. 6 we have plotted our data for gr" They are confined to the range 
- 2 ~< gr ~< 0, the interval ends are reached in the weak and strong coupling limits. 
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Fig. 6. The normalized fourth cumulant of the Polyakov loop, gr, for different lattice sizes. 
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Fig. 7. Enlarged section of fig. 6, together with straight line fits to the data. 
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The data for gr have the largest statistical errors. The estimate of the errors was 
performed in the same manner as in the case of the susceptibility. We obtain 
essentially one intersection point for the different No-data, the slope of gr increases 
with increasing N o. To determine the critical point, we have made linear fits to the 
data in the region 2.29 ~< 4 / g  2 <~ 2.31, they are shown in fig. 7. The data for N o = 26 
did not allow for such a fit due to relatively low statistics and too few points. We 
find as intersection points between each two straight lines 

4 /g2=2 .29812 ,  for No= 8-12,  

2.29836, for 8-18,  

2.29851, for 12-18;  

i.e. only a negligible No-dependence. The best value is that of the largest No-values 

4/g~ ,~  =2.2985 ±0.0006,  (45) 

its error was estimated with a confidence level of 95%. 
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Fig. 8. The 4/g ' - -value of the maximum of the susceptibility X versus No 1/~, with v = 0.63. The straight 
line is a fit to the data. 

A different way for the determination of the infinite volume critical point is the 
following. The position of the maximum of X No defines a pseudo-critical coupling 

2 
4 / g c ,  No" The maximum of the scaling function Qx = ( x N o  l / p )  is at a fixed argument 

.~ = Xc, uoNo I /p  • (46) 

Inserting the definition (16) of xc, No yields 

4/g2c, z 2 - 1 / ,  No = 4~go,  oo + E . 4/ge,ooN~, . (47) 

A plot of the 2 4 / g c ,  No versus N,- 1/~ may then be extrapolated to N o- x/~ = 0 with a 
straight line fit. This is shown in fig. 8, the resulting critical point is, with v = 0.63 as 
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Fig. 9. Scaling plot for g~. The critical point was taken from eq. (45), the critical exponent from the 
three-dimensional Ising model. 

input ,  

2 4/gc,oo = 2.2997 + 0.0034, (48) 

in accord  with our previous result (45). 

4.2.  T H E  C H E C K  O F  T H E  U N I V E R S A L I T Y  H Y P O T H E S I S  

T o  test the predict ions for the critical exponents  f rom the universality hypothesis  
we have p lo t ted  in figs. 9-11  the quantit ies gr, (ILI)N~/~ and x N£ -v/, as functions 
of  xN, 1/~, using the values of the three-dimensional  Ising model  for r ,  7 and ~, as 
given in eq. (10), and the critical coupling f rom eq. (45). Obviously the expectat ions 
are conf i rmed  in all respects. In  fig. 11 the values for x > 0 are scattering more  than 
for  x < 0. This  is due to the tunnel effect above T c and could be improved  by  an 
even larger statistics. 
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Fig. 10. Scaling plot for { ] L] ), the input is like in fig. 9. 

The test of  the exponent a is not  so straightforward, as is evident f rom the 
discussion in subsect. 3.2, because of the dominat ing analytic parts. In fig. 12 we 
have plot ted Po - P~ - (c + P ) / T  4 and P0 - (P~ + P~)/2 - (c - 3P)/T 4 at fixed 

4/gZ-values,  i.e. fixed x, as a function of N~ ~-1)/~, with a and v from the Ising 

model.  At  the critical point, x = 0, we expect a straight line. For  the range 2.29-2.30 

of  4/g 2 this is in fact the case. Also, in both quantities we find the same functional 

dependence  on No ~ -  a)/, for the same 4/g2-values.  

4.3. SCALING FITS FOR THE CRITICAL EXPONENTS 

The usual methods to determine critical exponents in a finite size scaling analysis 
require results at the critical point  from a larger number  of lattices than we have 

here. On the other hand, we may not only use data at x = 0, but  also in a narrow 
interval a round it, where scaling presumably still works and where we have many  
data  points. The idea is then, to try to find the scaling function Q(xN 1/~) with the 
best scaling behaviour,  i.e. with the closest superposition of different N~-data, as a 
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funct ion of  the exponents and 2 4 /gc ,~ .  Of course, we do not know the functional 
fo rm of Q(xN1/~), but from our experience with the scaling plots in figs. 9 -11  we 

assume that close to x = 0 the functions QL and Qgr are well approximated by  
straight lines, the function Q× by a parabola. 

The data  for ( JLJ)  have the smallest errors. For  straight line X2-fits with the 20, 
25 and 30 closest points to x = 0 we find 

(i) 2 4/g¢, ~ = 2.2985, the same value as f rom the gr-method, 
(ii) as a function of fl and 1, no conclusive result - X 2 is a very flat function; 

however,  varying f l /~ at fixed 1, the x2-minimum is always at the same f l /v :  

fl/u = 0.545 + / 0.005 minimum, (49) 
- ( 0.030 95% confidence level ; 

and 0.62 ~< ~, ~ 0.68. (50) 
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Fig. 12. Test of the exponent a = 0.11 from the three-dimensional Ising model. P , - P ,  and P 0 -  
(P,,+ P~)/2 are plotted at fixed 4 / g 2 = 2 . 1 6 ( + ) ,  2.21(~), 2.27(x), 2.29(A), 2.2975([3), 2.30(0) 

2.31(v) and 2.35( * ) versus No ~'~ n /L The points were connected by straight lines to guide the eye. 
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Fig. 13. Scaling fit for <1L[}. The straight line is the best fit at v = 0.63 to the 25 points closest to x = 0. 

As an example we show in fig. 13 such a fit. 

The parabola  x2-fits to the x-data  give correspondingly a well-determined expo- 

nent  ratio y/v: 

y/v = 1.93 + [ 0.01 minimum, (51) 
- [ 0.03 95% conf idencelevel ,  

whereas v again remains relatively undetermined in the range (50). In fig. 14 such a 
fit is shown. 

The  quant i ty  gr depends only on the exponent v and scaling fits of  the above kind 

are possible in the whole range (50). A better determination of  v requires most  
p robab ly  direct data for the correlation length ~ or rather for Polyakov loop 

correlations.  We have already gathered these data but still not  evaluated them. 
Wi th  the exponent  ratios we are now able to test the hyperscaling relation (30): 

y/v + 2,8/v = 3.02 _+ 0.02, (52) 
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Fig. 14. Scal ing fit for X. The curve is the best  fit pa rabo la  at  v = 0.63 to the 30 poin ts  closest  to x = 0. 

where the error is from the minimum condition. The result is in excellent agreement 
with eq. (30). 

5. S u m m a r y  

We have investigated the thermodynamical quantities with critical behaviour in 
SU(2) gauge theory near the deconfinement transition. The volume dependence of 
these quantities is as expected from finite size scaling theory for a second order 
phase transition. Moreover, through scaling plots, we have checked the validity of 
the universality hypothesis of Svetitsky and Yaffe [3], which postulates the coinci- 
dence of the critical exponents with those of the three-dimensional Ising model. Our 
finite size scaling analysis enabled us to determine the infinite volume critical 
coupling on N~ = 4 lattices with very high precision. By direct scaling fits we obtain 
the ratios fl/v and "//v, the critical exponent p of the correlation length is, however, 
not very well fixed by these fits 

fl/~, = 0.545 + 0.030, -y/~, = 1.93 _+ 0.03, ~, = 0.65 _+ 0.04. (53) 
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The corresponding values of the three-dimensional Ising model are 

fl/v = 0 .516  _+ 0 . 0 0 5 ,  "//v = 1.965 + 0 . 0 0 5 ,  u = 0 .63  _+ 0 . 0 0 3 .  ( 54 )  

Though our best fit values deviate from those of the Ising model, they fulfill the 
corresponding hyperscaling relation very well. Inside the error bars we find consis- 
tency with the Ising model. 

The experience we have gained in our study should be helpful in the assessment 
of the order and the behaviour of phase transitions of other lattice theories. 

It is a pleasure to thank F. Karsch, K. Redlich and H. Satz for many helpful 
discussions. We are indebted to the HLRZ, Jiilich, where most of the calculations 
were carried out, and to the Bochum University computer centre for providing the 
necessary computer time. 
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